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Abstract: The automated harvesting of clustered fruits relies on fast and accurate visual perception.
However, the obscured stem diameters via leaf occlusion lack any discernible texture patterns.
Nevertheless, our human visual system can often judge the position of harvesting points. Inspired by
this, the aim of this paper is to address this issue by leveraging the morphology and the distribution
of fruit contour gradient directions. Firstly, this paper proposes the calculation of fruit normal vectors
using edge computation and gradient direction distribution. The research results demonstrate a
significant mathematical relationship between the contour edge gradient and its inclination angle, but
the experiments show that the standard error projected onto the Y-axis is smaller, which is evidently
more conducive to distinguishing the gradient distribution. Secondly, for the front view of occluded
lychee clusters, a fully convolutional, feature prototype-based one-stage instance segmentation
network is proposed, named the lychee picking point prediction network (LP3Net). This network can
achieve high accuracy and real-time instance segmentation, as well as for occluded and overlapping
fruits. Finally, the experimental results show that the LP3Net based on this study, along with lychee
phenotypic features, achieves an average location accuracy reaching 82%, significantly improving the
precision of harvesting point localization for lychee clusters.

Keywords: gradient distribution; lychee; instance segmentation; mask; fault-tolerance

1. Introduction

Lychee, a prevalent subtropical fruit predominantly cultivated in southern China,
boasts an annual yield exceeding 1 million tons. Guangdong province contributes over 50%
of China’s lychee cultivation and production [1]. In response to evolving labor paradigms,
the agricultural workforce is on a persistent decline, rendering the adoption of harvest
automation robots a pivotal approach for agricultural advancement [2]. Furthermore, the
mechanization of lychee harvesting holds immense potential to mitigate labor shortages.
This statement reflects the depth characteristic of a scientific research paper.

The algorithm of litchi picking point recognition is the key factor affecting the per-
formance of the litchi harvesting robot visual recognition system. In the last three years,
the application of artificial intelligence in agriculture has shifted from other fruits to litchi.
Some studies used DeepLabV3 to segment and identify litchi fruits or branches [3–5], and
some studies used yolo technology to detect and identify litchi [6–9]. For lychee clusters
with stem diameters obscured from leaf occlusion, it is challenging to locate them based
on texture in RGB images [10–13]. Neural networks struggle to learn positional features
for occluded lychee clusters. However, humans can often predict harvesting points based
on their own experience. What information is this reliance based on? This paper aims to
address this issue via fruit growth morphology and mathematical distribution probabilities.
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Current instance segmentation algorithms based solely on deep learning have two disadvan-
tages: (1) they require significant computational power and are difficult to achieve real-time
detection, and (2) they struggle to accurately locate stem diameters for occluded lychee
clusters [14–16]. Wu et al. [17] devised an approach for extracting 3D contour features from
fruits. This approach involves grouping fruit point clouds via the Conditional Euclidean
Clustering algorithm and subsequently employing Random Sample Consensus (RANSAC)
for spherical segmentation. Li et al. [18] proposed a multi-task perception network for
the instance segmentation and detection of calyx and main stem in cherry tomatoes. The
network utilized a dual-branch loss function to balance multi-task learning and constructed
a Classification and Regression Tree (CART) model. The results showed that the proposed
network achieved an F1 score of 95.4% for detecting calyxes, and the average precision,
for instance, segmentation of the stem and main stem were 38.7% and 51.9%, respectively.
Zhao et al. [19] proposed an adaptive learning method to achieve an output-feedback robust
tracking control of the systems with uncertain dynamics, constructing an augmented system
using the system state and desired output trajectory. Clearly, the adaptive learning method
can effectively address the problem of locating fruit harvesting points, combining parameters
such as morphology and gradient direction distribution, allowing the instance segmenta-
tion network to more accurately identify and segment occluded and overlapping target
images. Liu et al. [20] introduced an emerging Graph Structure Learning (GSL) method,
Evolutionary Graph Neural Network (EGNN), designed to enhance the performance of
Graph Neural Networks (GNNs). Evidently, EGNN’s evolutionary strategy enhances its
defense against attacks, which could be beneficial when dealing with lychee image data
that may have inherent noise and incompleteness. It also aids in handling the diversity and
complexity of lychee images. However, EGNN’s evolutionary process may introduce signif-
icant computational complexity, especially on large-scale lychee image datasets. This might
require additional computational resources and time. Therefore, a careful assessment of its
computational resources, data, and performance requirements is necessary before applica-
tion. Additionally, it should be compared and validated against other conventional methods
to determine its actual benefits in lychee image processing. Wang et al. [21] proposed the
use of heterogeneous network representation learning to handle data with different types
or attributes and map them to a shared low-dimensional representation space. While this
approach exhibits advantages in certain domains, it requires careful consideration of its
strengths and weaknesses in lychee image object detection and instance segmentation tasks.
Firstly, heterogeneous network representation learning is applicable to various types of
data, allowing simultaneous processing of lychee images and related text or other data
types to integrate information for object detection and segmentation. Secondly, it effectively
merges information from different data sources, contributing to better model generalization
across different types of lychee datasets. However, heterogeneous network representation
learning typically involves handling multiple data types, which may introduce significant
computational complexity, especially on large-scale datasets. Furthermore, designing a
heterogeneous network suitable for lychee detection requires extensive experimentation
and tuning, demanding domain expertise and experience. In summary, most existing stem
diameter instance segmentation methods are not suitable for lychee due to the widespread
occlusion of harvesting points [22–24]. This paper aims to seek a computational method
that can fundamentally enhance the detection of occluded harvesting points.

Instance segmentation algorithms can be broadly classified into two categories: two-
stage and one-stage methods [25]. Two-stage algorithms, such as Mask-RCNN [26] and
other state-of-the-art (SOTA) methods, follow a similar two-stage structure. Mask-RCNN
generates binary masks for each RoI while simultaneously performing tasks related to class
classification and box offset regression [27]. SOTA two-stage instance segmentation models
heavily rely on feature localization for mask generation. They perform feature pooling
or alignment within RoIs and then feed the extracted features into the mask prediction
network. Due to the sequential nature of these methods, their speed improvement is
limited. On the other hand, one-stage instance segmentation methods, such as FCIS [28],
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can execute these steps in parallel. However, extensive post-processing is required after
instance localization, making it challenging to achieve real-time segmentation. The one-
stage instance segmentation algorithm YOLACT introduces mask coefficients parallel to
the RetinaNet classification and regression branches. It utilizes channel-wise weighting
coefficients to synthesize instance masks and applies a nonlinear transformation to the
predicted coefficients [29]. Compared to the two-stage methods, YOLACT eliminates the
process of generating local feature maps using RoI Align, resulting in a more streamlined
network and real-time speed.

