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Abstract: Atriplex canescens is widely cultivated as drought and salt-tolerant fodder in arid regions
of Northwest China, which is used for photoremediation of degraded land and soil and water
conservation. To explore the growth performance of A. canescens when exposed to drought and salt
stress, seedlings were treated with a range of drought stress (WC1: 75 ± 3.6%, WC2: 49 ± 2.9% and
WC3: 27 ± 2.5% of soil water content) and the corresponding drought stress with additional sodium
salt supplementation (NaCl:Na2SO4 = 1:1 with the total concentration of Na+ set to 150 mM). The
findings of this paper indicated that moderate sodium salt could stimulate the growth of A. canescens
and effectively alleviate the deleterious impact of drought stress by increasing the turgor potential (ψt)
and relative water content (RWC) and decreasing the leaf water osmotic potential (ψs). Furthermore,
the photosynthetic capacity was improved and the negative effects of drought stress on photosystem
II (PSII) were mitigated. The extra 150 mM sodium salt also markedly increased the contribution of
Na+ to ψs and the contribution of betaine to ψs. In summary, these results indicate that A. canescens
can adapt to drought stress by accumulating enough Na+ for osmotic adjustment (OA). Additionally,
this paper is aimed to provide a fundamental basis for the utilization and cultivation of A. canescens
as a favored pasture crop in the Qaidam basin, thus increasing the ecological and environmental
benefits for arid regions worldwide.

Keywords: Atriplex canescnes; drought stress; sodium ion; osmotic adjustment; chlorophyll fluorescence

1. Introduction

The issue of drought not only influences the global ecological environment, but also
severely constrains the development of agroforestry and livestock production worldwide [1,2].
In arid and semiarid regions, extreme drought frequently occurs and leads to the soil salt con-
centration in the remanent soil solution; thus, drought and salt stress frequently co-occur [3],
which can cause dehydration and toxication of plant tissues [4,5]. Some halophytes have de-
veloped a variety of tolerance mechanisms under drought and salt stress to protect themselves
from harsh environments [6,7]. It is important to investigate the physiological mechanisms
of drought and salt-resistant plants and the limits and traits associated with drought stress
combined with some extent of salinity. The majority of current studies separately explore the
two stresses, and only a few investigations have noticed their interactions. Drought and salin-
ity are generally considered additive stress factors for plants [3], but are used as individual
elements to reduce the crop yield in some agricultural models. Therefore, understanding the
drought resistance mechanisms of halophytes could be of great importance in agricultural
development and environmental remediation in arid land [8].
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Osmotic adjustment (OA) is an important pattern of metabolism that can help halo-
phytes with drought and salt stress [7,9,10]. OA involves the accumulation of solutes in
plant cells under low water and salt conditions, and these solutes are often comprised of reg-
ulators such as organic solutes and inorganic ions [11]. Betaine and proline are two typical
organic solutes, that are usually considered to contribute to OA in plants, while inorganic
ions, especially K+, are generally considered to have a great influence on the OA of plants
under drought and saline conditions [12,13]. Generally, ionic imbalance occurs resulting
from the superfluous accumulation of Na+ and Cl− and lower uptake of other mineral
nutrients, such as Ca2+ and Mg2+. However, some researchers have shown that plants
growing in drying soil with different concentrations of salt have a complicated response
mechanism and that moderate soil salt can alleviate drought stress in these species [14]. For
example, in a previous study [15], researchers found that saline water had a protective effect
on a variety of crop yields with deficit irrigation. Others [16,17] have studied Sesuvium
portulacastrum subjected to water deficit with salinity and found that NaCl improves plant
growth under water stress induced by mannitol, and the relative water content (RWC) and
plant growth were restored by releasing water stress in the presence of NaCl. Additionally,
the biomass production of A. hortensis and A. lentiformis was proven to be improved by
NaCl via promoting water use efficiency (WUE) in dry soil [18]. The positive roles of NaCl
in the drought resistance of Zygophyllum xanthoxylum might be due to the ability of plants
to accumulate a high concentration of Na+ and absorb the excessive Na+ for OA, which
was coupled with an improvement in leaf hydration and photosynthetic activity [19,20].
Photosynthesis is an important process that can reveal the impacts of drought and salt
stress on plants. Except for the traditional parameters, chlorophyll fluorescence also can
be used as a sensitive and effective tool for evaluating the impacts of drought and salt
stress. Therefore, the drought and salinity stress damage to plants in the process of electron
transportation in the light reaction of photosynthesis could be evaluated using chlorophyll
fluorescence kinetics [21]. According to Guo and Zhao, the reduction of the photosystem II
(PSII) reaction center (RC) could be suggested by the kinetics, including the fluctuations of
initial fluorescence (Fo) and maximal fluorescence (Fm) as well as the maximal quantum
yield of PSII photochemistry (Fv/Fm), the effective quantum yield of PS II photochemistry
(Fv
′/Fm

′), the actual PSII efficiency (ΦPSII), the photochemical quenching coefficient (qP),
and the nonphotochemical quenching coefficient (qN) [22,23]. Moreover, the O-J-I-P curve
could also reflect the changes in plant photosynthetic apparatus under the influence of
drought and salt stress [24].

The C4 perennial evergreen shrub Atriplex canescens (Chenopodiaceae) acclimatized
to arid and saline environments in North America was introduced to China in 1990 [25].
This plant can be extensively utilized for remediation and afforestation in eroded soil and
saline soil and for sand fixation attributed to its eminent tolerant ability to drought and
salt [26]. Furthermore, this species can also be a remarkable fodder for livestock in arid
regions due to its abundant nutritional properties. Previous studies have shown that A.
canescens has a strong ability to acclimatize to drought, salinity, and cold environments [27].
According to one study [28], the tolerant mechanism of A. canescens is achieved through
Na+ uptake for OA, and the degree of stress on plants in dry soil would be aggravated
rather than mitigated. Previous investigations examined the impact of either drought or
salt stress on A. canescens. However, it has not been thoroughly investigated whether photo-
synthesis, Na+/K+ homeostasis and OA mechanisms, especially chlorophyll fluorescence,
are involved in this species under drought and salt combined stress.

