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Abstract: Going beyond previous work, this paper presents a systematic literature review that
explores the deployment of satellites, drones, and ground-based sensors for yield prediction in
agriculture. It covers multiple aspects of the topic, including crop types, key sensor platforms, data
analysis techniques, and performance in estimating yield. To this end, datasets from Scopus and Web
of Science were analyzed, resulting in the full review of 269 out of 1429 retrieved publications. Our
study revealed that China (93 articles, >1800 citations) and the USA (58 articles, >1600 citations) are
prominent contributors in this field; while satellites were the primary remote sensing platform (62%),
followed by airborne (30%) and proximal sensors (27%). Additionally, statistical methods were used
in 157 articles, and model-based approaches were utilized in 60 articles, while machine learning and
deep learning were employed in 142 articles and 62 articles, respectively. When comparing methods,
machine learning and deep learning methods exhibited high accuracy in crop yield prediction, while
other techniques also demonstrated success, contingent on the specific crop platform and method
employed. The findings of this study serve as a comprehensive roadmap for researchers and farmers,
enabling them to make data-driven decisions and optimize agricultural practices, paving the way
towards a fully digitized yield prediction.

Keywords: remote sensing; vegetation index; platforms; sensors; satellite; proximal; airborne; digital
agriculture 4.0

1. Introduction

Estimating crop production is a crucial component in agriculture and has proven
to be an effective approach for addressing food security concerns [1]. The World Health
Organization [2] estimates that 820 million people worldwide still have insufficient access
to food, while the Food and Agriculture Organization (FAO) projects a 70% increase in food
demand required to support the global population of 9.1 billion by 2050 [3]. The droughts,
floods, and heatwaves brought on by climate change are also putting added pressure
on food production in many regions of the world [3]. In this context, yield prediction
is an essential strategy that empowers farmers and the agricultural industry to manage
resources efficiently, make informed decisions, and plan the harvesting, storage, processing,
and logistics operations of the production, leading to increased productivity and cost
savings. Moreover, timely forecasts enable farmers to plan for potential risks, such as
severe weather events or pest outbreaks, allowing them to take prompt action and mitigate
their impact [4]. Nevertheless, the estimation of crop production is a complex and intricate
process that depends on a multitude of factors, such as the microclimate, weather, soil
characteristics, fertilizer usage, and seed variety [5]. Therefore, numerous methods and
techniques have been developed and used for optimizing yield prediction and improving
the effectiveness of the developed models [6]. Precision agriculture could play a key role to
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yield estimation by utilizing various sensors including satellites, drones, and ground-based
sensors, transforming the process of yield prediction by generating a plethora of data [7].

There have been a number of review papers focusing on the use of smart farming
for yield prediction which offer insights into the challenges and opportunities of using
remote sensing for crop management [8–10]. Several of these articles focus on the yield
prediction of particular crops that are widely grown, such as maize, rice, sugarcane, sugar
beet, and vines [11–15], while others include a more general overview of remote sensing
technologies for specific application domains, such as crop management, crop monitoring,
phenology, and other ecophysiological processes [16–19]. As reported [20], the relationship
between vegetation indices obtained from remote sensing images (proximal, Unmanned
Aerial Vehicles—UAVs, satellites) and crop yield is not static, but varies by vegetation stage.
Towards this direction, a review of 69 studies by Benos et al. [21] highlighted a number of
prediction levels at a specific vegetation stage or time before harvest. Schauberger et al. [22]
performed a systematic review of crop yield forecasting methods in three often-used
data domains: weather, remote sensing, and crop mask. By reviewing a large database
(covering more than 350 articles), they reported that the most commonly-used models
include statistical, process-based, and machine-learning models.

In relation to machine-learning models, the growing adoption of AI has allowed a
noteworthy rise of studies focused on yield prediction [23–25]. Machine learning (ML)
models treat the output, the crop yield, as an implicit function of the input variables, such
as weather components and soil conditions, which can be very complex [26]. Many studies
have used supervised and unsupervised learning, including various analytical models
like Decision Trees, Random Forest, Support Vector Machines, Bayesian Networks, and
Artificial Neural Networks [26–28]. Even though several review papers deliver a narrative
overview of the topic [29–31], limited studies examine in depth all the necessary aspects
for yield estimation. In this context, Van Klompenburg et al. [32] provided a systematic
review of ML methods in yield prediction, including 567 relevant studies from six electronic
databases. According to their findings, the algorithms that are most widely used were
Neural Networks (NN) and Linear Regression algorithms, followed by Random Forest
(RF) and Support Vector Machines (SVM). The most applied deep learning (DL) algorithm
is Convolutional Neural Networks (CNN), and the other widely-used algorithms are
Long-Short Term Memory (LSTM) and Deep Neural Networks (DNN). These findings
are aligned with the systematic review of Oikonomidis et al. [33], who also reported the
rapid increase of DL methods in crop yield prediction over the last five years. Similarly, the
systematic review conducted by Muruganantham et al. [20] concluded that the performance
and accuracy of the DL approach for crop yield prediction are better when compared to
traditional ML approaches. Nevertheless, they are difficult to train and need recently
developed hardware and optimization methodologies [34]. Large amounts of data are
required to achieve good accuracy, and the complexity of DL approaches increases the
algorithm’s time complexity [35]. When assessing ML techniques for achieving high levels
of prediction performance, special attention should be given to different scales. Although
prediction models at the regional scale could exhibit good accuracy, their usefulness to
inform the decision-making of individual farmers might be severely limited according
to the systematic review of Leukel et al. [36]. The review also accentuated the greater
effort required for collecting field-level yield data (e.g., in-field sampling) compared with
accessing readily available yield data from governmental bodies and regional associations.
Wang et al. [33] also evaluated the applicability of DL for yield prediction on multiple scales
and listed some representative studies regarding the nature of application and performance.

Although research has made great strides and crop yield prediction models can
estimate the actual yield reasonably, better model performance is still desirable [37]. In
the pursuit of enhancing agricultural productivity and ensuring food security, there is a
pressing need for further advancements in yield prediction techniques. To address this
requirement, this study aims to conduct a comprehensive systematic literature review,
focusing on the deployment and integration of cutting-edge technologies such as satellites,
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airborne, and ground-based sensors in the context of crop yield prediction. By synthesizing
this knowledge, we aim to provide valuable guidance for researchers, policymakers, and
practitioners in the agriculture sector to make informed decisions and develop improved
crop management strategies. Specifically, our review goes beyond previous work by
combining multiple aspects of the topic including crop types, key sensors and platforms,
data analysis techniques, and their respective performance for estimating yields. To this
end, the following research questions are developed to guide the study:

1. Which countries have been the key contributors to research related to the deployment
of satellites, airborne, and ground-based sensors for crop yield prediction?

2. Which crop types have been predominantly used for yield estimation in the context
of remote sensing technologies?

3. What are the most commonly employed remote sensing platforms and data analysis
techniques for predicting crop yields in the existing literature?

4. Among the various methods and platforms utilized, which ones have demonstrated
better performance and accuracy in predicting crop yields?

By answering the above questions, this paper aims at providing a comprehensive
and objective framework of the topic. It also identifies gaps in the existing research, and
highlights hotspots where further investigation is needed in this rapidly growing field.

2. Materials and Methods
2.1. Scientific Article Search

In this study, peer-reviewed articles related to the application of remote sensing tech-
nologies in yield prediction were extracted, aiming to identify relevant studies from the
earliest instances to the present day. To this end, a systematic search procedure was devel-
oped by utilizing Scopus “www.scopus.com (accessed on 1 February 2023)” and Web of
Science (WoS) “www.webofscience.com (accessed on 1 February 2023)” search engines fol-
lowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
framework [38]. Specifically, the PRISMA Statement consists of a 27-item checklist and a
four-phase flow diagram, aiming at helping authors improve the reporting of systematic
reviews and meta-analyses [38]. To ensure a comprehensive selection of relevant research
articles for the analysis, the study’s approach was designed based on framed research
questions and the aim of the review. It was acknowledged that using “yield prediction”
alone as a search string would have generated a large number of published articles from
various application fields that were not likely related to the aim of the review, leading to
a complicated search. Therefore, the research words have been deliberately chosen, also
considering relevant systematic reviews [22,32,39] to narrow down the focus from a main
concept to a central idea. Specifically, the query used for encompassing all the works related
to the topic without risking excluding any item is presented in Table 1.

Table 1. Search engines and queries that were used for the scope of this study.

Search Engine Query

Scopus
TITLE-ABS-KEY (“yield forecasting” OR “yield prediction” OR “yield

estimation” OR “crop modeling”) AND TITLE-ABS-KEY (“satellite” OR “UAV”
OR “proximal” OR “remote sensing” OR “proximal sensing” OR “aerial”)

WoS
TS = (“yield forecasting” OR “yield prediction” OR “yield estimation” OR

“crop modeling”) AND TS = (“satellite” OR “UAV” OR “proximal” OR
“remote sensing” OR “proximal sensing” OR “aerial”)

Then, a filtering step was conducted by exploiting the exclusion criteria directly
available in the Scopus and WoS search engine, that is, document type, language, and
publication year. Open-access articles published in the English language were only selected,
while review articles and conference papers were excluded. This was based on the fact that
open-access publishing adheres to the principles of open science, fostering transparency

www.scopus.com
www.webofscience.com
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and ensuring that research is readily accessible for thorough examination, and thereby
upholding the fundamental tenets of scientific integrity. Furthermore, the time span of the
investigation encompassed the entire body of literature from 2002 to 2022.

The search query generated 725 records through Scopus and 704 through WoS, with
publication data containing information on the “Author, Title, Source”, “Abstract, Keyword,
Addresses”, and “Cited, References and Use” categories, organized into fields. Moreover,
by removing the repeated and review articles across the two selected databases, 864 articles
were screened by title and abstract.

2.2. Article Selection Criteria

The initially retrieved articles were chosen based on specific criteria, including the
type of remote sensing technology utilized in the study and the method employed for
yield prediction. Analyzing the abstracts of these articles aided in identifying relevant
keywords and assisting in the article selection process. To ensure the relevance and focus
of the review, the following exclusion criteria were applied:

• Records not pertinent to the research objective (e.g., satellite RNA in plant pathology)
were excluded;

• Articles falling within the agricultural sector but not directly related to crop yield
prediction were also removed from consideration;

• Publications that did not incorporate the use of satellites, airborne, or ground-based
sensors for crop yield prediction were excluded;

• Literature search for articles that are published between 1 January 2002 to 31 December 2022;
• Articles were included only if they forecasted crop yield, either in absolute or relative

terms, and provided performance metrics for evaluation. In order to ensure consistency
and comparability, particular attention was given to the presence of evaluation metrics
such as R2 (the coefficient of determination) and error metrics like the Root Mean
Square Error (RMSE). Studies lacking these metrics were omitted from the dataset to
standardize the evaluation process.

After applying all the exclusion criteria, a total of 456 full text articles were assessed for
eligibility. Figure 1 presents the process for article selection and rejection from databases,
based on the PRISMA framework.
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The eligibility process involved thoroughly analyzing the full articles to ensure that
only the studies that met the necessary aforementioned criteria were included. As a result, a
total of 269 studies were deemed suitable and incorporated into this comprehensive review.
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2.3. Scientific Studies Classification & Statistical Analysis

The selected papers were tabulated and standardized to enable comparison and
systematic evaluation by extracting the following variables from each study:

• Study data: lead author, year, title, citations;
• Experiment setup: study region, type of crop;
• Platform type: Satellite, Airborne Measurements (Unmanned Aerial Systems—UAS or

Manned Flight), Ground based Measurements;
• Method type: machine learning, statistical analysis, model-based approach, Vegetation

Indices (VIs);
• Evaluation: performance measures (e.g., R2, RMSE, MAE).

Subsequently, the actual data collected from the papers were subjected to statistical
analysis using XLSTAT software version 2016 from Addinsoft (www.xlstat.com, accessed
on 1 April 2023). This analysis involved determining the number of research articles
produced annually and by type. Additionally, further analyses were conducted based on
crop type, platform type, sensor type, and the method’s focus area for each year over the
past two decades.

3. Results and Discussion

One of the principal findings of this study pertains to the number of publications per
year from 2002 to 2022, which sheds light on the evolving trends and research activity in
the field of yield prediction using remote sensing technologies. According to Figure 2,
from 2002 to 2012, the publication rate was low, with an average of roughly one paper
per year. However, between 2013 to 2017, the publication rate increased to an average of
approximately six papers annually, indicating a growth stage. From 2018 onwards, a rapid
increase in publications is evident, confirming the growing interest among researchers,
which also reflects the yield prediction used in the literature. Specifically, the number of
publications surged from 15 in 2018 to 42 in 2020 and reached its peak at 92 in 2022.
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The higher number of articles in the last years can be explained by a confluence
of factors, such as technological advancements in the Information and Communications
Technology (ICT) area, augmented research funding, and an expanding understanding of
remote sensing applications.