The architecture presented in this paper draws inspiration from Prototype Generation,
with the goal of creating an encoder that predicts a set of k prototype masks covering the
entire image [30,31]. The input image is mapped into a high-dimensional feature space, where
each class’s prototype vector is represented by the mean vector of its support set samples.
Subsequently, the Euclidean distance between the query sample and the prototype vectors
of each class serves as the foundation for determining class attribution and constructing the
loss function. Kim et al. [32] proposed a chest radiography framework called XProtoNet for
global and local interpretable diagnosis. XProtoNet learns representative patterns for each
disease from X-ray images and diagnoses given X-ray images based on these prototypes. The
difference between XProtoNet and ProtoPNet [33] is that it can learn characteristics within
a dynamic region. The reason for adopting XProtoNet in this study is its robustness in the
occluded lychee harvesting region, as the network demonstrates strong performance with
prototype features. Zhang et al. [34] proposed an improved grape cluster image segmentation
algorithm using adaptive morphology. It defines the edge distance based on the minimum
distance between edge points in the minimum domain and disconnected components. The
algorithm utilizes an improved region classification algorithm with multiple principal compo-
nents. The average precision of grape stem segmentation and extraction improved by 9.89%
and 2.17%, respectively. However, this method lacks robustness for different stem diameters
and does not address the localization of occluded or overlapping harvesting points.

2. Materials and Methods
2.1. Image Acquisition

The dataset used in this paper consists of a total of 5800 lychee images with a size of
1440 × 1080 and 400 with a size of 1920 × 1080 images with RGB-D information. These
data were collected from lychee orchards in Conghua, Guangdong, China, and included
only two varieties, namely Heiye and Feizixiao. The images were captured at a distance
of approximately 350–450 mm from the lychee, and the camera lens plane was aligned
as closely as possible to the frontal view of the lychee fruit cluster’s center, without any
top or bottom views. During data labeling, the fruit contours were initially marked,
followed by the addition of two-dimensional coordinates (x, y) for the occluded picking
points. We divided the lychee picking point location into two scenes based on visual
observation [35–40]. If the occlusion area of leaves or branches exceeded 30%, the sample
was considered occluded and labeled as type A. Unobstructed samples were labeled as
type B. Typically, the picking points are distributed along the mid-line of the geometric
center [41,42]. However, since a single lychee fruit weighs about 21.4–31.8 g, the weight
can cause the fruit to easily lean to one side due to gravity [43–45].

2.2. Coarse and Edge Computation of Lychee Morphology

Lychee fruit cluster images exhibit complex edges and holes, and instance segmentation
can separate the fruit entities. Existing methods require significant computational resources
to scan the image and use equivalent sequences to record labels of connected components in
adjacent rows, such as contour-based and quadtree-based methods [34]. This paper proposes
a minimum domain computation method that can handle situations with different labels
and unordered labels without the need for equivalent sequence processing. It only requires
a single scan of the image to obtain disconnected components with different labels [46]. The
specific steps are as follows: (1) Initially, the image undergoes row-by-row scanning. Within
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each row, any nonzero element is gathered to construct a 1-dimensional array. The positions
of these nonzero pixel values are documented as labels. (2) For every row, except the first
one, an evaluation is made to determine whether the current run is linked to any of the
n (where n is set to 5 in this study) neighboring runs in the row just preceding it. When no
connection is found, a new label is assigned to the identified run. In this case, the labels of
runs in the previous row remain unaffected. If only one connected run from the previous
row is identified, the current run is labeled with the same label as the connected run. (3)
Ultimately, by executing the described steps, it is possible to assign labels to all edge pixels
in the lychee fruit cluster image that are not interconnected.

After obtaining the distribution of the image edges, the edge distance is computed using
the minimum domain centered on each edge point. The minimum domain includes the
edge point itself, the connected components containing the edge point, and the disconnected
components from the connected components. The specific process is illustrated in Figure 1.
Given a segmented image of size W × H, Fn sequential points on the fruit edge are obtained.
Initialize parameters i = 0 and j = 5; Maxmn = max(m, n), where m and n are the dimensions
of the domain. In the domain Mij, disconnected components are detected. The center point of
the domain serves as the radius for calculation, with j ranging from 5 to Maxmn, where Maxmn
is the larger of the two dimensions. It is checked whether there are disconnected regions in
the domain. The Euclidean distance Dr between point i in the domain and the unconnected
point j within the domain is calculated. The Dr array is traversed to find the minimum value
Dmin, which is then assigned as the edge distance for the pixels in that domain. These steps
are repeated until the Dmin for all Fn points in the image is obtained.
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2.3. LP3Net Network Design