Therefore, to elucidate the physiological characteristics of A. canescens under drought
and salt stress and the interactions of these stresses, we evaluated the impacts of salt and
water stress on A. canescens on indices related to growth, photosynthesis, ion homeostasis
and OA under controlled experimental conditions.
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2. Materials and Methods
2.1. Plant Growth Conditions and Stress Treatments

Seeds of A. canescens were collected from the Research Institute of Forestry, Qinghai
Academy of Agriculture and Forestry. The site is located at Nuomhon Farm, Qinghai
Province, China (96◦15′–96◦35′ E, 36◦20′–36◦30′ N; elevation 2790 m), where the average
annual temperature, the average annual rainfall and the annual evaporation are 4.9 ◦C,
43.5 mm, and 2849.7 mm, respectively. After treated with H2SO4 and distilled water, the
seeds were germinated in a greenhouse in a dark environment for 8 days. The seeds were
cultured to seedlings. In April 2016, 5-week-old A. canescens seedlings were individually
transplanted into igelite pots (18 cm× 15 cm× 10 cm, 6 plants per pot) containing local soil
and kept in a sunlight greenhouse. The chemical properties of the substrate are shown in
Table 1. The ring samples method was used to determine the field capacity and bulk density
of the substrate, and the values were 25.3 ± 1.1% and 1.11 ± 0.08 g/cm3. The potted plant
was sufficiently irrigated with half-strength Hoagland solution [19] to maintain 75% of field
water capacity at 2-day intervals. The temperature in the greenhouse ranged from 27.5 to
19.0 with a 16 h photoperiod, 8 h dark time, 300–800 µmol m−2s−1 of photosynthetically
active radiation (PAR) at 800 and relative humidity of 65% ± 2.5.

Table 1. Some chemical properties of soil filled into the pots. Values are means from six soil pots ± SE
(n = 18).

Water Soluble Ion Concentration
(µmol g−1)

Changeable Ion Concentration
(µmol g−1) Available P

(µmol g−1)
Available N
(µmol g−1)

pH
Na+ K+ Ca2+ Mg2+ Na+ K+ Ca2+ Mg2+

7.4 ±
0.5

2.5 ±
0.2

1.6 ±
0.1

1.3 ±
0.1 3.4 ± 0.3 3.6 ± 0.3 0.9 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.07 ± 0.0 8.7 ± 0.7

Five-week-old seedlings with similar heights and stem diameters were chosen and
divided into seven groups for further experiments. Each group had three replications. One
group continued to be cultivated in aboveground soil to measure the growth indices, and
the other six groups were subjected to stress treatment. The other 6 groups were evenly
divided into 3 different soil relative water content (SRWC) regimes. We used an LNW-50A
neutron probe (CAS, Nanjing, Jiangsu, China) to obtain and maintain the water content of
the seedlings. The soil moisture gradients were obtained through a modified 1/2 Hoagland
nutrient solution addition and natural water consumption. After watering the pot to
saturation, the variations in the SRWC were in line with the D-optimum law, reflecting that
the potted plants endured a successive extent of water stress via evapotranspiration; the
SRWC was 75 ± 3.6% (WC1), 49 ± 2.9% (WC2) and 27 ± 2.5% (WC3). WC1 treatment is
defaulted to be the control group. Based on the SRWC value, we calculated the mass of salt
that needed to be dissolved in the nutrient solution. The SRWC values were maintained
by adding the corresponding nutrient solution with or without a mixture of NaCl and
Na2SO4 (NaCl:Na2SO4 = 1:1 with the total concentration of Na+ set as 150 mM) to simulate
the salt composition and pH in most saline soil in the Qaidam basin of Qinghai Province.
The seedlings were treated with half-strength Hoagland solution involving increased
50 mM salt at 17:30–18:30 every day and the other groups were irrigated with the nutrient
solution at the same time to sustain the SRWC. The pH of the soil progressively increased
and stabilized at 8.3–9.6 after 20 days. All the groups were classified as follows: SRWC of
75 ± 3.6% without additional NaCl and Na2SO4 (WC1); SRWC of 75± 3.6% with additional
NaCl and Na2SO4 (WC1+S); SRWC of 49 ± 2.9% without additional NaCl and Na2SO4
(WC2); SRWC of 49 ± 2.9% with an additional 150 mM NaCl and Na2SO4 mixed salt
(WC2+S); SRWC of 27 ± 2.5% without additional NaCl and Na2SO4 (WC3); and SRWC of
27 ± 2.5% with an additional 150 mM NaCl and Na2SO4 mixed salt (WC3+S). The growth,
photosynthesis, chlorophyll fluorescence, Na+ and K+ homeostasis and physiological
parameters were obtained after 20 days.
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2.2. Determination of Physiological Indices

Leaves of seedlings were collected to assess the fresh weight (FW) and then soaked in
deionized water for 24 h at 4 ◦C overnight in the dark to determine the leaf turgid weight
(TW), and finally dried at 80 ◦C for 48 h to determine the dry weight (DW). Thirty medial
leaves were collected from each plant per treatment. The leaf RWC was calculated with the
formula described by [10]. And the relative growth rate (RGR) was determined according
to a previously reported method [7,29].

RWC (%) =(100 × (FW − DW))/(TW − DW) (1)

RGR = (ln DW0 − ln DW1)/D (2)

where DW0 means the final DW, DW1 means the initial DW, and D means the duration of
the stress treatment.

2.3. Measurement of Photosynthetic Parameters

The net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr)
were measured on fully expanded third blades using a portable photosynthesis system
LI-6400 (LI-COR Biosciences, Lincoln, NE, USA) with a light intensity of 1000 µmol m−2 s−1

(saturated light intensity), a CO2 concentration of 400 µmol mol−1 and a leaf temperature
of 28 ◦C. All parameters were measured between 8:00 a.m. and 6:00 p.m., and every two
hours the parameters were measured during this period. The WUE was calculated as
WUE = Pn/Tr. Leaf areas were determined using a photo scanner (CANON CS4600F,
CANON, Inc. Tokyo, Japan). All the treatments and repetitions were measured almost in
the same position of the blades.