The list of selected papers for the review is summarized in Appendix A, Table A1,
which includes relevant information such as the Title, Crop, Method, and Platform used
in each study. This comprehensive summary allows readers to access and refer to the key
details of the selected papers efficiently, aiding in the understanding and evaluation of the
research conducted for the review.

3.1. Key Contributor Countries

This systematic review also provided insights into the geographical distribution of
research and the key contributors in the field. Specifically, studies have been conducted

www.xlstat.com
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in 55 countries (Figure 3), with China most frequently appearing, followed by the USA,
India, Australia, and Brazil. There are also many experiments in developing countries, but
often only with a single study on a single crop. Forecasting efforts in Europe are spread
out geographically, largely following country size and production share, with a dearth of
studies particularly in Eastern Europe. It is important to highlight that these findings are
related to the study areas within the articles, not the countries of authorship.
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The most active country in terms of experiments for the whole period encompassed
by this study is, clearly, China with over 93 publications. Following closely, the USA ranks
second with 58 publications. India and Australia occupy the third and fourth positions,
respectively, with 11 research studies each, while Brazil closely trails with 10 studies. In a
more detached group, the majority then consists of European countries (Germany, Spain,
Italy, France) with <8 publications.

The number of citations received is often used as a proxy for research quality. However,
it should be noted that this metric alone may not provide a completely accurate representa-
tion, as various factors, including the research institute, the researchers’ country of origin,
and the target audience, could influence citation counts [40]. Figure 4 illustrates the impact
of research from different countries, and it becomes evident that China and the USA stand
out, outperforming other countries in terms of citations. Notably, European countries, such
as Germany and Spain, follow at a considerable distance with less than 370 citations, while
Australia and Brazil are positioned further down the ranking. It is essential to highlight
that these rankings are based on the currently available information and may be subject
to updates as more recent citations become accessible, potentially influencing the relative
positions of the countries in the future.

By examining publication patterns and citation metrics, it was possible to identify
the countries that have made significant contributions to the topic of interest, helping
researchers understand the global landscape of research and identify potential collaboration
opportunities. It is evident that the USA and China have emerged as the most influential
countries in the field of crop yield estimation using remote sensing technologies. These two
(2) nations have demonstrated a significant presence with a substantial number of research
articles focused on crop yield estimation, remote sensing applications, and related subjects.
Moreover, their prominent position in terms of citations underscores their consistent
production of high-quality research, substantial contributions to advancements in the field,
and a profound understanding of effectively harnessing remote sensing data for accurate
yield prediction. The notable impact of their research could be explained by the fact that they
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have the biggest economies and invest heavily in research and development. Consequently,
they employ a large number of researchers who produce research publications [41].
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3.2. Crops Used for Yield Estimation

The choice of crops for yield estimation is a pivotal aspect of research in the field
of remote sensing-based agriculture. Through a thorough analysis of the literature, the
study identified the most frequently studied crops used in yield estimation through remote
sensing techniques. In total, the research encompassed a diverse array of crops, amounting
to 48 different types, which were further classified into nine categories based on the Food
and Agriculture Organization (FAO)’s classification [42]. Figure 5 illustrates the number of
studies that included crops from each category and the prominent crops that have been
extensively researched in the field of remote sensing-based yield estimations. Several
studies addressed multiple crops, which means the total number of crops illustrated is
greater than the number of studies analyzed.
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Wheat (including durum wheat), maize, and rice emerge as highly studied crops, not
only within the cereal category, but also overall. Additionally, oilseed crops, with soybeans
leading the way, also receive significant attention in scientific publications. On the other
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hand, the fruits and nuts category along with vegetables and melons appeared to be the
least researched category in terms of publications. It is noted that the category “Grass crops”
comprises various crops, including Bachiaria pastures, Grassland, Miscanthus, perennial
bioenergy grass, and ryegrass. Similarly, the category of “tomato” also includes research
on processing tomato crops (Figure 6).
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Overall, the prominent crops that were commonly utilized for yield prediction in-
cluded cereals and oilseed crops. These crops were selected due to their nutritional value
and, therefore, their economic significance, data availability, and relevance to global food
security [43,44]. Another key factor influencing their widespread use could be the availabil-
ity of extensive datasets, encompassing historical yield records, agronomic practices, and
weather data. Such data availability facilitates researchers in conducting comprehensive
yield prediction studies with greater ease. Moreover, these crops do not exhibit complex
structure-like vineyards and orchards that may affect remote sensing results [45]. The
frequent application of agricultural practices like irrigation and pruning that are conducted
in other crops such as vineyards and orchards, could also affect the interpretation of the
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remote sensing results [46]. As a result, researchers may face additional technical challenges
and data processing requirements for these crops. In contrast, cereals and oilseed crops
generally experience less interference from such practices, leading to more reliable and
consistent remote sensing outcomes.

3.3. Remote Sensing Platforms for Yield Forecasting Used in the Literature

The literature on remote sensing platforms for crop yield forecasting is vast and diverse.
Different remote sensing platforms have different advantages and limitations in terms of
spatial resolution, temporal resolution, spectral resolution, radiometric resolution, coverage
area, revisit frequency, data availability, data cost, and data processing requirements.
Therefore, selecting the most suitable remote sensing platform for a specific crop yield
forecasting application depends on several factors, such as the type of crop, the scale of
analysis, the purpose of forecasting, the available resources, and the user preferences.

The results indicate that various remote sensing platforms were widely utilized for
crop yield estimation, with many studies employing multiple platforms simultaneously.
Notably, the majority of the reviewed studies (62%) utilized satellite remotely-sensed data
to generate yield forecasts throughout the growing season. However, for small-scale studies
conducted on experimental plots, ground-based sensors (27%) or airborne sensors (30%)
were more commonly employed (Figure 7). Nonetheless, even in cases where multiple
platforms were used, satellites remained the primary choice for crop yield estimation. This
diverse usage of remote sensing platforms underscores their versatility and the benefits
they offer in gathering essential data for crop yield forecasting across different spatial scales
and agricultural contexts.
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Figure 7. Remote sensing platforms for yield forecasting used in the literature.

Satellites play a crucial role in crop yield prediction by utilizing a diverse range of
sensors to measure electromagnetic radiation reflected or emitted from the Earth’s surface.
Equipped with these sensors, satellites enable the spatial and multitemporal monitoring of
soil and crop characteristics at different growth stages, providing valuable data for yield
estimation. Figure 8 depicts the most common satellite systems used for yield prediction.
Among the satellites commonly employed for this purpose, the Moderate Resolution
Imaging Spectroradiometer (MODIS) emerges as the most frequently used, followed by
Sentinel-2, Landsat, and Satellite pour l’Observation de la Terre (SPOT). Additionally,
Synthetic Aperture Radar (SAR) sensors have also been utilized, with Sentinel-1 being the
most prominent one.
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Yield predictions could also be derived based on data recorded from airborne plat-
forms. According to the findings of this study, out of the total 269 studies reviewed,
84 of them utilized airborne data for crop yield prediction, including four manned flights.
Among these, 45 studies utilized multispectral cameras, 30 studies deployed RGB cameras,
and 15 studies utilized hyperspectral data. The least commonly used sensors were the
thermal and synthetic aperture radar (SAR). It is obvious that several studies deployed
more than one sensor, indicating the integration of multiple data sources to improve the
accuracy and comprehensiveness of crop yield prediction models. The diverse usage of
these sensors underscores the significance of integrating different data types to capture
various aspects of crop growth and health for more informed yield forecasting.

In the case of ground-based sensors, the instruments were grouped based on their
functionalities and applications. Specifically, the canopy sensors and analyzers category en-
compassed instruments for Chlorophyll Measurement (SPAD), Crop Health, and Nutrient
Management (e.g., GreenSeeker, NTech Industries, Ukiah, CA, USA and CropCircle, Hol-
land Scientific Inc., Lincoln, NA, USA), as well as Spectral Analysis and Canopy Analysis
sensors (e.g., Spectroradiometer, spectrometers, Li-Cor 2000 Plant Canopy Analyzer, Li-Cor,
Lincoln, NE, USA). Local meteorological stations were extensively deployed, appearing
in 39 studies, making them the most commonly used ground-based sensors. Following
closely, canopy sensors were frequently employed in the research. However, thermal
sensors and LiDAR/Laser scanner data were the least deployed among the ground-based
sensor categories.

Summarizing the results, researchers primarily utilized satellite platforms to acquire
the necessary data for their studies. Satellites, compared to the rest of the platforms, can
cover large areas and provide high temporal resolution, while being cost effective [47].
Moreover, satellites can be used in multisource data integration, such as the integration of
optical and SAR remote sensing [48]. These advantages can explain why the majority of
the studies incorporated satellite remote sensing approaches.

Respectively, UAS encompasses high spatial ground resolution and the ability to
provide flexible and timely surveillance. However, UAS surveys require the storage and
management of large amounts of data and preprocessing, while the datasets generated
are limited to those collected by the user [49]. Consequently, deploying UASs on a com-
mercial scale involves significant expenses, encompassing equipment, data processing,
and software costs, which can be a substantial investment for small-scale farmers [50,51].
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On the other hand, proximal sensors present distinct advantages in terms of precision
and cost-effectiveness in agriculture. Since most of these sensors are active, they are not
as restricted by weather conditions. Due to the close proximity in which the data are
collected, there is less atmospheric interference, leading to more accurate data as well as
high spatial resolution [52]. Nevertheless, they also have limitations pertaining to coverage,
data interpretation, maintenance demands, and initial expenses. Therefore, the evaluation
of the specific needs and available resources is essential when contemplating the adoption
of remote sensor technology.

3.4. Data Analysis Techniques for Yield Forecasting Used in the Literature

Analyzing remote sensing products for yield prediction involves a range of method-
ologies that encompass ML, DL, statistical, and model-based approaches. These methods
leverage the power of remote sensing data to estimate and predict crop yields accurately.

Based on the findings of this study (Figure 9), a statistical analysis is the most preva-
lent method employed for crop yield prediction in the reviewed studies. Following the
statistical analysis, machine learning (ML) and deep learning (DL) methods are also widely
used for yield estimation. In contrast, model-based approaches are observed to be utilized
less frequently. Statistical analysis techniques often provide straightforward and inter-
pretable relationships between variables, making them a popular choice for analyzing and
understanding the impact of different factors on crop yields. Machine learning and deep
learning methods, on the other hand, excel at capturing complex patterns and relationships
in large and high-dimensional datasets, which is particularly advantageous when dealing
with remote sensing data.
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One of the significant discoveries of this study is the prominence of the Random Forest
algorithm, which appeared in 89 studies, making it the most commonly used approach for
crop yield prediction. This is aligned with the findings of another systematic review by van
Klompenburg et al. [32], which reported that Random Forest is one of the most used models
along with Linear Regression and the Gradient Boosting Tree. Following closely, Support
Vector Machine (SVM) was featured in more than 52 studies, while Linear regressors were
utilized in over 30 studies. Both XGBoost and Partial Least Square Regression (PLSR) are
also frequently utilized, with more than 20 and 11 studies, respectively. It is worth noting
that the Lasso Regression is another commonly used regularization technique (>14 studies),
employing an L1 penalty to encourage sparsity in the model, resulting in the selection of
relevant features. Similarly, the Ridge regression (>eight studies) is a variation of Linear
Regression that incorporates a regularization term to prevent overfitting and enhance
model performance when addressing multicollinearity. These methods have garnered
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significant attention in various research studies and applications, demonstrating their
efficacy and versatility in yield prediction. Moving on to Neural Networks, Artificial
Neural Networks (ANN) and Convolutional Neural Networks (CNN) take the lead as the
top-ranked approaches, with 16 and 13 studies, respectively.

An intriguing observation from the study is that there were only three studies that
employed ML and DL approaches between 2007 and 2010, whereas the vast majority
of these studies were published from 2017 to 2022. This significant increase in the use
of ML/DL techniques in recent years indicates a growing interest and recognition of the
power and potential of these advanced methods for crop yield prediction using remote
sensing data.

Model-based approaches, though less prevalent in this context, offer valuable insights
and predictions by simulating the entire crop growth process and its intricate relationship
with the environment from an ecological physiology perspective. These models integrate
various factors such as crop characteristics, soil conditions, climate, and management
practices to comprehensively simulate crucial physiological processes, including crop
respiration, photosynthesis, phenology, biomass accumulation, crop distribution, and
ultimately estimate crop yields. In this systematic review, several model-based approaches
appeared for crop yield prediction using remote sensing data. It is essential to emphasize
that model-based approaches typically necessitate a range of inputs, making remotely-
sensed weather and biomass data particularly valuable for obtaining temporal and spatial
information on a large scale.