Lychee fruit clusters are different from grapes, cherry tomatoes, and other fruits.
This is because a single lychee fruit weighs around 21.4–31.8 g, and the number of fruits
in a lychee cluster can range from 3 to 15. The weight of the fruits makes the lychee
cluster prone to sagging under the influence of gravity and susceptible to leaf occlusion.
Moreover, the actual picking point P′ forms an inclined angle between the predicted
picking point P on the midline of the cluster and the main stem. Therefore, instance
segmentation algorithms for lychee require high accuracy to effectively handle occlusion
and overlapping masks. You Only Look At CoefficienTs (YOLACT) primarily addresses the
issue of slowed ROI Pool/Align and segmentation in the two-stage Mask-RCNN [29,47].
Inspired by YOLACT, this paper proposes LP3Net, an improved instance segmentation
algorithm based on YOLACT. First, the backbone network utilizes ResNet101 as its main
network for extracting feature representations from input images. On top of the backbone
network, the Feature Pyramid Network (FPN) is employed to generate a multi-scale feature
pyramid. As shown in Figure 2, feature P5 is obtained from the C5 layer via a convolutional
layer, and then bilinear interpolation is used to double the size of the feature map. The
feature map C4 is added to obtain P4. Moreover, P3 is passed to XProtoNet, and P3 to
P7 is simultaneously sent to the prediction head. Each prototype corresponds to a mask
coefficient according to references [33,48]. Each anchor returns (4 + n + k) coefficients,
which include 4 coordinate coefficients and the corresponding category. Next, in this paper,
XProtoNet is used to generate instance-level feature representations. XProtoNet consists
of a series of 2D convolutional layers that are used to generate feature vectors for each
instance. Following ProtoNet, LP3Net utilizes a series of prediction heads to predict the
category and mask of the targets. Each prediction head consists of convolutional layers and
fully connected layers to extract features and generate corresponding prediction results.
Additionally, LP3Net incorporates a Detection Head for the localization of individual
lychee fruits, allowing for the calculation of positional tolerance distance using a few
computational parameters based on the detected bounding boxes. Apart from predicting
the category and bounding boxes, LP3Net also includes a segmentation Mask Head for
generating pixel-level segmentation masks of the targets. This head utilizes convolutional
and upsampling operations to generate dense segmentation masks for the targets. During
the training phase, the boundary refers to the ground truth bounding box, while during the
evaluation phase, it refers to the predicted bounding box. The threshold value of 0.5 is used
to perform image binarization on the generated mask. Finally, LP3Net undergoes a position
processing step for target point tolerance localization, which integrates the calculation of
minimum domain edge and tolerance distance for individual lychee fruits.
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2.4. XProtoNet

The difference between XProtoNet and ProtoPNet lies in their ability to learn features
within a dynamic region [49]. In ProtoPNet, the prototypes are contrasted with feature
patches of a consistent size extracted from the feature map. ProtoNet consists of a conven-
tional convolutional neural network f, followed by a prototype layer and fully connected
layers. Assuming the CNN model output is H×W×D, the number of output channels, D,
in this paper, can be 128, 256, or 512. After computing the scores for all prototypes, a fully
connected layer is used to map the prototype scores and the final decision scores [50,51].
As shown in Figure 3, ProtoPNet compares feature patches from all spatial locations of the
feature map with the prototypes and outputs the maximum value as the similarity score.
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The distinctive feature of the LP3Net network is the integration of XProtoNet and
position processing. XProtoNet takes into account two independent aspects of the input
image: the patterns within the P3 layer shown in Figure 4 and the region of interest focused
on the fruit. Assuming the feature map can be represented as F(x) ∈ RH×W×C, where H
represents the height, W represents the width, and C represents the number of channels.
The pixel region where the fruit appears is represented as each prototype Pc

k to predict
the potential feature map MPc

k
(x) ∈ RH×W . The feature map represents the most likely

locations for individual lychee fruits to appear. After undergoing a 1 × 1 convolution, here
we compare the feature vectors fPc

k
(x) and prototype Pc

k :

fPc
k
(x) = ∑u MPc

k,u
(x)Fu(x) (1)

where u ∈ [0, H ×W] denotes the spatial location of MPc
k
(x) and F(x). For ProtoNet in this

paper, XProtoNet is used to concentrate the feature maps, and after training the feature
extractor in LP3Net, the prototype Pc

k is replaced with the most similar feature vector fPc
k

in
comparison. In the dataset used in this paper, the lychee fruit features in the feature map
may not be concentrated in a specific region [52,53]. Therefore, if we compare the features
with fixed patches like in ProtoNet, it would limit the accuracy of instance segmentation.
XProtoNet effectively addresses this issue by considering patch features as part of the
model’s predictions without restricting comparisons to a fixed region.
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2.5. LP3Net Loss Function

The loss function of LP3Net in this paper consists of two parts: instance segmentation
loss Lseg and object detection loss Ldet [54,55]. During the training phase of the XProtoNet
network, Lseg is mainly composed of classification loss Ls_cls, box regression loss Ls_box,
and mask loss Ls_mask. Specifically, Ls_cls can be defined as follows:

Ls_cls= −∑i(1− pc
i )

γyc
i log(pc

i )−∑i (pc
i )

γ(1− yc
i ) log(1− pc

i ) (2)

where pc
i = P(yc|xi), xi represents the score of the i-th prediction indicating the presence of

an object, and γ is an adjustable weight parameter. The mask loss adopts pixel-wise binary
cross-entropy loss Ls_mask = fBEC(x, y), which can be defined as follows:

Ls_mask = − 1
N ∑N

i=1 yi·log(pi) + (1− yi)· log(1− pi) (3)

where y is a binary label (0 or 1), and pi represents the probability of belonging to the y
label. In the case of y being 1, if the predicted value p(y) approaches 1, the function value
approaches 0. Conversely, if the predicted value p(y) approaches 0, the loss function value
will be very large. In summary, Lseg can be expressed as follows:

Lseg = α1Ls_cls + α2Ls_box + α3Ls_mask (4)

where α1, α2, and α3 represent the optimization weights for the classification loss, box
regression loss, and mask loss, respectively. In this paper, the values of α1, α2, and α3 are
set to 1, 1.3, and 3.5, respectively [56,57]. Additionally, the loss Ldet can be expressed as

Ldet = β1Ld_cls + β2Ld_box (5)

where β1 and β2 are optimization weight coefficients for the detection box class and box
regression losses, respectively. Ld_cls is the softmax loss for multi-class confidence, and
Ld_box uses the smooth L1 loss.