2.4. Measurement of Chlorophyll Fluorescence Kinetics

Fo, Fm, and Fv were measured with a portable fluorometer (Hand PEA, Hansatech,
Britain) between 6:00 and 7:00 in the morning after adaptation for a night in the dark (He
et al., 2019). The parameters were measured under the leaf temperature of 28 ◦C and CO2
concentrations of 500 µmol mol−1 [30]. Fs, Fo

′, and Fm
′ were determined to calculate the

other variables, including Fv/Fm, Fv
′/Fm

′, ΦPSII, qP and qN [31]:

Fv/Fm = (Fm− Fo)/Fm (3)

Fv′/Fm′ =
(

Fm′ − Fo′)/Fm′ (4)

ΦPSII =
(

Fm− Fs)/Fm′ (5)

qP =
(

Fm′ − Fs)/(Fm′ − Fo′
)

(6)

qN = 1−
(

Fm′ − Fo′)/(Fm− Fo
)

(7)

2.5. Measurement of Leaf Water Potential-Related Parameters

The leaves at the same position of each treatment were rinsed with deionized water
after blotting the surface water and then immediately frozen in liquid nitrogen for 20 min.
The leaves water potential (ψw) was determined with a PSYPRO dew point water potential
meter (C-52 Chamber, WESCOR Inc., Logan, UT, USA). The leaves were used to extract the
sap by a 1 mL syringe after thawing and 50 µL supernatant was collected after centrifugation
at 10,000× g at 25 ◦C for 2 min. The leaf osmotic potential (ψs) was measured by a
cryoscopic osmometer at 25 ◦C (Osmomat-030, Gonotec Gmb H, Berlin, Germany). The
leaf turgor potential (ψt) was calculated with the following formula [19]):

ψw = ψs +ψt (8)
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2.6. Determination of Ion Contents

The Na+ or K+ concentrations in tissues were determined following a previously
described method [10]. All the samples were rinsed with deionized water and dried in an
oven at 80 ◦C for 72 h to obtain the DW. Then, the samples were extracted with 100 mM
acetic acid under 90 ◦C for 2 h to obtain the contents of Na+ and K+ from tissues. After
the water bath, cooling, and filtering, cation accumulation was conducted with a flame
spectrophotometer (2655-00, Cole-Parmer Instrument Co., Vernon Hills, IL, USA).

2.7. Determination of Betaine and Free Proline

To determine the betaine, leaves from seedlings were dried under 80 ◦C for 24 h, and
then finely grounded. An amount of 1 mL of 80% methanol was mixed with the dried and
ground samples (0.2 g) and then the mixture was shaken in a 60 ◦C water bath for half an
hour. After shaking, the mixture was centrifugated at 11,000× g at 25 ◦C for a quarter to
harvest the extraction. Then, 0.35 mL of Reinecke salt-saturated solution was added into
the extracted solution (0.25 mL) to react for 2 h at 4 ◦C. After centrifugation at 10,000× g
at 25 ◦C for 15 min, the supernatant was discarded and the precipitate was washed using
0.3 mL of 99% ether. The precipitate was then dissolved in 70% acetone (1 mL). At last, a
spectrophotometer (UV-6100PCS; Mapada Instruments, Co., Ltd., Shanghai, China) was
used to measure the absorbance at 525 nm. And a standard sample in the kit was used to
calculate the betaine content.

Proline in leaves was measured with 1 mL of 5% salicylic acid homogenized to 0.1 g
fresh leaf and then the mixture was shaken in boiling water for 10 min to obtain the
extraction. The supernatant was centrifugated at 10,000× g at 25 ◦C for 10 min and then
collected. After heating the mixture of the supernatant (0.5 mL) and glacial acetic acid
(0.5 mL) in boiling water for half an hour, 1 mL of toluene was added, and the mixture
was shocked for 30 s. At last, a spectrophotometer was used to measure the absorbance at
520 nm. The concentration of free proline was calculated with the following equation:

y = 0.0521x− 0.0021 (9)

where x means free proline concentration, µg/mL; y means OD value.

2.8. Determination of the Contributions of Solutes to Leaf ψs

The calculated osmotic potential (COP) values of solutes were calculated by the
following equation:

ψs = −nRT (10)

where n represents the solute molecule concentration, R = 0.008314 and T = 298 [32].
The contribution rate of each solute to the leaf ψs (CR) was calculated as follows:

CR = ψss/ψsl (11)

where ψss and ψsl are the solute COP and leaf ψs, respectively [32].

2.9. Statistical Analysis

SPSS statistical software (Ver. 19.0, SPSS, Inc., Chicago, IL, USA) was used to perform
the statistical analysis. One-way analysis of variance (ANOVA) was conducted to test the
impacts of stress on the parameters. Duncan’s multiple range test was used to reveal the
significant differences among means at p < 0.05. All the acquired data were shown in the
form of an average and standard error (SE) (n ≥ 3).

3. Results
3.1. Growth Performance

After treatment with various water contents or without salt for 20 days, the results
indicated that compared to WC1, drought stress (WC2 and WC3) significantly suppressed
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the plant height, ground diameter, dry mass, fresh mass and RGR of A. canescens seedlings,
and the extent of inhibition was most conspicuous under WC3. The growth was found to be
stimulated significantly after the addition of 150 mM mixed salt solution (WC1+S, WC2+S,
and WC3+S), which may mitigate the restraint of water stress. The data showed that
compared to WC1 treatment, WC1+S increased the plant height, ground diameter, fresh
mass, dry mass and RGR of A. canescens seedlings by 15.30, 11.2, 12.78, 14.13 and 14.06%,
respectively. Compared to the WC1 treatment, under the WC2 and WC3 treatments for
20 days, the plant height, ground diameter, fresh mass, dry mass and RGR of A. canescens
seedlings were significantly reduced by approximately 24.59, 14.51, 22.51, 20.50 and 21.47%
and 44.81, 37.09, 47.58, 46.26 and 37.06%, respectively. However, the growth performance
distinctively improved under WC2+S and WC3+S compared to WC2 and WC3. The plant
height, ground diameter, fresh mass, dry mass and RGR increased by 15.21, 18.87, 10.73,
13.59 and 11.99% under the WC2+S treatment and by14.85, 17.95, 19.57, 14.94 and 15.26%
under the WC3+S treatment in comparison with the corresponding treatments (Table 2).