Among model-based approaches, the Decision Support System for Agrotechnology
Transfer (DSSAT) model [53] stood out with 13 featured studies, providing valuable
insights into agricultural management practices and crop responses to environmental
conditions. The Simple Algorithm For Yield model (SAFY) and WOrld FOod STudies
(WOFOST) model [54–56] were each present in seven studies, offering simulations of crop
growth under water-limited conditions and diverse environmental scenarios, respectively.
AQUACROP [57–59], used in four studies, focused on crop water productivity, evaluat-
ing yield responses to water availability and irrigation management. The Agricultural
Production Systems Simulator (APSIM) model [60–62] was investigated in three studies, en-
compassing various aspects of crop growth and management. Additionally, the PROSAIL
(Prospect and Sail) model, deployed in seven studies, served as a radiative transfer model,
enabling the assessment of crop health through light interactions in vegetation canopies.
While it does not directly generate yield predictions, it was employed in conjunction with
other models (APSIM, WOFROST) to extract Leaf Area Index (LAI) values, which were
then used to estimate biomass.

It is important to note that different crop models operate based on distinct driving
factors. For example, WOFOST focuses on carbon dioxide (CO2), water, and temperature
effects on yield, while AQUACROP emphasizes the impact of water stress on crop growth
and yield, making it effective for simulating irrigation scenarios. APSIM, being a process-
based model, considers a diverse range of soil processes, in addition to water balance and
nutrient transformations [63]. Moreover, researchers have explored the benefits of coupled
models, which combine two or more models with different principles and types. This
approach aims to overcome the limitations of individual models, while capitalizing on
their strengths, resulting in an improved simulation accuracy, modeling system stability,
and reduced operational costs. These advances in model-based approaches contribute to
a deeper understanding of crop–environment interactions and aid in making informed
decisions for sustainable agricultural practices.

Each approach offered distinct advantages and addressed specific research objectives,
enabling the extraction of meaningful information from remote sensing data for crop yield
estimations. Specifically, the Statistical Analysis and Machine Learning methods are often
used in crop yield estimation due to their ability to handle complex nonlinear relationships
in high-dimensional datasets, as well as known parametric structures and unobserved cross-
sectional heterogeneity [64]. Additionally, the performance of Deep Learning methods
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may be inadequate due to the fact that they heavily rely on the quality of the extracted
features [65]. Finally, the low use of model-based methods on crop yield prediction could
be explained by their high requirements for data and computational resources, and on their
low flexibility compared to the other methods [66].

3.5. Spectral Vegetation Indices

Among the numerous vegetation indices developed, several have gained widespread
adoption due to their effectiveness and versatility. As indicated by the results (Figure 10),
the Normalized Difference Vegetation Index (NDVI) emerges as the most commonly used
Vegetation Index. This can be explained by the high correlation this index presented,
with key yield variables such as above ground biomass, crop height, and Leaf Area Index
(LAI) [67,68]. The NDVI is also the most well-documented spectral vegetation index in the
literature, resulting in reliable and accurate estimates of crop health and productivity, which
are crucial for yield prediction [69]. Following closely is the Enhanced Vegetation Index
(EVI), an improved vegetation index that addresses some of the limitations of the NDVI,
particularly in areas with dense vegetation or atmospheric interference. Additionally, the
LAI and Green Normalized Difference Vegetation Index (GNDVI) are widely employed in
the studies. Each index offers unique advantages and applications, depending on specific
research or monitoring objectives. Researchers, agronomists, and environmental scientists
rely on these indices to analyze vegetation dynamics, assess crop health, monitor land
cover changes, and make informed management decisions.
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Figure 10. Most widely used vegetation indices (VIs) for crop yield prediction.

It is evident that various vegetation indices have gained popularity for their effec-
tiveness, with the Normalized Difference Vegetation Index (NDVI) being the most widely
used. The NDVI’s strong correlation with key yield factors like biomass, crop height, and
LAI contributes to its prevalence. The Enhanced Vegetation Index (EVI) is also popular,
addressing the NDVI’s limitations in dense vegetation or atmospheric conditions. The
Leaf Area Index (LAI) and Green Normalized Difference Vegetation Index (GNDVI) are
frequently employed too. These indices aid researchers, agronomists, and environmental
scientists in analyzing vegetation, assessing crop health, monitoring land changes, and
making informed decisions.

3.6. Accuracy Performance per Crop Category

Assessing accuracy performance per crop category is crucial for understanding the
effectiveness of different methods and platforms in estimating yields for specific crops, aid-
ing in informed decision-making and optimizing agricultural practices. Consequently, the
highest performance measures (R2) obtained for each study were extracted and organized
into tables based on crop categories.
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When comparing different methods in the case of sugar (Table 2), beverage, and spice
crops, ML techniques exhibit high performance, as shown in the table (Table 2). Specifically,
the Random Forest method stands out with a noteworthy RMSE of 1.51 t/ha and an R2

value of 0.94. It surpasses other methods including the Classification and Regression Tree,
Support Vector Regression, and K-Nearest Neighbor [70]. This finding is in line with the
results obtained by Canata et al. [71], where RF regression outperformed Multiple Linear
Regression (MLR) in predicting sugarcane yields. Similarly, Martello et al. found that the
RF regression yielded superior results in predicting coffee tree yields [72].

Table 2. Reported method, platform, and R2, for sugar, beverage, and spice crop category.

Crop References Method Platform R2

Sugarcane

[73] Statistical Satellite × Proximal 0.53

[74–77] Statistical Satellite 0.55 to 0.8

[70,78] ML, Statistical Satellite 0.87 to 0.94

[71] ML Satellite 0.70

[79] Model based Satellite 0.86

Coriander [80] Statistical Satellite 0.81 to 0.87

Tea [81] ML Satellite 0.68 to 0.71

Coffee Tree
[82] Statistical,

Model based Satellite 0.64 to 0.69

[72] ML, Statistical Satellite 0.88 to 0.93

Furthermore, the most common platform used was satellite systems, indicating en-
couraging prediction accuracies (R2 = 0.87) and RMSE = 11.33 (t·ha−1) when compared to
actual harvested yields [78]. Additionally, the utilization of SAR-based yield prediction
models have also proved the potential to assist and support sugar mill technicians in
refining yield estimates [75]. Nevertheless, a study by Duveiller et al. [77] highlights that
the estimation of sugarcane yield is influenced by various aspects, namely: (1) the way
time is regarded (thermal or calendar); (2) the purity of the signal; (3) how the information
is extracted from the time series (i.e., the type of metrics); and (4) the timing of when the
information is available. These factors can explain the different range of R2 values retrieved
from satellites for yield prediction (Table 2). Moral et al. [76] suggest that the empirical
NDVI model is the most suitable approach for estimating sugarcane yield at the field level
due to its simplicity and high accuracy throughout the entire crop cycle. In contrast to
linear, logarithmic, power, and exponential models, a separate study [74] demonstrates that
the polynomial model exhibits a significantly improved performance.

In the context of model-based yield prediction, the findings indicate a medium to
high performance, with R2 values ranging from 0.64 to 0.86. This can be explained by the
selection of the model. A study conducted in the USA compared three statistical models
that incorporated remote sensing and weather data. Among these models, the SiPAR model
demonstrated a superior yield prediction compared to the cumulated DNVI (CNDVI) and
Kumar and Monteith (K–M) models [79].

In the crop category of Vegetables and Melons (Table 3), ML techniques have demon-
strated a high performance as well, achieving an R2 value of 0.90. Apart from the deployed
method, the selection of the VI plays a crucial role in achieving an optimal performance.
According to the study conducted by Suarez et al. [83], the optimal results were pro-
duced when the Renormalized Vegetation Index (RDVI), Soil Adjusted Vegetation Index
(SAVI), and Optimized Soil Adjusted Vegetation Index (OSAVI) were the predictor vari-
ables (R2 = 0.77), with the lowest σ (10.75 t/ha) achieved with RDVI. EVI2 also performed
better (R2 = 0.55) than GNDVI (R2 = 0.29). Another study [84] focusing on processing
tomato crops identified plant height and VIs during the early to mid-fruit formation period
as significant variables for predicting shoot masses. Notably, the NDVI and Weighted
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Difference Vegetation Index (WDVI) were found to be significantly important for predicting
tomato weight, while VIs one (1) month prior to harvest were significant in predicting
fruit quantity.

Table 3. Reported method, platform, and R2 for the Vegetables and Melons crop category.

Crop Reference Method Platform R2

Chinese Cabbage
White Radish [85] Statistical Airborne 0.66 to 0.90

Carrot [83] Statistical Satellite 0.29 to 0.78

African Eggplant [86] Statistical Airborne × Proximal 0.54 to 0.87

Table Beet [87] Statistical Airborne 0.89

Tomato
[88] * Statistical Satellite 0.69 to 0.81

[84,89,90] * ML, Statistical Airborne 0.70 to 0.90
* Processing Tomato.

Moreover, recent findings [88] suggest a strong correlation between the development
stages of the primary canopy in processing tomatoes and their final yield. This correlation
may indicate a crucial stage during which the crops undergo discernible changes that can
be detected using satellite-derived data. Additional research demonstrates the possibility
of predicting average tomato biomass and yield up to 8 weeks before harvest, as well
as at the individual plant level up to 4 weeks prior to harvest [89]. By employing time-
series phenotypic features derived from UAVs, researchers observed a strong individual
correlation between these features and the actual yield. Linear Regression models produced
high values (R2 > 0.7) in this regard [90].

In the context of oilseed crops (Table 4), the utilization of satellite NDVI series, captured
fifty (50) days prior to harvest, has proven to be a reasonably accurate approach for
estimating sunflower yields [91]. Furthermore, the effectiveness of Evolutionary Product-
Unit Neural Network (EPUNN) models has been explored, revealing a superior accuracy
compared to linear SMLR models, both in the training set and generalization set [92]. In
the case of rapeseed yield estimation, plot-level VIs and leaf-related abundance showed
a strong correlation, with an R2 value above 0.75. Among the tested VIs, multiplying the
NDVI, Chlorophyll Index Red Edge (CIred edge), Transformed Vegetation Index (TVI), and
SAVI by short-stalk-leaf abundance yielded the most accurate results for yield estimation
in rapeseed [93]. When it comes to model-based methods [63], the WOFOST model in
comparison with the coupled CASA-WOFOST model demonstrated a faster running speed
in yield simulations while maintaining a similar accuracy. This makes the proposed CASA-
WOFOST model suitable for large-scale assessments using high-spatial-resolution images to
obtain accurate yield simulations. An investigation was conducted to assess the potential of
multisensor optical and multiorbital SAR data for monitoring winter rapeseed crops using
the SAFY agrometeorological model. The results demonstrated that the assimilation of both
SAR-derived dry matter (DM) and the optically derived Green Area Index (GAI) allowed
for better control of the model compared to using SAR or optical data alone. This integration
notably improved the optimization of parameters governing dry matter partitioning into
leaves and effective light-use efficiency [94]. Another crucial aspect in satellite-based
crop yield estimation is the spatial and temporal resolution of the deployed satellites. As
highlighted by Chen et al. [95], sparse time series of satellite remote sensing, caused by low-
temporal-frequency and/or cloud contamination, pose significant challenges for accurate
crop yield estimation at regional to national scales. To address this limitation, the blending
of high-spatial-resolution but low-temporal-frequency images with low-spatial-resolution
but high-temporal-frequency images was proposed. This approach aims to increase the
temporal resolution, while preserving essential spatial details, potentially enhancing the
accuracy of crop yield estimations.
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Table 4. Reported methods, platforms, and R2 for the Oilseed Crop category.