2.6. Harvest Target Error Radius Calculation

In order to improve the accuracy of the model predictions, an analysis of the target
error radius is conducted based on the cutting position of the end effector. For lychee cluster
harvesting, this paper proposes a target localization mechanism based on error analysis.
As shown in Figure 5, assuming the angle between the line connecting the predicted point
P and the ground truth point P′ and the horizontal line (X-axis) is β, the cutting angle
of the end effector is also set to β. After the visual system determines the picking point,
the end effector checks whether it can cut the lychee bunch stem at point P using force-
sensing feedback. If cutting at point P is not successful, the end effector will move along a
straight line with distance Dend at an angle of β for a second cutting attempt to improve the
harvesting success rate. Similarly, the picking range of the target point is designed with
tolerance at both points P and P′. The target point P is allowed to cut within the effective
tolerance radius R2. For occluded picking points, the target point P will be repositioned
to P′ for picking by calculating Dend. Two tolerance distances, R1 and R2, are set in this
paper, where the radius of the target circle is dynamically determined by the end effector.
Assuming the lateral distance of the end effector is Le, then R1 = Le/2, R2 = Le/4. If
the predicted point falls within the range of the radius R1, it is considered a preferred
picking (PP); otherwise, if it falls within the circular area with radius R2, it is considered an
alternative picking (AP).
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2.7. Gradient Vector Calculation

After instance segmentation via LP3Net, this paper first performs HSV color space
processing. Then, using OpenCV with the version number is 3.4.1, the dataset with
a size of 1440 × 1080 is proportionally resized to a binary image of size 288 × 216 to
reduce computational complexity. As shown in Figure 6, this paper first separates the
contour of each individual lychee using the minimum intra-domain and edge calculation.
Then, the method for image binarization can utilize the Otsu algorithm techniques, in the
following format:

T = argmin
T

{
ω0(T)σ

2
0 (T) + ω1(T)σ

2
1 (T)

}
(6)

where T is the threshold, ω0(T) and ω1(T) represent the proportions of two classes of
pixels, and σ2

0 (T) and σ2
1 (T) are the variances of the two classes of pixels. The method for

image edge computation can employ the Sobel operator or other edge detection operators,
in the following format:

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ I (7)

in which I represents the image matrix, Gx and Gy are the gradient matrices in the horizontal
and vertical directions, and ∗ denotes the convolution operation. At last, it undergoes
discretization and smoothing. Subsequently, the closed contour of the lychee fruit is used
to compute the gradient direction distribution. The calculation method for the gradient
vector distribution in this paper is as follows: Let the points on the contour line be labeled
as Ci, where i = 0, 1, 2, . . ., g. To improve computational efficiency, we sample the data with
a step size of ∆K, resulting in a sampled labeled point dataset Ci−k , where i = 0, 1, 2, . . .,
g’. Let Pi be the feature resolution in the length or width direction, and L be the picking
tolerance radius of the robotic arm or end effector [58,59]. The value of g’ is obtained by
dividing g by 10. Then, the calculation can be expressed as follows:

1/Pi = ∆K/L (8)

where Pi and L are measured in millimeters, and the step size ∆K is measured in pixels.
Therefore, the formula for computing the gradient direction of the sampled points Ci−k on
the contour can be expressed as follows (along the X-axis):

Gi =
[
gx, gy

]
=

[
∂ f (x, y)

x
,

∂ f (x, y)
y

]
(9)
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a(x, y) = arctan
(

gx/gy
)

(10)

where Gi represents the gradient vector of Ci−k along the gradient direction a(x, y). First,
contour detection is performed by traversing a range of 9 pixels [60]. The method for
gradient direction distribution can involve using histograms or other statistical approaches,
in the following format:

H(θ) = ∑i,j δ
(
θ − arctan

(
Gy(i, j)/Gx(i, j)

)
(11)

where θ represents the gradient direction, δ is the Dirac function, and H(θ) represents the
histogram of the gradient direction distribution. Then, sampling is conducted from the
contour to obtain the gradient of all points, which are then used for statistical analysis.
As shown in Figure 6g,h, the fruit contour is separated into two parts from the geometric
center for pixel position gradient traversal. The dependent variables for data output are the
pixel distributions along the X-axis and Y-axis, respectively. Finally, each contour is labeled
with NV according to Section 2.7.
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2.8. Statistical Analysis

As shown in Figure 7a, we assume that the origin of XOY coordinate is upper left
corner of image. According to left upper corner coordinate (L1, T1) of Bboxs (Bbox) of
object detection, and right lower corner coordinate (R1, B1), it can obtain the height
H = B1-T1 of the lychee bunches. We marked the assuming picking point as P. Based
on empirical data, we can determine the distance between point P and the upper surface
of the lychee bunch’s bounding box as ranging from H/2 to H. Subsequently, we further
estimate Line 1 and Line 3 by both increasing and decreasing this half of this distance
by a factor of 1. The Y direction refers to the reserved length of fruit bunches along the
main stem, and its fault-tolerant positioning range in this direction is relatively high. It is
assumed that the estimated value in the X direction of the picking point P follows a normal
distribution. We use Shapiro–Wilke’s W test method to verify, and the specific steps are as
follows [26,61–64]: (1) With statistical assumption factor H0, the X distance values of the
picking points are all from normal distribution. (2) According to the estimated NV value Xi
of each bunch of lychee, rearrange X1, X2, X3, . . . , Xi from large to small. (3) According to
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the Shapiro–Wilk coefficient table, find out the Shapiro–Wilk coefficient αin corresponding
to the sample size. (4) Calculate the value of the statistic W. First, assume that the sample
values are x1,x2, . . . , xn, where n is the sample size and n ≥ 3. Sort the sample values in
ascending order to obtain x(1), x(2), . . . , x(n), where x(1) is the minimum value and x(n) is
the maximum value. Then, calculate the sample mean x and sample variance s2, and their
formulas are

s2 =
1
n∑n

i=1(xi − x̂)2 (12)
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Next, calculate a set of constant coefficients a1,a2, . . . , an, and the formula is

ai =
mTV−1

√
mTV−1V−1m

ei (13)

where m = (m1,m2, . . . , mn)
T is the expected order statistic of the normal distribution:

Vij =
∫ ∞

−∞

[
Φ−1(u)

]i[
Φ−1(u)

]j
du (14)

where Φ−1(u) is the inverse cumulative distributed function of the standard normal dis-
tribution, and ei is a n × 1 unit vector, with a first element that is 1, and the rest are 0.