Table 2. Plant height, ground diameter, dry mass, fresh mass and relative growth rate (RGR)
of A. canescens seedlings grown under different treatments for 20 days. Values are means ± SE
(n = 18) and different letters in columns indicate significant differences at p < 0.05 (Duncan’s multiple
range test).

Treatments Plant Height
(cm)

Ground Diameter
(cm)

Dry Mass
(g)

Fresh Mass
(g)

RGR × 103

(g kg−1 d−1)

WC1 18.3 ± 0.96 b 0.62 ± 0.08 c 36.1 ± 2.23 b 365.5 ± 12.11 b 16.35 ± 0.79 b
WC1+S 21.1 ± 0.67 a 0.69 ± 0.07 a 41.2 ± 1.39 a 412.2 ± 10.35 a 18.65 ± 0.89 a

WC2 13.8 ± 0.88 d 0.53 ± 0.08 d 28.7 ± 1.18 d 283.2 ± 13.15 d 12.84 ± 0.82 d
WC2+S 15.9 ± 0.52 c 0.63 ± 0.06 b 32.6 ± 2.61 c 313.6 ± 12.39 c 14.38 ± 0.69 c

WC3 10.1 ± 0.31 f 0.39 ± 0.05 f 19.4 ± 1.33 f 191.6 ± 10.31 f 10.29 ± 0.81 f
WC3+S 11.6 ± 0.12 e 0.46 ± 0.06 c 22.3 ± 1.98 e 229.1 ± 16.11 e 11.86 ± 0.59 e

3.2. Photosynthetic Capacity and Water Use Efficiency (WUE)

As shown in Figure 1, the photosynthetic capacity of A. canescens seedlings significantly
decreased under WC2 and WC3 treatments. However, it was partially restored with salt
supplementation. Under the WC2 treatment for 20 days, Pn, gS and Tr decreased by 31.48,
43.98 and 9.7%, respectively (Figure 1). When the seedlings were under the WC3 treatment,
the photosynthetic capacity was substantially inhibited. The Pn, gS and Tr decreased by
48.28, 56.27 and 55.43% (Figure 1), respectively, compared to the WC1 treatment. However,
the photosynthetic capacity was somewhat restored with the addition of a 150 mM salt
solution. The Pn increased by 18.65, 20.27 and 11.76% in the WC1+S, WC2+S and WC3+S
treatments compared to each corresponding water treatment, respectively (Figure 1). In
comparison with each water treatment, gS and Tr in the WC1+S, WC2+S and WC3+S
treatments showed obvious increasing trends of 21.56, 24.58 and 9.13%, and 44.57, 5.69
and 73.08%, respectively (Figure 1). Correspondingly, the plant WUE showed a sharp
decrease of 17.93 and 35.43% in the WC1 and WC3 treatments compared to the WC1+S and
WC3+S treatments; the plant WUE for the WC2+S treatment markedly increased by 13.79%
compared to the WC2 treatment (Figure 1).
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Figure 1. Net photosynthetic rate (PN) (A), stomatal conductance (gS) (B), transpiration rate
(Tr) (C), and water use efficiency (WUE) (D) of A. canescens seedlings under different treatments for
20 days. Values are means ± SE (n = 18) and bars indicate SE. In each column, different letters in the
same curve indicate significant differences at p < 0.05 according to Duncan’s test.

3.3. Chlorophyll Fluorescence

Figure 2 showed that the chlorophyll fluorescence of A. canescens presented an obvious
O-J-I-P curve in different treatments. The recorded transient characteristics were found to
increase rapidly at J and I points, based on a modified graph containing the phases in O-J-I-
P [33]. An obvious increase was found in the Fv/Fm, Fv

′/Fm
′, ΦPSII and qP of A. canescens

under different water treatments when compared with the results for the corresponding
treatment with an additional 150 mM salt, while qN showed a contrasting trend (Figure 3).
Moreover, drought stress induced a pronounced decrease in Fv/Fm, Fv

′/Fm
′, ΦPSII and qP,

while an augment in qN (Figure 3). The data were normalized in the ‘radar’ chart, and
the magnitudes of most kinetics were depicted to qualify the PSII function. It is clearly
illustrated that most kinetics were increased with the additional salt solution (WC1+S,
WC2+S, and WC3+S) in comparison to the corresponding water treatment (WC1, WC2, and
WC3), while ETo/RC and TRo/RC were decreased (Figure 4A–C). The downregulation of
Fo, Fm, Fv, Fv/Fm and Fv/Fo was observed under drought stress, whereas upregulation of
the other kinetics was observed when A. canescens seedlings were under drought conditions
(Figure 4D).
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Figure 3. The maximal quantum yield of PSII photochemistry (Fv/Fm) (A), the efficiency of excitation
capture by the opening of the PSII reaction center (Fv

′/Fm
′) (B), the actual PSII efficiency (ΦPSII)

(C), the photochemical quenching coefficient (qP) (D) and the non-photochemical quenching coeffi-
cient (qN) (E) of A. canescnes seedlings under different treatments for 20 days. Values are means ± SE
(n = 18) and bars indicate SE. In each column, different letters in the same curves indicate significant
differences at p < 0.05 according to Duncan’s test.
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3.4. Leaf Water Status