Crop References Method Platform R2

Groundnut
[96] ML, Statistical Satellite × Proximal 0.96

[97] ML/DL, Model based Satellite × Proximal 0.68

Sunflower

[91] ML Satellite 0.90

[80] Statistical Satellite 0.56

[92] ML/DL, Statistical Airborne 0.43

[98] Statistical Satellite 0.91

Olive Tree [99] Statistical Airborne 0.97

Palm Oil [100] ML/DL Satellite 0.82

Canola
[101] Statistical Airborne 0.82

[95] Statistical Satellite 0.86

Rapeseed

[93] Statistical Airborne × Proximal 0.81

[63] Model based, Statistical Satellite × Proximal 0.86

[94] Model based Satellite × Proximal 0.82

[98] Statistical Satellite 0.97

Soybean

[102–104] ML/DL, Statistical Satellite 0.87 to 0.90

[98,105–111] Statistical Satellite 0.49 to 0.98

[112,113] ML/DL Satellite 0.85

[114] ML Satellite 0.61

[115,116] ML, Statistical Satellite 0.86 to 0.90

[117,118] ML/DL Airborne 0.72 to 0.66

[119] ML Airborne 0.89

[120] Statistical Airborne 0.74

[121] ML/DL Satellite × Proximal 0.85

[122] ML, Statistical Satellite × Proximal 0.82

[123] ML Airborne × Proximal 0.97

[124] ML/DL, Statistical Satellite × Proximal 0.67

It is not surprising to find numerous studies that involve soybeans in their research, as
soybean is a widely cultivated and economically important crop. A study [111] comparing
various spatial resolutions found compelling evidence in favor of higher resolution imagery
over lower resolution options. The authors suggest selecting an NDVI resolution that
matches or exceeds the current cropland mask resolution, taking into consideration factors
such as computation cost. Notably, an interesting finding from another research study [122]
is that county-scale models perform relatively poorly in field-scale validation (R2 = 0.32),
particularly in high-yielding fields. However, these county-scale models show a similar
performance to field-scale models when evaluated at the county level (R2 = 0.82).

In the Fruits and Nuts category (Table 5), orchard yield estimation has predominantly
been conducted using proximal sensing and airborne sensing, or a combination of both
along with satellite data. High-resolution satellite images have also been employed as a
standalone method, achieving a satisfactory performance with an R2-value of 0.87 [125,126].
The high efficiency of these methods could be attributed to their reliance on visual counting
and the utilization of high-resolution data, which enable accurate and efficient orchard
production estimations. Few studies used above-ground remote sensing to estimate tree
production. The correlation between tree production and remotely-assessed features is not
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generic, and has to be calibrated for each orchard and each year to include climate and site
effects [127].

Table 5. Reported methods, platforms, and R2 for the Fruits and Nuts crop category.

Crop References Method Platform R2

Vineyards

[125,128] Statistical Satellite × Proximal 0.42–0.87

[129] ML Satellite × Proximal 0.79

[130] ML/DL Proximal 0.91

[131] ML, Statistical Proximal 0.86

Almond
[132] Statistical Airborne 0.84

[133] ML/DL, Statistical Satellite × Airborne 0.71

Apple [134] ML/DL Airborne 0.88

Jujube [135,136] Model based Satellite 0.62 to 0.78

Mango
[126] ML/DL, Statistical Satellite 0.77

[127] ML, Statistical Airborne 0.77

In relation to root tuber and other crops (Table 6), ML approaches are quite common,
achieving a higher (>0.90) performance in terms of accuracy when compared to other
methods. In cotton cultivation, developing efficient tools for precise yield estimation before
harvest is crucial, and the UAV multispectral remote sensing system holds significant
potential for rapidly, accurately, and economically assessing agricultural crop characteristics
and yields. The connection between crop growth indicators like LAI and chlorophyll with
canopy spectral reflectance allows spectral indices collected during the growing season to
be utilized for crop yield estimation, given the correlation between yield and the amount
of photosynthetic tissue. This enables wide-scale application, contrasting with traditional
measurements of agronomic parameters such as LAI and chlorophyll [137]. Additionally,
the feasibility of estimating cotton yield using low-altitude UAV imaging was verified in
this study [138].

Table 6. Reported methods, platforms, and R2 for the Root tuber and other crops category.

Crop References Method Platform R2

Potato

[139] Statistical Satellite 0.65

[140] ML, Statistical Satellite 0.89

[141] ML Satellite × Proximal 0.86

[67] ML Airborne 0.83

[142] ML, Statistical Proximal 0.72

[63] Model based, Statistical Satellite × Proximal 0.86

Cotton

[143,144] Statistical Airborne 0.52 to 0.94

[145] ML/DL Airborne 0.85

[146] ML/DL, Statistical Satellite 0.67

[147] Model based Satellite × Proximal 0.96

[137] Statistical Airborne × Proximal 0.84

[148] ML Airborne × Proximal 0.93

[138] ML/DL, Statistical Airborne 0.97

[149,150] ML, Statistical Airborne 0.77 to 0.91
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Table 6. Cont.

Crop References Method Platform R2

Sweet Potato [105] Statistical Satellite 0.68

Cassava Tuber [151] Statistical Airborne 0.87

Ramie [152] Statistical Airborne 0.66

Milk Thistle [63] Model based, Statistical Satellite ×Proximal 0.86

Grassland *
[153] ML Airborne 0.87

[154] Statistical Airborne 0.75

Perennial
Ryegrass * [155] ML Airborne 0.93

Perennial
Bioenergy Grass * [156] Statistical Satellite 0.88

Brachiaria
Pastures * [157] ML Satellite × Airborne 0.75

Miscanthus * [158] ML, Statistical,
Model based Airborne 0.79

* Grasses and other fodder crops.

Researchers used mixed data sources, including airborne satellites and proximal
sensors, to gather information and insights about leguminous crops (Table 7). Some
studies may solely focus on using ML or DL algorithms, while others might combine both
approaches or incorporate statistical methods for enhanced accuracy and interpretability.
In the study conducted by Minch et al. [159], efficient flight parameters were investigated
to create successful models for determining canopy heights, specifically for alfalfa yield
estimation. The researchers strongly recommend using a flight parameter within the range
of 50–75◦, as it is likely to yield optimal data for accurate canopy height estimation in
alfalfa fields.

Table 7. Reported methods, platforms, and R2 for the Leguminous crop category.

Crop References Method Platform R2

Alfa Alfa

[160,161] Statistical Satellite 0.72 to 0.94

[162] ML/DL Airborne 0.87

[159] ML Airborne 0.84

[163] Statistical Airborne 0.64

[164] ML, Statistical Satellite 0.93

Red Clover [165] ML/DL Airborne 0.90

Chickpea [166] ML Satellite × Proximal 0.92

Snap Bean * [167] ML/DL Airborne 0.98

Peas [160] Statistical Satellite 0.95

Beans *

[168] Statistical Airborne × Proximal 0.70

[169] ML Satellite 0.54

[170] Statistical Satellite × Proximal 0.84

Faba Bean [171] ML, Statistical Airborne 0.72
* Included in beans.

The category of cereals encompasses a wide range of methods and platforms, prompt-
ing its separation into two tables: cereals (Table 8), and maize and wheat (Table 9).
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Table 8. Reported methods, platforms, and R2 for the cereal crop category.

Crop Reference Method Platform R2

Cereal [172,173] Statistical Satellite 0.71

Barley

[95,160,174] Statistical Satellite 0.86 to 0.93

[175] Statistical Satellite × Airborne
× Proximal 0.70

[176,177] Model based, Statistical Satellite 0.6 to 0.77

[178] ML/DL Airborne × Proximal 0.929

[179] ML × Statistical Satellite × Proximal 0.88

[180] ML, Statistical, Model
based Satellite 0.47

Oats

[175] Statistical Satellite × Airborne ×
Proximal 0.79

[178] ML/DL Airborne × Proximal 0.929

[181] Statistical Proximal 0.90

Millet
[105] Statistical Satellite 0.68

[169] ML Satellite 0.40

Sorghum

[105,161,182] Statistical Satellite 0.25 to 0.81

[183] ML/DL Satellite × Proximal 0.35

[169] ML Satellite 0.44

Rice

[105,184–188] Statistical Satellite 0.56 to 0.97

[114,189–191] ML Satellite 0.43 to 0.95

[192,193] Model based Satellite 0.89 to 0.96

[194] ML, Model based Airborne × Proximal 0.75

[195,196] ML/DL, Statistical Airborne × Proximal 0.22 0.51

[197,198] ML, Statistical Airborne 0.76 to 0.8

[97,199] ML/DL, Model based Satellite × Proximal 0.75 to 0.86

[200] Statistical, Model based Satellite 0.80

[201] ML/DL Satellite 0.81

[202] ML/DL Airborne 0.84

[203] Statistical Airborne × Proximal 0.64

[204] ML, Statistical Airborne × Proximal 0.83

[205] ML, Statistical Proximal 0.86

[206] Statistical, Model based Airborne 0.94

[207,208] Statistical Satellite × Proximal 0.66 to 0.90

[209–212] Statistical Airborne 0.74 to 0.83

Table 9. Reported methods, platforms, and R2 for wheat and maize.

Crop References Method Platform R2

Maize

[213] Statistical Satellite × Proximal 0.87

[214] Statistical Airborne × Proximal 0.83

[215] Statistical Airborne 0.74

[105,107,108,111,160,161,169,216–223] Statistical Satellite 0.46 to 0.99
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Table 9. Cont.

Crop References Method Platform R2

Maize

[224,225] Model based, ML/DL Satellite 0.85

[226–229] Model based Satellite 0.68 to 0.83

[230] Model based Airborne × Proximal 0.855

[231] Model based Proximal 0.68

[91,114,232–236] ML Satellite 0.43 to 0.92

[237] ML, Statistical,
Model based Satellite 0.59

[115,238,239] ML, Statistical Satellite 0.48 to 0.91

[121,240] ML/DL Satellite × Proximal 0.75 to 0.85

[1,102–104,124,241,242] ML/DL, Statistical Satellite 0.70 to 0.92

[243–246] ML/DL Airborne 0.57 to 0.93

[247,248] ML, Statistical Satellite × Proximal 0.35 to 0.98

[249] ML Proximal 0.7

[250] Model based, ML Satellite × Proximal 0.58

[251] Statistical, Model based Airborne 0.81

[97] ML/DL, Model based Satellite × Proximal 0.75

[252] Statistical, Model based Satellite 0.73

[253] ML, Model based Satellite 0.76

[254] ML x Statistical Airborne 0.80

Wheat

[80,95,107,111,160,161,174,219,255–263] Statistical Satellite 0.37 to 0.99

[264] ML/DL, Model based Satellite 0.83

[265] ML/DL Satellite 0.75

[1,266] ML/DL, Statistical Satellite 0.72 to 0.78

[176,267–270] Model based, Statistical Satellite 0.48 to 0.86

[180,271,272] ML, Model based Satellite 0.55 to 0.75

[115,273,274] ML, Statistical Satellite 0.72 to 0.89

[25,114,234,275–277] ML Satellite 0.51 to 0.99

[177,278–287] Model based Satellite 0.49 to 0.86

[288–293] ML/DL Satellite 0.79 to 0.93

[294,295] Model based, Statistical Proximal 0.698 to 0.77

[296,297] Statistical Proximal 0.46 to 0.48

[298,299] ML/DL Proximal 0.83 to 0.891

[300] Model based Proximal 0.84

[301] ML, Statistical Airborne 0.81

[302–304] ML/DL Airborne 0.62 to 0.85

[305] Statistical Airborne 0.70

[306–310] ML Airborne 0.62 to 0.93

[311–313] ML/DL, Statistical Airborne 0.59 to 0.84

[314–316] ML/DL, Statistical Airborne × Proximal 0.83 to 0.93

[178,317,318] Statistical Airborne × Proximal 0.73 to 0.929

[319] ML, Statistical Airborne × Proximal 0.78
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Table 9. Cont.

Crop References Method Platform R2

Wheat

[179,320] ML, Statistical Satellite × Proximal 0.83 to 0.88

[321,322] ML/DL, Statistical
Model based Satellite × Proximal 0.68 to 0.91

[323] ML/DL, Statistical Satellite × Proximal 0.50

[63,324–327] Statistical, Model based Satellite × Proximal 0.61 to 0.93

[328] ML Satellite × Proximal 0.89

[329,330] ML/DL Satellite × Proximal 0.63 to 0.86

[331] ML/DL, Statistical,
Model based Satellite × Proximal 0.77

[332] Model based Satellite × Proximal 0.49

[333,334] Statistical Satellite × Proximal 0.55 to 0.76

[175] Statistical Satellite × Airborne
× Proximal 0.79

In the table focusing on wheat and maize (Table 9), it becomes evident that these crops
have received special attention in the literature. The number of research papers dedicated to
studying wheat and maize yield prediction is higher compared to other cereals, indicating
their prominence in agricultural research. Moreover, the utilization of diverse approaches
in predicting the yields of wheat and maize is also noteworthy. Researchers have explored
a wide range of methods and platforms, including various machine learning algorithms,
statistical models, and remote sensing technologies such as UAV multispectral imaging
and satellite data.

Upon close examination of the provided table (Table 9), it becomes evident that a
definitive and uniform trend in the methodologies employed for yield prediction is lacking.
However, maize and, secondarily, wheat, rice, and soybean have emerged as extensively
studied crops through the application of machine learning techniques. This observation is
in accordance with the insights documented by Benos et al. [21]. The authors also reported
that UAVs are constantly gaining ground against satellites mainly because of their flexibility
and ability to provide images with high resolution under any weather conditions. Satellites,
on the other hand, could supply time-series over large areas. At the same time, the range
of approaches utilized aligns with a prior study [22] that has also observed a variety of
methods used in predicting yields for staple crops, emphasizing that each new setting
requires appropriate validation.