W =
(∑i αin(Xn+i−1 − Xn))

2

∑n
i=1

(
X(i) − X

)2 (15)

The numerator ∑
i

is ∑
n
2
i=1 when n is even and ∑

n+1
2

i=1 when n is odd. X is the average

estimated value of the target NV in the X direction. (5) Select the test level β factor
(β = 0.10, 0.05, or 0.01), and obtain the corresponding W(n, β) value according to the
number of samples n and the test level factor β difference W distribution table. (6) When
w ≤ w(n,β), the overall sample is not normally distributed. If w > w(n,β), the assumed
H0 follow a normal distribution [65,66]. Finally, we construct the Shapiro–Wilk distribution
learning model by projecting each NV on a line parallel to the X-axis by taking the projected
size of the NV ProLi (Yi) and the known picking points. We predict the coordinate position
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of Px via supervised learning and then judge whether the picking stem diameter 1 falls
within the target circle with R2 as the radius, so there are two expected output values of
supervised learning: (1) assuming that the target circle with radius R1 is the PP point, (2) a
ring of radius greater than R1 and less than R2 is AP point.

3. Results and Discussion
3.1. Evaluation of Multiple Models

This article uses average precision (mAP) as the evaluation metric for object detection
and instance segmentation, assuming that P is denoted as the actual number of sam-
ples among target prediction; this is called precision [67,68]. R is the recall rate, where
P = TP

(TP+FP) and R = TP
(TP+FN)

. The mAP can be calculated via equation ∑ AP
Nclasses

. Among
them, TP represents the number of samples where the predicted category of the model
matches the annotated category; FP represents the number of samples where the predicted
category of the model does not match the annotated category; and FN represents the num-
ber of samples where the model predicts a background class, but the annotated category is
another class.

We compare many algorithms for mAP and speed on our dataset and evaluate the
detection via single and cluster lychee, respectively [69,70]. We adjusted the dimensions of
all images to 288 × 216 pixels, considering that their original size was 1440 × 1080 pixels.
Our hardware devices include an INTEL I7 CPU and NVIDIA GeForce GTX 3060 Ti GPU.
For this purpose, we found four embedded development boards that can be used in the
picking equipment for testing, namely NVIDIA Jetson Orin, NVIDIA Jetson nano, Orange
Pi5P, and Raspberry Pi4B, and gave the test results. Among them, Nvidia devices use
GPUs for acceleration, Orange Pi5P because the GPU is not supported by CUDA, so GPU
acceleration is not used, and the Raspberry Pi 4b performance is too slow to execute
normally. The experiment used Intel RealSense D435i for real-time detection, and the
average data were taken within 5 min.

We use the INTEL RealSense d435 to obtain RGB-D images, which are developed by
Intel Corporation and integrated with two infrared sensors and an inertial measurement
unit (IMU). The CUDA version is 11.0, and the CUDNN version is 7.4. The operating
system is Linux with Ubuntu18.04 LTS. All model training is divided into two steps. The
first step is to freeze the training, that is, only train the backbone part. The learning rate is
set to 0.01–0.001, the number of iterations is 50, and the number of samples for each iteration
is 4. The second step of training is the entire detection network, and the initial learning
rate is set to 0.001. We trained multiple models using the same dataset and initialization
parameters and evaluated their performance using 1000 epochs. In addition, during the
training and evaluation process of the independent branch models, we froze the other
branch to eliminate interference from multiple branches. As seen in Table 1, we differentiate
lychee based on the number of individual fruits. First, in the case of detecting targets with
less than five lychee fruits, SSD achieved the best precision with 96.5%, followed by LP3Net
with 95.5%. Although LP3Net may not have the same level of accuracy as SSD, it achieves
a high recall rate of 94.9%. At an IoU of 65, LP3Net, benefiting from XProtoNet and the
positioning process, achieves a mean average precision (mAP) of 80.3%. The detection
head of LP3Net can simultaneously predict the category score, bounding box regression
parameters, and mask coefficient. In terms of the FPS comparison effect, LP3Net still
reached the highest 19.4 fps. Although the mAP of YOLACT is the highest when the
IoU is 50, when the IoU value is 65 or 80, LP3Net has a significant effect on improving
accuracy. In addition, when the number of lychee fruits is between 5 and 10, the accuracy
and recall rate of the eight algorithms for object detection are generally lower due to the
presence of mutual occlusion. However, LP3Net still achieves an accuracy of 92.3% and
a recall rate of 91.9%. When the IoU value is 65, LP3Net still has a significant effect on
improving the accuracy and 18.3 fps in instance segmentation. In summary, the proposed
LP3Net in this paper demonstrates good performance in lychee cluster object detection and
instance segmentation.
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Table 1. Comparison of multiple models.

NO. of
Lychee Network

Object Detection Instance Segmentation

FPSPrecision
(%)

Recall
(%)

F1_Score
(%) mAP mAP65 mAP80

0–5

YOLOV3 92.5 94.2 93.3 - - - 18.2
YOLOV5m 93.1 92.4 92.7 - - - 13.4
EfficientDet 92.7 90.3 91.5 - - - 16.7

SSD 96.5 90.6 93.5 - - - 10.3
FasterRCNN 91.6 96.4 93.9 - - - 9.6

YOLACT - - - 54.4 70.3 23.9 9.8
MaskRCNN - - - 34.6 66.2 29.7 18.2

LP3Net 95.5 94.4 94.9 51.2 80.3 30.3 19.4

5–10

YOLOV3 89.6 87.5 88.5 - - - 16.3
YOLOV5m 88.6 81.4 84.8 - - - 16.6
EfficientDet 92.4 93.5 92.9 - - - 9.4

SSD 94.6 92.1 93.3 - - - 8.2
FasterRCNN 95.4 88.5 91.8 - - - 10.5

YOLACT - - - 32.8 65.3 18.6 14.9
MaskRCNN - - - 34.6 66.2 12.5 17.2

LP3Net 92.3 91.6 91.9 46.5 72.1 17.2 18.3

3.2. Calculate the Centroid of Contour

In this paper, we counted the number of masks and calculated the MSE of A-type
picking. Here, we conducted verification with the number masks of 600, 800, and 1200. Finally,
the effective numbers of segmentations for the mask are 562, 720, and 1093. The values of
Lmask−coefficient are 1.34, 0.91, and 0.82, respectively. When the pixel value is extracted as a
unit, the value of |AB| can be calculated using algorithm 1 in this paper. As shown in Figure 8,
when the angle of single fruit of lychee is µ1 < 15◦, the mode of WHR is 1.0–1.1; When the
15◦ < µ1 < 30◦ and 30◦ < µ1 < 45◦, we all take the value of WHR as 0.9–1.0; When the
µ1 > 45◦, we take the value of WHR as 0.8–0.9. The error between pixels predicted via the
Px point and the distance under the world coordinate was 3.64 cm. The difference between
pixels predicted via Py point and distance under world coordinate was 2.15 cm.