As shown in Figure 5, the leaf water potential (ψw) significantly decreased with in-
creasing severity of drought stress (Figure 5A). In WC1, WC2 and WC3 treatments, the leaf
water potential decreased more than in WC1+S, WC2+S and WC3+S treatments, respec-
tively. Likewise, the leaf ψs decreased gradually with the aggravation of drought stress,
and the leaf ψs in WC1+S, WC2+S and WC3+S were always lower than the corresponding
treatment in the absence of salt supplementation (Figure 5B). Even though the leaf ψt
gradually decreased with the intensification of drought stress, salt supplementation obvi-
ously increased ψt compared to the corresponding drought stress group (Figure 5C). The
reduction in ψw, ψs and ψt implied that a higher OA capacity could be maintained in A.
canescens seedlings under drought or salt stress. There was no significant difference in leaf
RWC between each drought stress and the corresponding group with salt supplementation
except for the WC3 and WC3+S groups (Figure 5D). A significant discrepancy in WC3 and
WC3+S was displayed in which the RWC of WC3+S exceeded 6.2% more than that of WC3
(Figure 5D).
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3.5. Ion Accumulation and Distribution

Regardless of the salt addition, the increase in the Na+ concentration in the tissues of
A. canescens seedlings increased slightly (Figure 6A–C), and the increase in the Na+ content
was obviously higher in the treatment of WC2 and WC3 than WC1, especially in leaves
(Figure 6C). An obvious increase in the Na+ concentration of A. canescens seedlings in
WC1+S, WC2+S and WC3+S was observed in comparison to the corresponding treatment
without salt addition (Figure 6A–C). Drought stress caused an increment in the accumu-
lation of Na+ in the roots and stems of A. canescens either with or without additional salt
supplementation, whereas drought stress contributed to a reduction in the accumulation of
Na+ in the leaves of A. canescens in the presence or absence of salt solution (Figure 6A–C).
It is interesting to note that the increase in the K+ concentration in root and stem tissues
exhibited a sharp decrease under the treatments of drought or salt stress compared to
WC1 (normal conditions) (Figure 6D,E), while the increase in the K+ concentration in
leaves remained unchanged in leaves in the treatment either in the presence or absence of
salt addition (Figure 6D–F). Additionally, all the tissue K+ concentrations of A. canescens
seedlings exposed to drought stress with or without extra salt addition were maintained
at a constant level (Figure 6D–F), except for that in WC1 treatment, indicating that the K+

contents remained relatively stable under both salt supplementation and drought stress.



Agronomy 2023, 13, 2434 11 of 19
Agronomy 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. The concentration of Na+ (A–C) and K+ (D–F) in root, stem and leaf of A. canescens seedlings 
under different treatments for 20 days. Values are means ± SE (n = 18) and bars indicate SE. In each 
column, different letters in the same curves indicate significant differences at p < 0.05 according to 
Duncan’s test. 

3.6. Betaine and Free Proline Contents 
Compared to WC1, severe drought stress (WC2 and WC3) led to an evident augmen-

tation in free proline and betaine concentrations of A. canescens (Figure 7A,B). Further-
more, compared to WC1, WC2 and WC3, the salt-treated groups increased the accumula-
tion of free proline and betaine by at least 5.71 and 1.52%, respectively (Figure 7A,B). The 
leaf betaine content gradually increased with increasing RWC in the salt-treated plants 
compared to the water-treated plants, and the leaf betaine content remained almost unaf-
fected under the WC3 and WC3+S treatments (Figure 7B). The leaf-free proline content 
increased with increasing RWC, and the highest value was obtained under an RWC of 27 
± 2.5%, which was 52.94% higher than that of the WC3 treatment (Figure 7A), while no 
significant difference was observed between the WC1 and WC1+S treatments. Further-
more, leaf betaine content and free proline content showed the same increasing trend with 
the increase in RWC of WC1, WC2 and WC3 (Figure 7), implying that appropriate salinity 
can promote the accumulation of compatible solutes. 
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Duncan’s test.

3.6. Betaine and Free Proline Contents

Compared to WC1, severe drought stress (WC2 and WC3) led to an evident augmen-
tation in free proline and betaine concentrations of A. canescens (Figure 7A,B). Furthermore,
compared to WC1, WC2 and WC3, the salt-treated groups increased the accumulation of
free proline and betaine by at least 5.71 and 1.52%, respectively (Figure 7A,B). The leaf be-
taine content gradually increased with increasing RWC in the salt-treated plants compared
to the water-treated plants, and the leaf betaine content remained almost unaffected under
the WC3 and WC3+S treatments (Figure 7B). The leaf-free proline content increased with
increasing RWC, and the highest value was obtained under an RWC of 27 ± 2.5%, which
was 52.94% higher than that of the WC3 treatment (Figure 7A), while no significant differ-
ence was observed between the WC1 and WC1+S treatments. Furthermore, leaf betaine
content and free proline content showed the same increasing trend with the increase in
RWC of WC1, WC2 and WC3 (Figure 7), implying that appropriate salinity can promote
the accumulation of compatible solutes.

3.7. Contributions of the Main Solutes to ψs

When only subjected to drought stress, the contribution of Na+ to ψs values showed a
significant increasing trend by 22.54 and 33.36% in WC2 and WC3 treatments, respectively,
compared to the WC1 treatment, whereas a profound decrease was found in the contribu-
tion of K+ to ψs magnitudes by 12.17 and 13.18% in WC2 and WC3 treatments, respectively,
compared to the WC1 treatment (Table 3). Moreover, the contribution of leaf betaine to
ψs increased by 27.73 and 84.14% in WC2 and WC3 treatments, respectively, compared to
the WC1 treatment (Table 3). The contribution of Na+ to ψs increased by 44.34 and 72.42%
in WC2+S and WC3+S treatments, respectively, compared to WC2 and WC3 treatments,
and the contribution of K+ to ψs also increased by 19.28 and 21.92% in WC2+S and WC3+S
treatments, respectively, compared to WC2 and WC3 (Table 3). Moreover, the contribution
of leaf betaine to ψs increased by 98.61 and 13.10% in the WC2+S and WC3+S treatments in
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comparison withWC2 and WC3, while the contribution of leaf-free proline to ψs decreased
by 41.67 and 30.56% in the WC2+S and WC3+S treatments, respectively, compared to WC2
and WC3 (Table 3).

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 7. Leaf-free proline (A) and betaine (B) contents in leaves of A. canescens seedlings under 
different treatments for 20 days. Values are means ± SE (n = 18) and bars indicate SE. In each column, 
different letters in the same curve indicate significant differences at p < 0.05 according to Duncan’s 
test. 