This information can be valuable for policymakers, farmers, and researchers to make
informed decisions, optimize agricultural practices, and address food security challenges
in an ever-changing climate and agricultural landscape.

Overall, the results emphasize the importance of assessing an accuracy performance
for specific crop categories to enhance yield estimation methods. The highest performance
measures (R2) from various studies were compiled into tables based on crop categories.
Machine Learning (ML) techniques, particularly Random Forest, excel in predicting sugar,
beverage, and spice crops. Satellite systems, including the Synthetic Aperture Radar (SAR),
prove effective for sugarcane yield prediction. In vegetables, ML methods give promising
results, considering key vegetation indices. Orchards benefit from proximal and airborne
sensing, while leguminous crops are studied using a mix of ML, DL, and statistical methods.
Wheat and maize receive extensive attention, employing diverse methods including ML,
DL, statistical, and model-based approaches.

Finally, it is necessary to pinpoint an important constraint of this study. Due to the
extensive volume of articles analyzed and the diverse methodologies employed therein,
specific details concerning the performance assessment were not documented. These details
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include whether cross-validation was utilized, whether the testing dataset was segregated,
or if the same dataset was employed for both training and model validation.

4. Conclusions

By employing this systematic approach to data analysis, the study aims to provide
valuable insights into the trends, patterns, and contributions of different methodologies
and technologies in the field of crop yield prediction using remote sensing tools.

Understanding the geographical distribution of research efforts and the significant aca-
demic institution in this domain is crucial for comprehending the research landscape. Our
research revealed that China (93 articles with over 1800 citations) and the USA (58 articles
with over 1600 citations) are key contributors to the field of crop yield prediction using
remote sensing techniques. Based on the results, cereal crops (185 papers) emerged as the
most commonly studied for yield estimation with wheat being the most predominant crop.
Among the remote sensing platforms, satellites (62%) were the most frequently employed
platforms followed by airborne (30%) and proximal sensors (27%). The study extensively
evaluated various algorithms and models for predicting crop yields based on remote sens-
ing data. In terms of methodologies, machine learning was featured in 142 articles, while
deep learning was employed in 62 articles for the purpose of yield prediction. Furthermore,
statistical methods were utilized in 157 articles, and model-based approaches were fea-
tured in 60 articles as mechanisms for predicting crop yields. The performance of machine
learning and deep learning methods has shown high accuracy in crop yield prediction,
while other techniques have also demonstrated success depending on the crop and method.
These insights offer a comprehensive understanding of the research domain and could
guide future advancements in remote sensing-based crop yield estimations.

By consolidating and analyzing data from multiple studies, our research contributes
to a comprehensive understanding of the current state of remote sensing-based crop yield
estimation. This synthesis helps identify trends, gaps, and areas of progress in the research
domain, providing valuable guidance for future studies in this area. The identified influ-
ential countries, methodologies, and successful algorithms can serve as a foundation for
designing more effective and targeted research.

The findings of this study hold the potential to advance the accuracy and applicability
of remote sensing-based crop yield estimation techniques. This, in turn, could contribute
to improved agricultural management practices, increased food security, and sustainable
agriculture. The comprehensive overview provided by this research empowers the scientific
community to make informed decisions and develop innovative approaches to further
enhance the accuracy and utility of remote sensing-based crop yield estimation methods in
the future.

Author Contributions: N.D.: principal investigation, research supervision, data collection, data
preprocessing, study design and methodology, statistical and formal analysis, and manuscript writing;
E.A.: investigation, research supervision, study design and methodology, data curation, statistical
and formal analysis, cross validation, and manuscript writing; E.L. and O.K.: data collection, data
preprocessing, and manuscript review and editing; D.K. and S.F.: principal investigation, research
supervision and manuscript revision and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this manuscript is open and can be accessed through
Scopus and WOS search engines.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 includes the list of studies that were analyzed in the context of the systematic
review.
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Table A1. List of studies included in the systematic review.

Article References Crop Method Platform Year

1
Comparison of earth observing-1 ALI and
Landsat ETM+ for crop identification and
yield prediction in Mexico

[219] Maize, Wheat Statistical Satellite 2003

2

Early prediction of crop production using
drought indices at different timescales and
remote sensing data: application in the
Ebro Valley (north-east Spain)

[174] Wheat, Barley Statistical Satellite 2006

3
Estimating crop yield from multi-temporal
satellite data using multivariate regression
and neural network techniques

[102] Maize, Soybean ML/DL
Statistical Satellite 2007

4

Mapping sunflower yield as affected by
Ridolfia segetum patches and elevation by
applying evolutionary product unit neural
networks to remote sensed data

[92] Sunflower ML/DL
Statistical Airborne 2008

5
Use of Vegetation Health Data for
Estimation of Aus Rice Yield in
Bangladesh

[184] Rice Statistical Satellite 2009

6

Integrating Vegetation Indices Models and
Phenological Classification with
Composite SAR and Optical Data for
Cereal Yield Estimation in Finland (Part I)

[175] Summer Wheat,
Barley, and Oats Statistical

Satellite ×
Airborne ×

Proximal
2010

7 Cereal Yield Modeling in Finland Using
Optical and Radar Remote Sensing [172] Cereal Statistical Satellite 2010

8
Application of vegetation indices for
agricultural crop yield prediction using
neural network techniques

[245] Maize ML/DL Airborne 2010

9 Using SPOT data and leaf area index for
rice yield estimation in Egyptian Nile delta [185] Rice Statistical Satellite 2011

10

Estimating regional wheat yield from the
shape of decreasing curves of green area
index temporal profiles retrieved from
MODIS data

[255] Wheat Statistical Satellite 2012

11
Forecasting regional sugarcane yield based
on time integral and spatial aggregation of
MODIS NDVI

[73] Sugarcane Statistical Satellite ×
Proximal 2013

12

Estimating regional winter wheat yield by
assimilation of time series of HJ-1 CCD
NDVI into WOFOST-ACRM model with
Ensemble Kalman Filter

[284] Wheat Model based Satellite 2013

13
Enhanced processing of 1-km spatial
resolution fAPAR time series for sugarcane
yield forecasting and monitoring

[77] Sugarcane Statistical Satellite 2013

14
Remote sensing based yield estimation in a
stochastic framework—Case study of
durum wheat in Tunisia

[256] Wheat Statistical Satellite 2013

15 Rice yield forecasting models using
satellite imagery in Egypt [186] Rice Statistical Satellite 2013

16
Remotely Sensed Rice Yield Prediction
Using Multi-Temporal NDVI Data Derived
from NOAA’s-AVHRR

[187] Rice Statistical Satellite 2013
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Table A1. Cont.

Article References Crop Method Platform Year

17
Corn yield forecasting in northeast China
using remotely sensed spectral indices and
crop phenology metrics

[218] Maize Statistical Satellite 2014

18
Estimation of the dynamics and yields of
cereals in a semi-arid area using remote
sensing and the SAFY growth model

[176] Wheat and Barley Model based
Statistical Satellite 2014

19 The use of ALOS/PALSAR data for
estimating sugarcane productivity [75] Sugarcane Statistical Satellite 2014

20

Toward a satellite-based system of
sugarcane yield estimation and forecasting
in smallholder farming conditions: A case
study on reunion island

[76] Sugarcane Statistical Satellite 2014

21

Combined spectral and spatial modeling
of corn yield based on aerial images and
crop surface models acquired with an
unmanned aircraft system

[215] Maize Statistical Airborne 2014

22

Using a remote sensing-supported
hydro-agroecological model for field-scale
simulation of heterogeneous crop growth
and yield: Application for wheat in
central Europe

[326] Wheat Model based
Statistical

Satellite ×
Proximal 2015

23

Improving winter wheat yield estimation
by assimilation of the leaf area index from
Landsat TM and MODIS data into the
WOFOST model

[267] Wheat Model based
Statistical Satellite 2015

24
Assimilation of two variables derived from
hyperspectral data into the DSSAT-CERES
model for grain yield and quality estimation

[294] Wheat Model based
Statistical Proximal 2015

25
Assessment of multimodel ensemble
seasonal hindcasts for satellite-based rice
yield prediction

[208] Rice Statistical Satellite ×
Proximal 2016

26
Early Maize Yield Forecasting from
Remotely Sensed Temperature/Vegetation
Index Measurements

[217] Maize Statistical Satellite 2016

27 Correlation maps to assess soybean yield
from EVI data in Paraná State, Brazil [106] Soybean Statistical Satellite 2016

28
Estimation of winter wheat biomass and
yield by combining the aquacrop model
and field hyperspectral data

[295] Wheat Model based
Statistical Proximal 2016

29

Improving spring maize yield estimation
at field scale by assimilating time-series
HJ-1 CCD data into the WOFOST model
using a new method with fast algorithms

[229] Maize Model based Satellite 2016

30 Prediction of potato crop yield using
precision agriculture techniques [139] Potato Statistical Satellite 2016

31
Rice yield estimation using below cloud
remote sensing images acquired by
unmanned airborne vehicle system

[210] Rice Statistical Airborne 2016

32
Cotton growth modeling and assessment
using unmanned aircraft system
visual-band imagery

[143] Cotton Statistical Airborne 2016
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Table A1. Cont.

Article References Crop Method Platform Year

33
Daily mapping of 30 m LAI and NDVI for
grape yield prediction in California
vineyards

[128] Vineyards Statistical Satellite ×
Proximal 2017

34

Analysis of meteorological variations on
wheat yield and its estimation using
remotely sensed data. A case study of
selected districts of Punjab Province,
Pakistan (2001–14)

[257] Wheat Statistical Satellite 2017

35
Forecasting winter wheat yields using
MODIS NDVI data for the Central Free
State region

[258] Wheat Statistical Satellite 2017

36 Using MODIS Data to Predict Regional
Corn Yields [216] Maize Statistical Satellite 2017

37

Improving Winter Wheat Yield Estimation
from the CERES-Wheat Model to
Assimilate Leaf Area Index with Different
Assimilation Methods and
Spatio-Temporal Scales

[327] Wheat Model based Satellite ×
Proximal 2017

38

Estimation of winter wheat above-ground
biomass using unmanned aerial
vehicle-based snapshot hyperspectral
sensor and crop height improved models

[319] Wheat ML
Statistical

Airborne
× Proximal 2017

39

Assimilation of temporal-spatial leaf area
index into the CERES-Wheat model with
ensemble Kalman filter and uncertainty
assessment for improving winter wheat
yield estimation

[300] Wheat Model based Proximal 2017

40
Winter Wheat Production Estimation
Based on Environmental Stress Factors
from Satellite Observations

[268] Wheat Model based
Statistical Satellite 2018

41
Exploring the potential of high-resolution
worldview-3 Imagery for estimating yield
of mango

[126] Mango ML/DL
Statistical Satellite 2018

42
Utilizing Collocated Crop Growth Model
Simulations to Train Agronomic Satellite
Retrieval Algorithms

[224] Maize Model based
ML/DL Satellite 2018

43
Regional crop gross primary productivity
and yield estimation using fused
Landsat-MODIS data

[160] Alfalfa, Barley,
Maize, Wheat, Peas Statistical Satellite 2018

44

Assessing the variability of corn and
soybean yields in central Iowa using high
spatiotemporal resolution multi-satellite
imagery

[108] Maize and Soybean Statistical Satellite 2018

45
Remote estimation of rapeseed yield with
unmanned aerial vehicle (UAV) imaging
and spectral mixture analysis

[93] Rapeseed Statistical
Airborne

×
Proximal

2018

46 Spatiotemporal analysis of LANDSAT
Data for crop yield prediction [74] Sugarcane Statistical Satellite 2018

47
Multi-year mapping of major crop yields
in an irrigation district from high spatial
and temporal resolution vegetation index

[91] Maize, Sunflower ML Satellite 2018
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Table A1. Cont.