3.3. Gradient Calculation and Regression Analysis

To validate the effectiveness of the algorithm, this study first performed gradient
analysis on the complete contours of two lychee fruits with stalks. The analysis involved
calculating arctan

(
gx/gy

)
to analyze the data. Since the contours of fruits with stalks are

more distinct than single fruits, it is easier to establish corresponding relationships. In this
analysis, the contours of lychee fruits with stalks were traversed at the pixel level, and
gradients were calculated using a traversal unit consisting of a 9-pixel grid.

As depicted in Figure 9, the turning points are denoted as TPx, where x represents the
number of turning points. Through comparison, as shown in Figure 10, TP1 and TP3 corre-
spond to the vertex positions of the lychee stalk contours, while TP2 and TP4 represent the
adhesive edges between the two lychee fruits that have not undergone contour separation
via the minimum domain-based edge calculation. To predict the relationship between the
inclination angle of the picking point and the contour of a single lychee fruit (or a cluster
of fruits), this study conducted a multivariate linear regression analysis using a dataset
of 360 lychee fruits. The dataset included the rotation angles of individual fruit contours
and their corresponding gradient value distributions. Initially, 129 fruit contour data were
selected, and the contours were projected along the X-axis with the morphological center
as the midpoint. Nine points were sampled along the contour edge in sequential order. As
shown in Table 2, the correlation coefficient between the fruit contour rotation angle and
the gradient value distribution was 0.964, with a standard error of 10.298.



Agronomy 2023, 13, 2435 13 of 25

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 26 
 

 

LP3Net 92.3 91.6 91.9 46.5 72.1 17.2 18.3 
The bold data represents the best performance in the comparison algorithm. In addition, “0–5” and 
“5–10” are two test scenarios that should be separated by horizontal lines in the table. The boundary 
is LP3Net. 

3.2. Calculate the Centroid of Contour 
In this paper, we counted the number of masks and calculated the MSE of A-type 

picking. Here, we conducted verification with the number masks of 600, 800, and 1200. 
Finally, the effective numbers of segmentations for the mask are 562, 720, and 1093. The 
values of L୫ୟୱ୩ିୡ୭ୣ୤ϐ୧ୡ୧ୣ୬୲ are 1.34, 0.91, and 0.82, respectively. When the pixel value is ex-
tracted as a unit, the value of |𝐴𝐵| can be calculated using algorithm 1 in this paper. As 
shown in Figure 8, when the angle of single fruit of lychee is 𝜇ଵ < 15଴, the mode of WHR 
is 1.0–1.1; When the 15଴ < 𝜇ଵ < 30଴ and 30଴ < 𝜇ଵ < 45଴, we all take the value of WHR 
as 0.9–1.0; When the 𝜇ଵ > 45଴, we take the value of WHR as 0.8–0.9. The error between 
pixels predicted via the Px point and the distance under the world coordinate was 3.64 cm. 
The difference between pixels predicted via Py point and distance under world coordinate 
was 2.15 cm. 

 

 

Figure 8. Mask-based WHR statistics. 

3.3. Gradient Calculation and Regression Analysis 
To validate the effectiveness of the algorithm, this study first performed gradient 

analysis on the complete contours of two lychee fruits with stalks. The analysis involved 
calculating arctan (𝑔௫ 𝑔௬⁄ ) to analyze the data. Since the contours of fruits with stalks are 
more distinct than single fruits, it is easier to establish corresponding relationships. In this 
analysis, the contours of lychee fruits with stalks were traversed at the pixel level, and 
gradients were calculated using a traversal unit consisting of a 9-pixel grid. 

0 5
12

35

68

123

83

24
12

2
0

20

40

60

80

100

120

140

Q
ua

m
tit

y

WHR (angle μ<15)

0 0

12 16

101
90

72

44

21

2
0

20

40

60

80

100

120

Q
ua

m
tit

y

WHR (angle 15<μ<30)

2
10

32

88 89

74

32

16
8

0
0

10
20
30
40
50
60
70
80
90

100

Q
ua

m
tit

y

WHR (angle 30<μ<45)

18

36

92

144

52

31
24

13 7
0

0

20

40

60

80

100

120

140

160

Q
ua

m
tit

y

WHR (angle μ>45)

Figure 8. Mask-based WHR statistics.
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Table 2. Regression statistical results.

Regression Analysis

Multiple R 0.964078965
R Square 0.929448252

Adjusted R Square 0.924112405
Standard Error 10.29819955
Observations 129

Table 3 is the regression parameter table. From the standard, we can observe that
the intercept is 58.80. The smaller the standard deviation, the higher the precision of the
parameter. Additionally, most of the parameters in Table 3 have a p value less than 0.05,
indicating that the model is significant or has a confidence level of 95% at α = 0.05. Among
them, the p values of X variables 1, 2, 3, 4, 8, and 9 are all less than 0.01, indicating a stable
mathematical relationship between the rotation angle of the individual lychee contour and
its edge gradient distribution. Lastly, the regression coefficients with a 95% confidence
interval are provided, where the upper and lower limits of the intercept’s variation at
α = 0.05 are 46.54 and 71.06, respectively.

Table 3. Regression parameters of X-axis.