3.7. Contributions of the Main Solutes to ψs 
When only subjected to drought stress, the contribution of Na+ to ψs values showed 

a significant increasing trend by 22.54 and 33.36% in WC2 and WC3 treatments, respec-
tively, compared to the WC1 treatment, whereas a profound decrease was found in the 
contribution of K+ to ψs magnitudes by 12.17 and 13.18% in WC2 and WC3 treatments, 
respectively, compared to the WC1 treatment (Table 3). Moreover, the contribution of leaf 
betaine to ψs increased by 27.73 and 84.14% in WC2 and WC3 treatments, respectively, 
compared to the WC1 treatment (Table 3). The contribution of Na+ to ψs increased by 44.34 
and 72.42% in WC2+S and WC3+S treatments, respectively, compared to WC2 and WC3 
treatments, and the contribution of K+ to ψs also increased by 19.28 and 21.92% in WC2+S 
and WC3+S treatments, respectively, compared to WC2 and WC3 (Table 3). Moreover, the 
contribution of leaf betaine to ψs increased by 98.61 and 13.10% in the WC2+S and WC3+S 
treatments in comparison withWC2 and WC3, while the contribution of leaf-free proline 
to ψs decreased by 41.67 and 30.56% in the WC2+S and WC3+S treatments, respectively, 
compared to WC2 and WC3 (Table 3). 

Table 3. The contributions of Na+, K+, betaine and free proline to leaf osmotic potential (ψs) of A. 
canescnes seedlings grown under different treatments for 20 days. Values are means ± SE (n = 18) and 
different letters in columns indicate significant differences at p < 0.05 (Duncan’s multiple range test). 

Treatments 
Contribution of Na+ to ψs 

(%) 
Contribution of K+ to ψs 

(%) 
Contribution of Leaf-
Free Proline to ψs (%) 

Contribution of Leaf Be-
taine to ψs (%) 

WC1 12.29 ± 0.61 e 70.16 ± 4.84 a 0.38 ± 0.01 a 8.51 ± 0.28 c 
WC1+S 17.74 ± 1.21 c 34.39 ± 2.03 d 0.36 ± 0.01 b 5.02 ± 0.11 d 

WC2 15.06 ± 0.48 d 61.62 ± 2.71 b 0.22 ± 0.01 d 10.87 ± 0.66 b 
WC2+S 23.85 ± 1.17 a 41.02 ± 0.86 c 0.21 ± 0.01 d 9.97 ± 0.36 b 

WC3 16.39 ± 0.31 c 60.91 ± 3.41 b 0.15 ± 0.01 e 15.67 ± 0.77 a 
WC3+S 21.19 ± 0.59 b 41.93 ± 2.64 c 0.25 ± 0.01 c 11.60 ± 0.42 b 

  

Figure 7. Leaf-free proline (A) and betaine (B) contents in leaves of A. canescens seedlings under
different treatments for 20 days. Values are means ± SE (n = 18) and bars indicate SE. In each
column, different letters in the same curve indicate significant differences at p < 0.05 according to
Duncan’s test.

Table 3. The contributions of Na+, K+, betaine and free proline to leaf osmotic potential (ψs)
of A. canescnes seedlings grown under different treatments for 20 days. Values are means ± SE
(n = 18) and different letters in columns indicate significant differences at p < 0.05 (Duncan’s multiple
range test).

Treatments Contribution of Na+

to ψs (%)
Contribution of K+ to

ψs (%)

Contribution of
Leaf-Free Proline to

ψs (%)

Contribution of Leaf
Betaine to ψs (%)

WC1 12.29 ± 0.61 e 70.16 ± 4.84 a 0.38 ± 0.01 a 8.51 ± 0.28 c
WC1+S 17.74 ± 1.21 c 34.39 ± 2.03 d 0.36 ± 0.01 b 5.02 ± 0.11 d

WC2 15.06 ± 0.48 d 61.62 ± 2.71 b 0.22 ± 0.01 d 10.87 ± 0.66 b
WC2+S 23.85 ± 1.17 a 41.02 ± 0.86 c 0.21 ± 0.01 d 9.97 ± 0.36 b

WC3 16.39 ± 0.31 c 60.91 ± 3.41 b 0.15 ± 0.01 e 15.67 ± 0.77 a
WC3+S 21.19 ± 0.59 b 41.93 ± 2.64 c 0.25 ± 0.01 c 11.60 ± 0.42 b

4. Discussion
4.1. Moderate Sodium Salt Facilitates the Growth of A. canescens by Maintaining Good Water
Status and Photosynthetic Capacity under Drought Stress

The distribution of ion sodium in the leaves of salt-secreting species is owing to tran-
spiration which is usually divided into two parts, one of which is rapidly secreted by salt
glands, and the other part is temporarily stored in the leaves [34]. It has been proposed that
some xero-halophytes assimilate abundant sodium ions from sterile soil and stock them,
which can result in stimulation of plant growth, especially when exposed to the severe
environment of drought or saline soil [7,19]. In the present study, compared to the corre-
sponding drought stress treatments (WC1, WC2 and WC3), the additional salt supplement
(WC1+S, WC2+S and WC3+S) significantly increased the plant growth parameters, includ-
ing plant height, ground diameter, dry mass, fresh mass and RGR, of A. canescens seedlings
(Table 2). Furthermore, the Na+ distribution in tissues of A. canescens in the presence of
salt supplementation implied that moderate salt could facilitate A. canescens acclimatize
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to drought stress through accumulating a large amount of Na+ in plants (Figure 6A–C),
and concomitantly, the augmentation of leaf RWC (Figure 5D), Pn, gS and Tr (Figure 1A–C)
also contributed to the stimulation of plant growth. These results indicated that a certain
concentration of salt supplement could help A. canescens maintain good water status and
photosynthesis under drought stress which led to a good growth performance. Similar
results have been found in some halophytes [1,35,36].