Article References Crop Method Platform Year

48

Forecasting of cereal yields in a semi-arid
area using the simple algorithm for yield
estimation (Safy) agro-meteorological
model combined with optical spot/hrv
images

[177] Wheat, Barley Model based Satellite 2018

49
Crop yield estimation using satellite
images: Comparison of linear and
non-linear model

[103] Soybean, Maize ML/DL
Statistical Satellite 2018

50
Estimation of Maize grain yield using
multispectral satellite data sets (SPOT 5)
and the random forest algorithm

[236] Maize ML Satellite 2018

51
Estimating rice production in the Mekong
Delta, Vietnam, utilizing time series of
Sentinel-1 SAR data

[189] Rice ML Satellite 2018

52
Modeling and Testing of Growth Status for
Chinese Cabbage and White Radish with
UAV-Based RGB Imagery

[85] Chinese Cabbage,
and White Radish Statistical Airborne 2018

53
Mango yield mapping at the orchard scale
based on tree structure and land cover
assessed by UAV

[127] Mango Statistical Airborne 2018

54 Forecasting maize yield at field scale based
on high-resolution satellite imagery [220] Maize Statistical Satellite 2018

55
Improving Site-Specific Maize Yield
Estimation by Integrating Satellite
Multispectral Data into a Crop Model

[226] Maize Model based Satellite 2019

56
Determination of Appropriate Remote
Sensing Indices for Spring Wheat Yield
Estimation in Mongolia

[334] Wheat Statistical Satellite ×
Proximal 2019

57
Maize yield estimation in West Africa from
crop process-induced combinations of
multi-domain remote sensing indices

[237] Maize
ML

Statistical
Model based

Satellite 2019

58 A high-resolution, integrated system for
rice yield forecasting at district level [192] Rice Model based Satellite 2019

59

Assimilating MODIS data-derived
minimum input data set and water stress
factors into CERES-Maize model improves
regional corn yield predictions

[227] Maize Model based Satellite 2019

60 County-level soybean yield prediction
using deep CNN-LSTM model [112] Soybean ML/DL Satellite 2019

61
Synergistic integration of optical and
microwave satellite data for crop yield
estimation

[115] Maize, Wheat,
Soybean

ML
Statistical Satellite 2019

62
Using Solar-Induced Chlorophyll
Fluorescence Observed by OCO-2 to
Predict Autumn Crop Production in China

[105]

Rice, Maize,
Sorghum, Millet,

Sweet Potato, and
Soybeans

Statistical Satellite 2019

63
Crop yield estimation using time-series
MODIS data and the effects of cropland
masks in Ontario, Canada

[107] Maize and Soybean Statistical Satellite 2019
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Article References Crop Method Platform Year

64
California Almond Yield Prediction at the
Orchard Level with a Machine Learning
Approach

[133] Almonds ML/DL
Statistical

Satellite ×
Airborne 2019

65

Joint assimilation of leaf area index and
soil moisture from sentinel-1 and
sentinel-2 data into the WOFOST model
for winter wheat yield estimation

[285] Wheat Model based Satellite 2019

66 High resolution wheat yield mapping
using Sentinel-2 [274] Wheat ML

Statistical Satellite 2019

67

Evaluation of regional estimates of winter
wheat yield by assimilating three remotely
sensed reflectance datasets into the
coupled WOFOST–PROSAIL model

[278] Wheat Model based Satellite 2019

68

Assimilating Soil Moisture Retrieved from
Sentinel-1 and Sentinel-2 Data into
WOFOST Model to Improve Winter Wheat
Yield Estimation

[286] Wheat Model based Satellite 2019

69

Improving jujube fruit tree yield
estimation at the field scale by assimilating
a single Landsat remotely-sensed LAI into
the WOFOST model

[135] Jujube Model based Satellite 2019

70

Assimilation of remotely-sensed LAI into
WOFOST model with the SUBPLEX
algorithm for improving the field-scale
jujube yield forecasts

[136] Jujube Model based Satellite 2019

71 Potato yield prediction using machine
learning techniques and Sentinel 2 data [140] Potato ML

Statistical Satellite 2019

72
Assessing Multiple Years’ Spatial
Variability of Crop Yields Using Satellite
Vegetation Indices

[80] Wheat, Sunflower,
and Coriander Statistical Satellite 2019

73

Field-scale rice yield estimation using
sentinel-1A synthetic aperture radar (SAR)
data in coastal saline region of Jiangsu
Province, China

[188] Rice Statistical Satellite 2019

74
Rice Yield Estimation Using Parcel-Level
Relative Spectral Variables From
UAV-Based Hyperspectral Imagery

[211] Rice Statistical Airborne 2019

75

Establishment of Plot-Yield Prediction
Models in Soybean Breeding Programs
Using UAV-Based Hyperspectral Remote
Sensing

[120] Soybean Statistical Airborne 2019

76
Principal variable selection to explain
grain yield variation in winter wheat from
features extracted from UAV imagery

[301] Wheat ML
Statistical Airborne 2019

77
Biomass prediction of heterogeneous
temperate grasslands using an SFM
approach based on UAV imaging.

[154] Grassland Statistical Airborne 2019

78
Accuracy of carrot yield forecasting using
proximal hyperspectral and satellite
multispectral data

[83] Carrot Statistical Satellite 2020
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79
Sight for Sorghums: Comparisons of
Satellite- and Ground-Based Sorghum
Yield Estimates in Mali

[182] Sorghum Statistical Satellite 2020

80

Combining multi-source data and machine
learning approaches to predict winter
wheat yield in the conterminous United
States

[329] Wheat ML/DL Satellite ×
Proximal 2020

81
Multilevel Deep Learning Network for
County-Level Corn Yield Estimation in the
U.S. Corn Belt

[240] Maize ML/DL Satellite ×
Proximal 2020

82
Assessing the benefit of satellite-based
Solar-Induced Chlorophyll Fluorescence in
crop yield prediction

[121] Maize and Soybean ML/DL Satellite ×
Proximal 2020

83
Estimation of potato yield using satellite
data at a municipal level: A machine
learning approach

[141] Potato ML Satellite ×
Proximal 2020

84 Rice Yield Estimation Based on an NPP
Model With a Changing Harvest Index [193] Rice Model based Satellite 2020

85
To blend or not to blend? A framework for
nationwide landsat-MODIS data selection
for crop yield prediction

[95] Canola, Wheat, and
Barley Statistical Satellite 2020

86

Combining Optical, Fluorescence, Thermal
Satellite, and Environmental Data to
Predict County-Level Maize Yield in China
Using Machine Learning Approaches

[241] Maize ML/DL Satellite 2020

87
Prediction of winter wheat yield based on
multi-source data and machine learning in
China

[265] Wheat ML/DL Satellite 2020

88

The ability of sun-induced chlorophyll
fluorescence from OCO-2 and MODIS-EVI
to monitor spatial variations of soybean
and maize yields in the midwestern USA

[104] Maize and Soybean ML/DL
Statistical Satellite 2020

89

Reconstruction of time series leaf area
index for improving wheat yield estimates
at field scales by fusion of Sentinel-2, -3
and MODIS imagery

[263] Wheat Statistical Satellite 2020

90
Using HJ-CCD image and PLS algorithm
to estimate the yield of field-grown winter
wheat

[259] Wheat Statistical Satellite 2020

91
Predicting soybean yield at the regional
scale using remote sensing and climatic
data

[109] Soybean Statistical Satellite 2020

92
High-Resolution Soybean Yield Mapping
Across the US Midwest Using Subfield
Harvester Data

[122] Soybean ML
Statistical

Satellite ×
Proximal 2020

93

Estimating Wheat Grain Yield Using
Sentinel-2 Imagery and Exploring
Topographic Features and Rainfall Effects
on Wheat Performance in Navarre, Spain

[320] Wheat ML
Statistical

Satellite ×
Proximal 2020

94
Predicting wheat yield at the field scale by
combining high-resolution Sentinel-2
satellite imagery and crop modelling

[333] Wheat Statistical Satellite ×
Proximal 2020
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95
Vineyard yield estimation using 2-D
proximal sensing: A multitemporal
approach

[129] Vineyards ML Satellite ×
Proximal 2020

96
Yield prediction by machine learning from
UAS-based multi-sensor data fusion in
soybean

[123] Soybean ML Airborne ×
Proximal 2020

97

Remote sensing techniques and stable
isotopes as phenotyping tools to assess
wheat yield performance: Effects of
growing temperature and vernalization

[317] Wheat Statistical Airborne ×
Proximal 2020

98
Crop yield prediction using multitemporal
UAV data and spatio-temporal deep
learning models

[178] Wheat, Barley, and
Oats ML/DL Airborne ×

Proximal 2020

99 Validation of white oat yield estimation
models using vegetation indices [181] White Oat Statistical Proximal 2020

100
The role of topography, soil, and remotely
sensed vegetation condition towards
predicting crop yield

[124] Maize and Soybean ML/DL
Statistical

Satellite ×
Proximal 2020

101 Deep phenotyping of yield-related traits in
wheat [296] Wheat Statistical Proximal 2020

102

High-Throughput Field Phenotyping
Traits of Grain Yield Formation and
Nitrogen Use Efficiency: Optimizing the
Selection of Vegetation Indices and
Growth Stages

[297] Wheat Statistical Proximal 2020

103

A study on trade-offs between spatial
resolution and temporal sampling density
for wheat yield estimation using both
thermal and calendar time

[260] Wheat Statistical Satellite 2020

104
Estimating yields of household fields in
rural subsistence farming systems to study
food security in Burkina Faso

[169]
Beans, Maize,
Sorghum, and

Millet
ML Satellite 2020

105
Ensemble Machine Learning Methods to
Estimate the Sugarcane Yield Based on
Remote Sensing Information

[70] Sugarcane ML
Statistical Satellite 2020

106
Integrating Landsat-8 and Sentinel-2 Time
Series Data for Yield Prediction of
Sugarcane Crops at the Block Level

[78] Sugarcane ML
Statistical Satellite 2020

107
Alfalfa yield prediction using UAV-based
hyperspectral imagery and ensemble
learning

[162] Alfa Alfa ML/DL Airborne 2020

108
Estimation of the yield and plant height of
winter wheat using UAV-based
hyperspectral images

[312] Wheat ML/DL Airborne 2020

109
Aerial hyperspectral imagery and deep
neural networks for high-throughput yield
phenotyping in wheat

[313] Wheat ML/DL Airborne 2020

110

Modified Red Blue Vegetation Index for
Chlorophyll Estimation and Yield
Prediction of Maize from Visible Images
Captured by UAV

[243] Maize ML/DL Airborne 2020
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111

A Canopy Information Measurement
Method for Modern Standardized Apple
Orchards Based on UAV Multimodal
Information

[134] Apple ML/DL Airborne 2020

112 Soybean yield prediction from UAV using
multimodal data fusion and deep learning [117] Soybean ML/DL Airborne 2020

113

Nondestructive estimation of potato yield
using relative variables derived from
multi-period LAI and hyperspectral data
based on weighted growth stage

[67] Potato ML Airborne 2020

114

Use of UAS Multispectral Imagery at
Different Physiological Stages for Yield
Prediction and Input Resource
Optimization in Corn

[246] Maize ML/DL
Statistical Airborne 2020

115
Predicting Biomass and Yield in a Tomato
Phenotyping Experiment Using UAV
Imagery and Random Forest

[89] Tomato ML Airborne 2020

116

Correlating the Plant Height of Wheat
with Above-Ground Biomass and Crop
Yield Using Drone Imagery and Crop
Surface Model, A Case Study from Nepal

[305] Wheat Statistical Airborne 2020

117 Yield estimation in cotton using
UAV-based multi-sensor imagery [144] Cotton Statistical Airborne 2020

118

Bayesian Calibration of the Aquacrop-OS
Model for Durum Wheat by Assimilation
of Canopy Cover Retrieved from VENµS
Satellite Data

[280] Wheat Model based 2020

119 Crop yield prediction through proximal
sensing and machine learning algorithms [142] Potato ML

Statistical 2020

120

Seasonal bean yield forecast for
non-irrigated croplands through climate
and vegetation index data: Geospatial
effects

[170] Beans Statistical Satellite ×
Proximal 2021

121

A deep learning framework under
attention mechanism for wheat yield
estimation using remotely sensed indices
in the Guanzhong Plain, PR China

[330] Wheat ML/DL Satellite ×
Proximal 2021

122
Geographically and temporally weighted
neural network for winter wheat yield
prediction

[331] Wheat
ML/DL

Model based
Statistical

Satellite ×
Proximal 2021

123

Improving Wheat Yield Estimates by
Integrating a Remotely Sensed Drought
Monitoring Index Into the Simple
Algorithm for Yield Estimate Model

[332] Wheat Model based Satellite ×
Proximal 2021

124

Integration of a crop growth model and
deep learning methods to improve
satellite-based yield estimation of winter
wheat in henan province, china

[322] Wheat ML/DL
Model based

Satellite ×
Proximal 2021

125

Cereal yield forecasting with satellite
drought-based indices, weather data and
regional climate indices using machine
learning in morocco

[179] Wheat, Barley ML
Statistical

Satellite ×
Proximal 0.88
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126