Coefficients Standard
Error t Stat p-Value Lower

95%
Upper
95%

Upper Limit
95.0%

Lower Limit
95.0%

Intercept 58.80 6.19 9.50 0.00 46.54 71.06 46.54 71.06
X Variable 1 298.76 37.14 8.04 0.00 225.22 372.30 225.22 372.30
X Variable 2 −196.57 52.03 −3.78 0.00 −299.60 −93.55 −299.60 −93.55
X Variable 3 −167.52 52.02 −3.22 0.00 −270.52 −64.52 −270.52 −64.52
X Variable 4 106.64 43.94 2.43 0.02 19.63 193.65 19.63 193.65
X Variable 5 −19.76 39.39 −0.50 0.62 −97.76 58.25 −97.76 58.25
X Variable 6 2.44 34.45 0.07 0.94 −65.77 70.66 −65.77 70.66
X Variable 7 42.85 29.04 1.48 0.14 −14.66 100.35 −14.66 100.35
X Variable 8 172.66 58.40 2.96 0.00 57.02 288.30 57.02 288.30
X Variable 9 −269.36 54.24 −4.97 0.00 −376.77 −161.96 −376.77 −161.96

To make the experimental results more evident, we calculated the fruit contour gra-
dient along the X-axis projection using the tangent function formula and plotted it on a
graph. The fruits were divided into four groups based on their rotation angles around the
X-axis: 0, 5, 15, 30, 45, 60, 75, and 90 degrees. After performing linear fitting, we found
that their R2 coefficients were quite satisfactory. For example, the fitting coefficient for the
first group (0 degrees) was 0.9992, and for the 5-degree group, it was 0.998. As depicted in
Figure 11a, it becomes evident that the lychee fruits exhibit relatively minor angle varia-
tions, as evidenced by their slopes in the linear fitting, which are approximately −0.0076
and −0.0077. This suggests that differentiation based on both slope and intercept remains
viable via the utilization of gradient distribution. Upon closer examination, as illustrated in
Figure 11b–d, it becomes apparent that as the rotation angle of the fruit increases, there is a
noticeable trend in the slopes obtained from linear fitting. Initially, these slopes increase
and then subsequently decrease. This phenomenon occurs due to the projection of the fruit
contour onto the X-axis, which corresponds to variations in rotation angles.

To conduct a comparative experiment, we projected the contours along the Y-axis
with the morphological center as the midpoint. Similarly, we sampled nine points along
the contour edge in sequential order. The correlation coefficient between the fruit contour
rotation angle and the gradient value distribution was found to be 0.997, with a standard
error of 0.411. As shown in Table 4, most of the standard errors were below eight units. The
majority of the parameters had a p value less than 0.05, indicating that the model achieved
significance or a confidence level of 95% at α = 0.05. The research results demonstrate that
whether projecting the lychee fruit contour along the X-axis or the Y-axis, a mathematical
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correlation model can be obtained between the edge contour gradient and the fruit tilt
angle. However, the standard error in the Y-axis projection was evidently more favorable.
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Figure 11. Distribution of contour gradient along the X-axis from different angles ((a) represents fruit
rotation from 0 to 5 degrees, (b) represents fruit rotation from 13 to 30 degrees, (c) represents fruit
rotation from 45 to 60 degrees, and (d) represents fruit rotation from 75 to 90 degrees).

Table 4. Regression parameters of Y-axis.

Coefficients Standard
Error t Stat p-Value Lower

95%
Upper
95%

Upper Limit
95.0%

Lower Limit
95.0%

Intercept 70.00 16.09 4.35 0.00 37.72 102.29 37.72 102.29
X Variable 1 71.12 7.66 9.29 0.00 55.76 86.49 55.76 86.49
X Variable 2 4.18 2.80 1.49 0.14 −1.45 9.80 −1.45 9.80
X Variable 3 −23.42 7.38 −3.17 0.00 −38.23 −8.61 −38.23 −8.61
X Variable 4 9.87 3.53 2.79 0.01 2.78 16.96 2.78 16.96
X Variable 5 −20.58 6.64 −3.10 0.00 −33.90 −7.26 −33.90 −7.26
X Variable 6 −10.30 3.20 −3.22 0.00 −16.73 −3.88 −16.73 −3.88
X Variable 7 0.11 4.73 0.02 0.98 −9.38 9.61 −9.38 9.61
X Variable 8 1.84 2.49 0.74 0.46 −3.16 6.85 −3.16 6.85
X Variable 9 −26.27 5.45 −4.82 0.00 −37.20 −15.34 −37.20 −15.34
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Similarly, we plotted the gradient of the fruit contour projected along the Y-axis. Unlike
the analysis of the X-axis projection gradient, here we used polynomial fitting, and we
found that the maximum R2 coefficient reached 0.9748. As shown in Figure 12a, due to
the relatively small range of lychee fruit tilt angles, their R2 values in polynomial fitting
were 0.9327 and 0.9389, respectively. Upon observation, in Figure 12b–d, it was found
that the gradient distribution between 15 degrees and 60 degrees of fruit rotation angle
exhibited a relatively ideal level of differentiation, while the gradient distribution showed
little difference between 0 degrees and 5 degrees or between 75 degrees and 90 degrees.
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Figure 12. Distribution of contour gradient along the Y-axis from different angles.

3.4. Euclidean Distance Positioning Accuracy

Euclidean distance refers to the distance between two points in Euclidean space. In two
or three-dimensional space, the Euclidean distance between two points with coordinates
(x1, y1) and (x2, y2) can be calculated. We extracted 222 occluded lychee cluster images and
224 non-occluded lychee cluster images for pixel accuracy experiments. To provide a more
intuitive representation of the distribution of distance errors, we calculated their Euclidean
distance between predicted and ground truth picking points. We created a histogram, as
depicted in Figures 13 and 14. Our analysis indicates that for type A picking point with
occlusion, most of the distance errors associated with predicted picking points were below
100 pixels, while for type A without occlusion, most of these distance errors were less than
80 pixels. The accumulation curve is represented as the red line. In addition, for type B
picking point, most of the distance errors associated with predicted picking points were
below 100 pixels, while for type A without occlusion, most of these distance errors were
less than 90 pixels. It is worth noting that the size of the images we collected is 1440 × 1080,
which demonstrates the effectiveness of using the distribution of passed lychee masks for
locating picking points.
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Figure 13. Histogram displaying the distribution of the Euclidean distances between the predicted
picking points and ground truth values: (a) type A with leaf occlusion and (b) type A without
leaf occlusion.
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Figure 14. Histogram displaying the distribution of the Euclidean distances between the predicted
picking points and ground truth values: (a) type B with leaf occlusion and (b) type B without leaf
occlusion.