Photosynthesis is a necessary process for plants to retain growth and is strongly
affected by stomatal limitations [19,37]. The Pn, gS and Tr decreased with increasing severity
of drought stress in the present study. A reasonable explanation for this phenomenon is
that the inactivation of photosynthetic cells leads to nonstomatal limitations in plants under
severe drought stress [38]. However, the additional salt supplement markedly alleviated
the suppressive impacts of leaf ψs on the photosynthesis of A. canescens under the same
withholding water content (Figure 1A–C and Figure 5A,B). The results indicated that
moderate concentrations of sodium salt could enhance the capability of A. canescens to adapt
to drought conditions, especially under severe conditions; meanwhile, an obvious increase
in ψt was found in the presence of additional salt supplementation, which suggested that a
moderate concentration of sodium salt might enhance the gS via the aggrandizement of
ψt and then result in the enhancement of Pn. This finding coincides with our results that
tissue ψs had a great influence on cell turgor, which depends on the extent of stomatal
opening [39]. According to Hedrich and Tahjib-UI-Arif, the balanced water status and
accumulated biomass in plants are closely dependent on transpiration and stomata [40,41].
The increasing trend of Pn, gS and Tr and the relatively constant level of WUE (Figure 1)
also demonstrated that transpiration and stomatal opening degree improved the water
status and photosynthetic competence by accelerating the water transport and carbon
assimilation [42].

Overall, a great amount of sodium ion accumulated in the plant could consequently
enhance the water status and photosynthetic capability, and thus improve the growth of
A. canescens. Therefore, we believe that moderate sodium salt accelerates the growth of
A. canescens under drought stress.

4.2. Moderate Sodium Salt Improves the Adaptability of A. canescens to Drought Stress by
Mitigating the Suppression of PSII

Chlorophyll fluorescence analysis has been applied as another effective factor to
detect and determine the effects on plant growth in a stressful environment [43]. In the
present study, although an obvious O-J-I-P curve was found in each treatment, drought
stress still had the greatest impact on chlorophyll fluorescence. The most conspicuous
decrease was found at points J and I, which implied that severe drought could result
in the reduction in the absorption of chloroplasts in light energy and PSII activity [44].
In contrast, the corresponding treatment with additional salt supplementation (WC1+S,
WC2+S and WC3+S) had higher chlorophyll fluorescence values at steps J and I, which
indicated that moderate salt supplementation could relieve the mild inhibitory of drought
on the absorption capacity of chloroplasts. In the present study, the chlorophyll fluorescence
at points J and I in WC1, WC2 and WC3 treatments were markedly more increased than
WC1+S, WC2+S and WC3+S (Figure 2). This may be ascribed to the reduction in primary
quinone acceptor (QA) resulting in excessive QA− accumulation in the cell [33]. Moreover,
the chlorophyll fluorescence at points J and I were lower with the aggradation of drought
stress, which may be because the reduction in QA and block of plastoquinone during the
electron transfer process led to the decrease in QA−. This result is in accordance with our
previous study of Lycium ruthenicum Murr [45].

The decline in Fv/Fm implied that the photochemical efficiency of PSII was decreased
and the photosynthetic apparatus was impaired which is attributed to the stress environ-
ment [46]. In general, the values of Fv/Fm are equal to 0.75 ≤ Fv/Fm ≤ 0.86 which means
Fv/Fm is relatively constant for different plants exposed to a normal environment and the
photosynthetic organ is in good condition [47]. In other words, a value of Fv/Fm lower
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than 0.75 means that the plants have been under stress conditions and have suffered from
damage. As our results showed, even though the Fv/Fm under severe drought stress was
lower than 0.75 in all the treatments, the Fv/Fm ratio in WC1, WC2 and WC3 treatments
was lower than WC1+S, WC2+S and WC3+S treatments, which indicated that a certain
concentration of sodium salt could alleviate the light suppression of drought stress. The in-
crements in the Fv/Fm ratio could also imply that the photosynthetic conversion efficiency
of PSII was stimulated [48,49]. Fv

′/Fm
′ can indicate the ability to absorb sunlight and reflect

the actual captured energy transfer efficiency of the photosynthetic RC when it is partially
closed [49]. In the present study, the values of Fv

′/Fm
′ decreased with increasing severity of

drought stress. This result indicated that most of the light energy was not photochemically
quenched under drought stress.

The actual ΦPSII decreased more with the more severe drought stress, while the
addition of salt improved ΦPSII compared to the corresponding drought stress groups
(WC1, WC2 and WC3). The main reason for this phenomenon may be due to the reduction
in qP. qP reflects the efficiency of light conversion and the state of QA−, which can result in
the reduction in ΦPSII. qN reflects the portion of excessive light energy that was absorbed
from the antenna pigment by the PSII RC and then dissipated in the form of heat energy.
qN can indicate the extent of damage to the photosynthetic mechanism. Short-term stress
can increase qN to reduce non-photosynthetic energy and increase the ability to protect
photosynthetic apparatus from damage. Therefore, non-photochemical quenching has a
certain protective effect on photosynthetic apparatus. In the present study, the seedlings
under drought stress had lower ΦPSII and qP, while those with salt supplement seedlings
had higher ΦPSII and qP compared to the corresponding group without salt supplement.
Furthermore, qN exhibited a contrasting trend compared to ΦPSII and qP. These results
demonstrated that mild stress had a positive effect on electron transport in the PSII RC of
A. canescens, and the absorbed light energy gradually dissipated as heat resulting in the
closure of RC to protect itself. This phenomenon reported in the literature is in line with
our result [45].

The increase in ABS/RC and DIo/RC was significant under drought conditions,
which could perform a decrease in the conversion efficiency of light energy leading to a
self-protective photosynthesis mechanism, which can absorb more light energy and use it
for RC activities, thus alleviating the damage caused by stress conditions. This result is in
accordance with our previous study of Lycium ruthenicum Murr [45]. As shown in Figure 4,
TRo/RC, ETo/RC and Vj increased with the severity of drought stress in all the treatments,
which indicated that the photochemical function may be damaged as a consequence of the
destruction of the PSII RC [50]. However, the salt supplement group (WC1+S, WC2+S and
WC3+S) had lower values of TRo/RC, ETo/RC and Vj than the group exposed to drought
stress without extra salt addition (WC1, WC2 and WC3). This result demonstrated that
mild salt supplementation could help the PSII RC avoid stress-induced damage. Hence,
the presence of Na+ is beneficial to photophosphorylation and electron transport in the PSI
and PSII systems.