A million kernels of truth: Insights into
scalable satellite maize yield mapping and
yield gap analysis from an extensive
ground dataset in the US Corn Belt

[228] Maize Model based Satellite 2021

127 Yield forecasting with machine learning
and small data: What gains for grains? [180] Wheat, Barley

ML
Statistical

Model based
Satellite 2021

128
The ARYA crop yield forecasting
algorithm: Application to the main wheat
exporting countries

[287] Wheat Model based Satellite 2021

129

Corn Biomass Estimation by Integrating
Remote Sensing and Long-Term
Observation Data Based on Machine
Learning Techniques

[242] Maize ML/DL Satellite 2021

130

Exploiting Hierarchical Features for Crop
Yield Prediction Based on 3-D
Convolutional Neural Networks and
Multikernel Gaussian Process

[293] Wheat ML/DL Satellite 2021

131

Crop yield prediction from multi-spectral,
multi-temporal remotely sensed imagery
using recurrent 3D convolutional neural
networks

[1] Wheat, Maize ML/DL
Statistical Satellite 2021

132
Prediction of Crop Yield Using
Phenological Information Extracted from
Remote Sensing Vegetation Index

[232] Maize ML Satellite 2021

133
NDVI Variation and Yield Prediction in
Growing Season: A Case Study with Tea in
Tanuyen Vietnam

[81] Tea ML Satellite 2021

134
Forecasting Oil Crops Yields on the
Regional Scale Using Normalized
Difference Vegetation Index

[98] Sunflower, Winter
Rape, and Soybean Statistical Satellite 2021

135
Relationship between MODIS Derived
NDVI and Yield of Cereals for Selected
European Countries

[173] Cereal Statistical Satellite 2021

136

Remote and proximal sensing-derived
spectral indices and biophysical variables
for spatial variation determination in
vineyards

[125] Vineyards Statistical Satellite ×
Proximal 2021

137

Machine learning models based on remote
and proximal sensing as potential methods
for in-season biomass yields prediction in
commercial sorghum fields

[183] Sorghum ML/DL Satellite ×
Proximal 2021

138

Machine learning models based on remote
and proximal sensing as potential methods
for in-season biomass yields prediction in
commercial sorghum fields

[247] Maize ML
Statistical

Satellite ×
Proximal 2021

139
Long-Term Hindcasts of Wheat Yield in
Fields Using Remotely Sensed Phenology,
Climate Data and Machine Learning

[321] Wheat
ML/DL

Statistical
Model based

Satellite ×
Proximal 2021
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140

Predicting Maize Yield at the Plot Scale of
Different Fertilizer Systems by Multi-
Source Data and Machine Learning
Methods

[248] Maize ML
Statistical

Satellite ×
Proximal 2021

141

Forecasting Rainfed Agricultural
Production in Arid and Semi-Arid Lands
Using Learning Machine Methods: A
Case Study

[166] Chickpea ML Satellite ×
Proximal 2021

142
Wheat yield prediction based on
unmanned aerial vehicles-collected
red–green–blue imagery

[316] Wheat ML/DL
Statistical

Airborne ×
Proximal 2021

143

Entropy Weight Ensemble Framework for
Yield Prediction of Winter Wheat Under
Different Water Stress Treatments Using
Unmanned Aerial Vehicle-Based
Multispectral and Thermal Data

[318] Wheat Statistical Airborne ×
Proximal 2021

144
Assimilation of LAI Derived from UAV
Multispectral Data into the SAFY Model to
Estimate Maize Yield

[230] Maize Model based Airborne ×
Proximal 2021

145
Grain Yield Estimation in Rice Breeding
Using Phenological Data and Vegetation
Indices Derived from UAV Images

[194] Rice ML
Model based

Airborne ×
Proximal 2021

146

The feasibility of hand-held thermal and
UAV-based multispectral imaging for
canopy water status assessment and yield
prediction of irrigated African eggplant
(Solanum aethopicum L.)

[86] African Eggplant Statistical Airborne ×
Proximal 2021

147

Improving Biomass and Grain Yield
Prediction of Wheat Genotypes on Sodic
Soil Using Integrated High-Resolution
Multispectral, Hyperspectral, 3D Point
Cloud, and Machine Learning Techniques

[314] Wheat ML/DL
Statistical

Airborne ×
Proximal 2021

148

Assimilation of coupled
microwave/thermal infrared soil moisture
profiles into a crop model for robust maize
yield estimates over Southeast United States

[231] Maize Model based Proximal 2021

149

An LSTM neural network for improving
wheat yield estimates by integrating
remote sensing data and meteorological
data in the Guanzhong Plain, PR China

[298] Wheat ML/DL Proximal 2021

150
Crop yield prediction based on
agrometeorological indexes and remote
sensing data

[249] Maize ML Proximal 2021

151 A satellite-based method for national
winter wheat yield estimating in china [279] Wheat Model based Satellite 2021

152

Estimation of Winter Wheat Yield in Arid
and Semiarid Regions Based on
Assimilated Multi-Source Sentinel Data
and the CERES-Wheat Model

[281] Wheat Model based Satellite 2021

153
Winter wheat yield estimation based on
assimilated Sentinel-2 images with the
CERES-Wheat model

[270] Wheat Model based
Statistical Satellite 2021
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154
Sugarcane Yield Mapping Using
High-Resolution Imagery Data and
Machine Learning Technique

[71] Sugarcane ML Satellite 2021

155
Estimation of Crop Yield From Combined
Optical and SAR Imagery Using Gaussian
Kernel Regression

[190] Rice ML Satellite 2021

156
Integrated method for rice cultivation
monitoring using Sentinel-2 data and Leaf
Area Index

[191] Rice ML Satellite 2021

157
Remote Sensing-Based Estimation of
Advanced Perennial Grass Biomass Yields
for Bioenergy

[156] Perennial
Bioenergy Grass Statistical Satellite 2021

158
Prediction of Crop Yield for New Mexico
Based on Climate and Remote Sensing
Data for the 1920–2019 Period

[161]
Alfalfa, Wheat,

Maize, and
Sorghum

Statistical Satellite 2021

159

Broadacre Crop Yield Estimation Using
Imaging Spectroscopy from Unmanned
Aerial Systems (UAS): A Field-Based Case
Study with Snap Bean

[167] Snap Bean ML/DL Airborne 2021

160
Combining spectral and textural
information in UAV hyperspectral images
to estimate rice grain yield

[197] Rice ML
Statistical Airborne 2021

161

Temporal Vegetation Indices and Plant
Height from Remotely Sensed Imagery
Can Predict Grain Yield and Flowering
Time Breeding Value in Maize via Machine
Learning Regression

[254] Maize ML
Statistical Airborne 2021

162

Rice Yield Estimation Based on Vegetation
Index and Florescence Spectral
Information from UAV Hyperspectral
Remote Sensing

[212] Rice Statistical Airborne 2021

163
Creating a Field-Wide Forage Canopy
Model Using UAVs and Photogrammetry
Processing

[159] Alfa Alfa ML Airborne 2021

164

Maize yield prediction at an early
developmental stage using multispectral
images and genotype data for preliminary
hybrid selection

[244] Maize ML/DL Airborne 2021

165

The Application of an Unmanned Aerial
System and Machine Learning Techniques
for Red Clover-Grass Mixture Yield
Estimation under Variety Performance
Trials.

[165] Red Clover ML/DL Airborne 2021

166

Predicting within-field variability in grain
yield and protein content of winter wheat
using UAV-based multispectral imagery
and machine learning approaches

[302] Winter Wheat ML/DL Airborne 2021

167
Cotton yield estimation model based on
machine learning using time series UAV
remote sensing data

[145] Cotton ML/DL Airborne 2021
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168
Assessment of Ensemble Learning to
Predict Wheat Grain Yield Based on
UAV-Multispectral Reflectance

[307] Wheat ML Airborne 2021

169
Prediction of plant-level tomato biomass
and yield using machine learning with
unmanned aerial vehicle imagery

[84] Processing Tomato ML
Statistical Airborne 2021

170

Improving Accuracy of Herbage Yield
Predictions in Perennial Ryegrass with
UAV-Based Structural and Spectral Data
Fusion and Machine Learning

[155] Perennial Ryegrass ML Airborne 2021

171
Unmanned Aircraft System- (UAS-) Based
High-Throughput Phenotyping (HTP) for
Tomato Yield Estimation

[90] Tomato ML Airborne 2021

172

Estimation of Fractional
Photosynthetically Active Radiation From
a Canopy 3D Model; Case Study: Almond
Yield Prediction

[132] Almonds Statistical Airborne 2021

173

Combining Spectral and Texture Features
of UAV Images for the Remote Estimation
of Rice LAI throughout the Entire Growing
Season

[209] Rice Statistical Airborne 2021

174 Predicting Table Beet Root Yield with
Multispectral UAS Imagery [87] Table Beet Statistical Airborne 2021

175

Alfalfa (Medicago sativa L.) crop vigor and
yield characterization using
high-resolution aerial multispectral and
thermal infrared imaging technique

[163] Alfa Alfa Statistical Airborne 2021

176 Ramie Yield Estimation Based on UAV
RGB Images [152] Ramie Statistical Airborne 2021

177
Early Estimation of Olive Production from
Light Drone Orthophoto, through Canopy
Radius

[99] Olive Tree Statistical Airborne 2021

178

Predicting rice yield at pixel scale through
synthetic use of crop and deep learning
models with satellite data in South and
North Korea

[199] Rice ML/DL
Model based

Satellite ×
Proximal 2022

179

Improving wheat yield estimates using
data augmentation models and remotely
sensed biophysical indices within deep
neural networks in the Guanzhong Plain,
PR China

[323] Wheat ML/DL
Statistical

Satellite ×
Proximal 2022

180
Coupling remote sensing and crop growth
model to estimate national wheat yield in
Ethiopia

[324] Wheat Statistical
Model based

Satellite ×
Proximal 2022

181 Assessing the impacts of natural disasters
on rice production in Jiangxi, China [207] Rice Statistical Satellite ×

Proximal 2022

182
Estimating Groundnut Yield in
Smallholder Agriculture Systems Using
PlanetScope Data

[96] Groundnut ML
Statistical

Satellite ×
Proximal 2022

183
A dataset of winter wheat aboveground
biomass in China during 2007–2015 based
on data assimilation

[282] Wheat Model based Satellite 2022
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184
Accurately mapping global wheat
production system using deep learning
algorithms

[288] Wheat ML/DL Satellite 2022

185

Improving the Forecasting of Winter
Wheat Yields in Northern China with
Machine Learning–Dynamical Hybrid
Subseasonal-to-Seasonal Ensemble
Prediction

[275] Wheat ML Satellite 2022

186

Integrating climate and satellite remote
sensing data for predicting county-level
wheat yield in China using machine
learning methods

[25] Wheat ML Satellite 2022

187
A Geographically Weighted Random
Forest Approach to Predict Corn Yield in
the US Corn Belt

[233] Maize ML Satellite 2022

188

Spatial Rice Yield Estimation Using
Multiple Linear Regression Analysis,
Semi-Physical Approach and Assimilating
SAR Satellite Derived Products with
DSSAT Crop Simulation Model

[200] Rice Statistical
Model based Satellite 2022

189

Regional Yield Estimation for Sugarcane
Using MODIS and Weather Data: A Case
Study in Florida and Louisiana, United
States of America

[79] Sugarcane Model based Satellite 2022

190

Rice Yield Prediction and Model
Interpretation Based on Satellite and
Climatic Indicators Using a Transformer
Method

[201] Rice ML/DL Satellite 2022

191
Extreme Gradient Boosting for yield
estimation compared with Deep Learning
approaches

[113] Soybean ML/DL Satellite 2022

192

Developing a Dual-Stream Deep-Learning
Neural Network Model for Improving
County-Level Winter Wheat Yield
Estimates in China

[289] Wheat ML/DL Satellite 2022

193
A New Framework for Winter Wheat Yield
Prediction Integrating Deep Learning and
Bayesian Optimization

[290] Wheat ML/DL Satellite 2022

194
Improving Winter Wheat Yield Forecasting
Based on Multi-Source Data and Machine
Learning

[277] Wheat ML
Statistical Satellite 2022

195
Remote Sensing—Based Assessment of the
Water-Use Efficiency of Maize over a
Large, Arid, Regional Irrigation District

[221] Maize Statistical Satellite 2022

196
In-Season Wheat Yield Forecasting at High
Resolution Using Regional Climate Model
and Crop Model

[283] Wheat Model based Satellite 2022

197 Winter Wheat Yield Prediction Using an
LSTM Model from MODIS LAI Products [291] Wheat ML/DL Satellite 2022
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198

Downscaling solar-induced chlorophyll
fluorescence for field-scale cotton yield
estimation by a two-step convolutional
neural network