3.5. Position Accuracy Evaluation of LP3Net

Obviously, the number of lychees will affect the positioning success rate. According
to the empirical value, this paper divides the fault-tolerance accuracy of lychee picking
targets into single, cluster positioning. As shown in Figure 15, we compared FCIS, LP3Net,
Mask RCNN, and Center Mask for mAP and speed on random datasets and evaluated the
detection via single and cluster litchi, respectively. As can be seen, LP3Net achieved the
best mAP, followed by Center Mask with 76.43% mAP. The detection head of LP3Net can
simultaneously predict the category score, bounding box regression parameters, and mask
coefficient. In terms of the FPS comparison effect, LP3Net still reached the highest 30 fps.
Although the mAP of LP3Net is the highest when the IoU is 50, when the IoU value is 65 or
80, LP3Net has a significant effect on improving the accuracy. In summary, the following
will focus on comparing the detection effects of different versions of LP3Net so that we can
select the fastest and best detector for target tracking of a cluster of litchi.
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Next, we will perform performance statistics based on the number of lychee fruits in
each group via LP3Net. Here, 200 tracking targets were evaluated, respectively, with PP
position, AP position, and MISS as statistical objects, as shown in Table 5, in the single-fruit
test, the number of target points with predicted points falling within the radius R1 is 118,
and the success rate of target point positioning is 95%. This shows that the lychee single
fruit picking point has obvious characteristics, and the target location mechanism can easily
obtain high-precision information. When the number of bunched fruit is greater than 2
and less than 5, the success rate is only 72.5%, which shows that there are not many lychee
bunches, but it is still difficult to pick and locate because the small number of single lychee
fruit represents the normal direction obtained via the mask in small quantities. When the
number of lychee bunches is greater than 5, the target localization can achieve a success
rate of 81%, which shows the effectiveness of the multi-target tracking and localization
method proposed in this paper.

Table 5. Target numbers with different numbers of lychee brunch. (SR: success rate; MR: miss rate;
Bet.2–5: the number of lychee is between 2 to 5).

Type PP AP Miss SR MR

Single 118 72 10 95% 5%
Bet.2–5 85 60 55 72.50% 27.50%

Above 5 90 72 38 81% 19%
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When the diameter of the lychee stem is occluded, the target fault-tolerance method
based on the Mask NV proposed in this paper can be combined with the contour features of
the lychee to predict the picking point. Here, the target positioning effect of the two types
of picking scenes A and B is shown in Figure 16. This includes the single and multi-target
positioning of single and bunched fruit. Figure 16a,b are the positioning effects of single
fruit and normality distribution, respectively. Figure 16c,d are the positioning effects of the
right and the left distribution, respectively.
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Figure 16. Single brunch localization (The green histogram represents the distribution of the quantity
for each object at a certain inclined angle, while the red and blue histograms represent the projection
lengths on the coordinate axes).

Figure 17 contains multiple picking targets, which are numbered according to the
picking sequence with the upper left corner of the image as the origin. Target 1 in the figure
is single fruit picking, and targets 2 and 3 in the figure are cluster fruit picking. It can be
seen from the figure that, although different, the algorithm in this paper can still locate the
diameter of the picking rod within a certain range.
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Figure 18 shows the positioning effect of the picking points in grayscale images under
random distribution. It can be seen from the figure that the algorithm proposed in this
paper can perform single lychee segmentation well and can predict the distribution of
brunch picking points accurately.
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3.6. Accuracy Evaluation with RGB-D Information

The lychee 3D locations were easily obtained by matching its corresponding pixel-in-
depth images with RGB mask position. After matching the information of the camera, the
target picking will use RGB-D data association to mark and count the depth information of
lychee and then obtain pz [71,72]. In addition, the px and py coordinates of picking point P
are a set of interval values, but the pz coordinate is a fixed value derived from an unbiased
estimator of the target point interval. In order to evaluate 3D positioning accuracy, it was
tested at different times [17,73,74]. Assuming that positioning radius R2 is taken as the
benchmark here, if the circle drawn can include the lychee string rod diameter, then it is a
successful try. In Figure 19 below, the yellow histogram is a successful location rate without
LP3Net. On the contrary, the blue part is the successful location rate with our mechanism.
In the case of 50 attempts, accuracy is compared here. Initially, the success rate of the type
A position is 82% without the application of LP3Net, whereas it increases to 92% when
the LP3Net and fault-tolerance are implemented. In cases where occlusion is present, the
success rate for locating the target of class A can reach 70%. As the number of attempts
increases, the fault-tolerance mechanism has demonstrated a relatively high success rate in
localizing targets of both class A and class B during the picking scenarios.
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Figure 19. Success position rate with RGB-D information (A represents lychee clusters picked from
unobstructed and non-tilted locations, A (occluded) represents lychee clusters picked from obstructed
and non-tilted locations, B represents lychee clusters picked from unobstructed and tilted locations,
and B (occluded) represents lychee clusters picked from obstructed and tilted locations).

4. Conclusions

The aim of this paper is to combine the phenotypic characteristics of lychee fruit clus-
ters with artificial intelligence algorithms to propose a method for predicting the position
of obscured pedicels. The instance segmentation of artificial intelligence algorithms often
fails to separate the pedicel and fruit bunch obstructed by leaves, which greatly hinders the
development of automated lychee harvesting technology. Therefore, the proposed method
in this paper provides a fundamental breakthrough and excellent technical support for
image processing of clustered fruits. In summary, the key findings of this paper can be
outlined as follows:
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(1) This paper introduces LP3Net, an end-to-end prediction network designed to locate
pedicels in clustered fruits. LP3Net offers several advantages, including the ability
to delineate the contours of partially obscured fruits, generate high-quality instance
masks, and provide stable real-time localization, all without relying on repooling.

(2) This research identifies a limitation in instance segmentation models when comparing
lychee fruit features to fixed patches. To enhance overall model performance, this
paper proposes the incorporation of patch features using XProtoNet as part of the
model prediction.

(3) This paper delves into the analysis of gradient direction distribution within lychee fruit
contours and presents a regression analysis of the gradient histogram relative to the
frontal view’s picking point position. The findings reveal a consistent mathematical
model describing the relationship between fruit edge contour gradients and fruit
inclination angles. Notably, projections of gradient vectors along the Y-axis yield
more accurate results in terms of standard error. The gradient distribution effectively
discriminates between fruit rotation angles ranging from 15 to 60 degrees, while
exhibiting less variability between 0 and 5 degrees or 75 and 90 degrees.
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