4.3. Moderate Sodium Salt Promotes the Drought Resistance of A. canescens by Improving the
Function of Compatible Solutes in OA

Maintaining a stable intracellular balance of ions is an indispensable pathway in
physiological processes, and becomes a more critical factor for plants to survive in arid
environments [51]. Numerous studies have discussed sodium nutrition in the Atriplex
genus, while they only consider saline conditions [3]. It was proposed that the accumu-
lation and sequestration of sodium ions in vacuoles could help plants enhance the OA
process and thus alleviate the light suppression of stress [1,52]. In this study, an additional
sodium salt supplement conspicuously promoted the Na+ concentration in A. canescens
seedlings (Figure 6A–C). Moreover, K+ is also one of the necessary elements for plants, and
it is important in physiological and biochemical processes such as OA, maintenance of cell
balance and enzyme activation [53]. In addition, Na+ could substitute K+ to some extent in
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OA [54,55]. As shown in Figure 6, the leaf Na+ absorption was increased, whereas no signifi-
cant changes were observed in leaf K+ concentration. This implied that A. canescens selected
more Na+ than K+ to improve growth under drought stress, which showed that A. canescens
has the same properties as the halophytes Salvadora persica and Suaeda salsa [56,57].

Drought stress can often result in producing excessive reactive oxygen species (ROS)
in plants, which leads to lipid peroxidation and further destroy membranes. Proline and
betaine act as osmotic protectants and free radical scavengers to attract enough water in
plants to sustain ψt [58]. When seedlings are subjected to stress, the organic OA substances
accumulated in plants can improve the water retention capacity of plants, prevent cell
dehydration and stabilize cell structure; on the other hand, they can provide necessary
nutrients for cells [59,60]. When A. canescens is subjected to abiotic stress, the proline and
betaine content increases rapidly, and the RWC and the ψs of the cells are maintained by
OA, thereby improving the resistance of the plants. In this study, the contents of proline and
betaine increased under different treatments, and the ψs adjustment substance maintained
a higher capability of OA when subjected to mild and moderate stress (Figure 7). Similar
phenotypes were also reported in Pan’s research [27]. As is well known, excessive inorganic
ions or compatible solutes could cause higher OA in plants under salt stress. Thus, the
contributions of solutes to ψs were evaluated under all the treatments. The concentration
of K+ to OA was significantly decreased in the presence of 150 mM sodium salt, while the
contribution of Na+ in mesophyll cells of A. canescens can contribute to OA to deal with
abiotic stress (Table 3). In the present study, the contribution of leaf-free proline to OA and
the contribution of leaf betaine to OA both decreased in the presence of additional sodium
salt (Table 3). These results showed that an appropriate concentration of sodium salt could
stimulate the capability of A. canescens to adapt to abiotic stress.

Plants usually suffer from severe water deficits from drought stress ascribed to leaves
exposed to drought conditions and strong transpiration. The water status is dominated
by cell ψt which can lead to water deficit and change the shapes, arrangements and
spatial distribution of cells in plant tissues. In the present study, drought stress caused an
obvious decline in ψt and RWC, while mild sodium salt increased these two parameters
in comparison with the corresponding treatments (Figure 5C,D). Thus, we can conclude
that moderate sodium salt could relieve the impact of severe drought stress on A. canescens
by improving ψt, which is in line with the previous report by He, et al. [1]. Numerous
studies have shown that the water absorption and utilization ability of plans could be
enhanced by decreasing leaf ψs [10,14]. The results in the present study showed that ψs
markedly decreased with more severe drought stress and that the rate of decrease was more
rapid with proper salt supplementation (Figure 5B). This result suggested that moderate
sodium salt could enhance the capability of A. canescens to acclimatize to drought stress by
improving the function of compatible solutes in OA.

5. Conclusions

In this paper, we evaluated the water status, photosynthetic and biochemical parame-
ters, and ion dynamics of A. canescens under drought stress with or without extra sodium
salt addition (150 mM). The results demonstrate that moderate sodium salt supplementa-
tion has a positive impact on the plants to alleviate the deleterious influence of drought
stress. The growth of plants in the presence of mild salt supplementation can be promoted
via the accumulation of substantial sodium ion and betaine in leaves participating in OA
to sustain relatively a high ψt and RWC in leaves while reducing the leaf ψs. Therefore,
the photosynthetic capacity is enhanced and light suppression of drought stress on PSII is
relieved to contribute to seedlings growth and resistance to drought stress. These findings
laid a basis and reference for A. canescens to be cultivated under drought stress and its
physiological mechanisms reacting to harsh environments.
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Abbreviations

OA Osmotic adjustment
SRWC Soil relative water content
FW Fresh weight
DW Dry weight
TW Turgid weight
RGR Relative growth rate
PAR Photosynthetically active radiation
RWC Relative water content
PN Net photosynthetic rate
gS Stomatal conductance
Tr Transpiration rate
WUE Water use efficiency
PSII Photosystem II
RC Reaction center
Fo Initial fluorescence
Fm Maximal fluorescence
Fv Variable Fluorescence
Fv/Fm Maximal quantum yield of PSII photochemistry
ΦPSII Actual PSII efficiency
qP Photochemical quenching coefficient
qN Nonphotochemical quenching coefficient
Fv/F0 Potential efficiency of PSII photochemistry
Vj Relative variable fluorescence at the J step
ABS/RC Light absorption energy flux per RC
DIo/RC Relative energy flux per PSII RC
TRo/RC Trapped energy flux per RC
ETo/RC Maximum electron transport flux per PSII RC
ψw Leaf water potential
ψs Leaf water osmotic potential
ψt Leaf turgor potential
COP Calculated osmotic potential
CR Contribution rate to the leaf ψs
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