[146] Cotton ML/DL
Statistical Satellite 2022

199
High-resolution crop yield and water
productivity dataset generated using
random forest and remote sensing

[234] Maize, Wheat ML Satellite 2022

200 Soybean yield prediction using remote
sensing in Southwestern Piauí State, Brazil. [110] Soybean Statistical Satellite 2022

201

A generalized model to predict large-scale
crop yields integrating satellite-based
vegetation index time series and
phenology metrics

[222] Maize Statistical Satellite 2022

202
Improving crop yield estimation by applying
higher resolution satellite NDVI imagery and
high-resolution cropland masks

[111]
Maize, Soybeans,

Spring Wheat, and
Winter Wheat

Statistical Satellite 2022

203

Wheat growth monitoring and yield
estimation based on remote sensing
data assimilation into the SAFY crop
growth model

[325] Wheat Statistical
Model based

Satellite ×
Proximal 2022

204 Simulation of Spatiotemporal Variations in
Cotton Lint Yield in the Texas High Plains [147] Cotton Model based Satellite ×

Proximal 2022

205

Crop Yield Estimation at Field Scales by
Assimilating Time Series of Sentinel-2 Data
Into a Modified CASA-WOFOST Coupled
Model

[63] Wheat, Rape, Milk
Thistle, and Potato

Model based
Statistical

Satellite ×
Proximal 2022

206

Estimating Maize Yield in the Black Soil
Region of Northeast China Using Land
Surface Data Assimilation: Integrating a
Crop Model and Remote Sensing

[250] Maize Model based
ML

Satellite ×
Proximal 2022

207
Assimilation of Remote Sensing Data into
Crop Growth Model for Yield Estimation:
A Case Study from India

[97] Rice, Groundnut,
Maize

ML/DL
Model based

Satellite ×
Proximal 2022

208
Evaluation of Random Forests (RF) for
Regional and Local-Scale Wheat Yield
Prediction in Southeast Australia

[328] Wheat ML Satellite ×
Proximal 2022

209

Assimilation of Multisensor Optical and
Multiorbital SAR Satellite Data in a
Simplified Agrometeorological Model for
Rapeseed Crops Monitoring

[94] Winter Rapeseed Model based Satellite ×
Proximal 2022

210
Maize yield prediction using NDVI
derived from Sentinal 2 data in Siddipet
district of Telangana state

[213] Maize Statistical Satellite
Proximal 2022

211
Maize Yield Estimation in Intercropped
Smallholder Fields Using Satellite Data in
Southern Malawi

[223] Maize Statistical Satellite ×
Proximal 2022

212

Multispectral remote sensing for accurate
acquisition of rice phenotypes: Impacts of
radiometric calibration and unmanned
aerial vehicle flying altitudes

[196] Rice ML/DL Airborne ×
Proximal 2022
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213 Predicting In-Season Corn Grain Yield
Using Optical Sensors [214] Maize Statistical Airborne ×

Proximal 2022

214 Cotton yield prediction using drone
derived LAI and chlorophyll content [137] Cotton Statistical Airborne ×

Proximal 2022

215
Remotely Sensed Prediction of Rice Yield
at Different Growth Durations Using UAV
Multispectral Imagery

[203] Rice Statistical Airborne ×
Proximal 2022

216

Correlation between Ground
Measurements and UAV Sensed
Vegetation Indices for Yield Prediction of
Common Bean Grown under Different
Irrigation Treatments and Sowing Periods

[168] Beans Statistical Airborne ×
Proximal 2022

217
Detecting Intra-Field Variation in Rice
Yield With Unmanned Aerial Vehicle
Imagery and Deep Learning

[195] Rice ML/DL
Statistical

Airborne ×
Proximal 2022

218

Comparison of Winter Wheat Yield
Estimation Based on Near-Surface
Hyperspectral and UAV Hyperspectral
Remote Sensing Data

[315] Wheat ML/DL
Statistical

Airborne ×
Proximal 2022

219
Estimating Yield-Related Traits Using
UAV-Derived Multispectral Images to
Improve Rice Grain Yield Prediction

[204] Rice ML
Statistical

Airborne ×
Proximal 2022

220
Cotton Yield Estimation From Aerial
Imagery Using Machine Learning
Approaches

[148] Cotton ML Airborne ×
Proximal 2022

221
Rice Yield Estimation Based on
Continuous Wavelet Transform With
Multiple Growth Period

[205] Rice ML
Statistical Proximal 2022

222
Deciphering the contributions of spectral
and structural data to wheat yield
estimation from proximal sensing

[299] Wheat ML/DL Proximal 2022

223
End-to-end deep learning for directly
estimating grape yield from ground-based
imagery

[130] Vineyards ML/DL Proximal 2022

224

Comparing a New Non-Invasive Vineyard
Yield Estimation Approach Based on
Image Analysis with Manual
Sample-Based Methods

[131] Vineyards ML
Statistical Proximal 2022

225

Predictive Modeling of Above-Ground
Biomass in Brachiaria Pastures from
Satellite and UAV Imagery Using Machine
Learning Approaches

[157] Brachiaria Pastures ML Satellite ×
Airborne 2022

226
Transfer-Learning-Based Approach for
Yield Prediction of Winter Wheat from
Planet Data and SAFY Model

[264] Wheat ML/DL
Model based Satellite 2022

227

Evaluation of Different Modelling
Techniques with Fusion of Satellite, Soil
and Agro-Meteorological Data for the
Assessment of Durum Wheat Yield under
a Large Scale Application

[271] Wheat ML
Model based Satellite 2022
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228
Kernel Ridge Regression Hybrid Method
for Wheat Yield Prediction with
Satellite-Derived Predictors

[276] Wheat ML
Statistical Satellite 2022

229
Early season prediction of within-field
crop yield variability by assimilating
CubeSat data into a crop model

[252] Maize Statistical
Model based Satellite 2022

230

Assessing the Yield of Wheat Using
Satellite Remote Sensing-Based Machine
Learning Algorithms and Simulation
Modeling

[272] Wheat ML
Model based Satellite 2022

231
Linking Remote Sensing with APSIM
through Emulation and Bayesian
Optimization to Improve Yield Prediction

[225] Maize ML/DL
Model based Satellite 2022

232

Subfield maize yield prediction improves
when in-season crop water deficit is
included in remote sensing
imagery-based models

[253] Maize ML
Model based Satellite 2022

233 Wheat Crop Yield Estimation using
Geomatics Tools in Saharanpur District [262] Wheat Statistical Satellite 2022

234

Early Prediction of Coffee Yield in the
Central Highlands of Vietnam Using a
Statistical Approach and Satellite Remote
Sensing Vegetation Biophysical Variables

[82] Coffee Tree Statistical
Model based Satellite 2022

235
A deep learning multi-layer perceptron
and remote sensing approach for soil
health based crop yield estimation

[266] Wheat ML/DL
Statistical Satellite 2022

236 Field-level crop yield estimation with
PRISMA and Sentinel-2 [114] Maize, Rice,

Soybean, Wheat ML Satellite 2022

237
Wheat yield estimation using remote
sensing data based on machine learning
approaches

[292] Wheat ML/DL Satellite 2022

238
Winter Wheat Yield Estimation Based on
Optimal Weighted Vegetation Index and
BHT-ARIMA Model

[269] Wheat Statistical
Model based Satellite 2022

239

Oil Palm Yield Estimation Based on
Vegetation and Humidity Indices
Generated from Satellite Images and
Machine Learning Techniques

[100] Palm Oil ML/DL Satellite 2022

240
Soya Yield Prediction on a Within-Field
Scale Using Machine Learning Models
Trained on Sentinel-2 and Soil Data

[116] Soybean ML Satellite 2022

241
Coffee-Yield Estimation Using
High-Resolution Time-Series Satellite
Images and Machine Learning

[72] Coffee Tree ML
Statistical Satellite 2022

242

Alfalfa yield estimation based on time
series of Landsat 8 and PROBA-V images:
An investigation of machine learning
techniques and spectral-temporal features

[164] Alfa Alfa ML
Statistical Satellite 2022
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243

A Comprehensive Comparison of Machine
Learning and Feature Selection Methods
for Maize Biomass Estimation Using
Sentinel-1 SAR, Sentinel-2 Vegetation
Indices, and Biophysical Variables

[235] Maize ML Satellite 2022

244
In-Season Prediction of Corn Grain Yield
through PlanetScope and Sentinel-2
Images

[238] Maize ML
Statistical Satellite 2022

245

Wheat Yield Estimation Using Remote
Sensing Indices Derived from Sentinel-2
Time Series and Google Earth Engine in a
Highly Fragmented and Heterogeneous
Agricultural Region

[273] Wheat ML
Statistical Satellite 2022

246
Field Data Collection Methods Strongly
Affect Satellite-Based Crop Yield
Estimation

[239] Maize ML
Statistical Satellite 2022

247

Development of a Multi-Scale Tomato
Yield Prediction Model in Azerbaijan
Using Spectral Indices from Sentinel-2
Imagery

[88] Processing Tomato Statistical Satellite 2022

248
The Potential of Using Radarsat-2 Satellite
Image for Modeling and Mapping Wheat
Yield in a Semiarid Environment

[261] Wheat Statistical Satellite 2022

249

Radiative transfer model inversion using
high-resolution hyperspectral airborne
imagery—Retrieving maize LAI to access
biomass and grain yield

[251] Maize Statistical
Model based Airborne 2022

250
UAV-Based Hyperspectral and Ensemble
Machine Learning for Predicting Yield in
Winter Wheat

[306] Wheat ML Airborne 2022

251
Multisite and Multitemporal Grassland
Yield Estimation Using UAV-Borne
Hyperspectral Data

[153] Grassland ML Airborne 2022

252

Transferability of Models for Predicting
Rice Grain Yield from Unmanned Aerial
Vehicle (UAV) Multispectral Imagery
across Years, Cultivars and Sensors

[198] Rice ML
Statistical Airborne 2022

253

Field-scale rice yield estimation based on
UAV-based MiniSAR data with Ku band
and modified water-cloud model of
panicle layer at panicle stage

[206] Rice Statistical
Model based Airborne 2022

254

UAV Remote Sensing for
High-Throughput Phenotyping and for
Yield Prediction of Miscanthus by Machine
Learning Techniques

[158] Miscanthus
ML

Statistical
Model based

Airborne 2022

255
UAV Remote Sensing Prediction Method
of Winter Wheat Yield Based on the Fused
Features of Crop and Soil

[303] Wheat ML/DL Airborne 2022

256

Deep Convolutional Neural Network for
Rice Density Prescription Map at Ripening
Stage Using Unmanned Aerial
Vehicle-Based Remotely Sensed Images

[202] Rice ML/DL Airborne 2022
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257

Estimation of soybean yield parameters
under lodging conditions using RGB
information from unmanned aerial
vehicles

[118] Soybean ML/DL Airborne 2022

258

Improving Wheat Yield Prediction
Accuracy Using LSTM-RF Framework
Based on UAV Thermal Infrared and
Multispectral Imagery

[304] Wheat ML/DL Airborne 2022

259
Yield estimation of high-density cotton
fields using low-altitude UAV imaging
and deep learning

[138] Cotton ML/DL
Statistical Airborne 2022

260
Preharvest phenotypic prediction of grain
quality and yield of durum wheat using
multispectral imaging

[311] Wheat ML/DL
Statistical Airborne 2022

261

Estimation of soybean grain yield from
multispectral high-resolution UAV data
with machine learning models in West
Africa

[119] Soybean ML Airborne 2022

262
Cotton Yield Estimation Using the
Remotely Sensed Cotton Boll Index from
UAV Images

[149] Cotton ML
Statistical Airborne 2022

263
UAV-based multi-sensor data fusion and
machine learning algorithm for yield
prediction in wheat

[308] Wheat ML Airborne 2022

264
Prediction of Field-Scale Wheat Yield
Using Machine Learning Method and
Multi-Spectral UAV Data

[309] Wheat ML. Airborne 2022

265
Cotton Yield Estimation Based on
Vegetation Indices and Texture Features
Derived From RGB Image

[150] Cotton ML
Statistical Airborne 2022

266 Estimation of plant height and yield based
on UAV imagery in faba bean (Vicia faba L.) [171] Faba Bean ML

Statistical Airborne 2022

267
The Optimal Phenological Phase of Maize
for Yield Prediction with High-Frequency
UAV Remote Sensing

[310] Maize ML Airborne 2022

268 High-Resolution Flowering Index for
Canola Yield Modelling [101] Canola Seed Statistical Airborne 2022

269 UAV-Based Multispectral Imagery for
Estimating Cassava Tuber Yields [151] Cassava Tuber Statistical Airborne 2022
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