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Abstract: To detect quickly and accurately “Yuluxiang” pear fruits in non-structural environments, a
lightweight YOLO-GEW detection model is proposed to address issues such as similar fruit color to
leaves, fruit bagging, and complex environments. This model improves upon YOLOv8s by using
GhostNet as its backbone for extracting features of the “Yuluxiang” pears. Additionally, an EMA
attention mechanism was added before fusing each feature in the neck section to make the model
focus more on the target information of “Yuluxiang” pear fruits, thereby improving target recognition
ability and localization accuracy. Furthermore, the CIoU Loss was replaced with the WIoUv3 Loss
as the loss function, which enhances the capability of bounding box fitting and improves model
performance without increasing its size. Experimental results demonstrated that the enhanced YOLO-
GEW achieves an F1 score of 84.47% and an AP of 88.83%, while only occupying 65.50% of the
size of YOLOv8s. Compared to lightweight algorithms such as YOLOv8s, YOLOv7-Tiny, YOLOv6s,
YOLOv5s, YOLOv4-Tiny, and YOLOv3-Tiny; there are improvements in AP by 2.32%, 1.51%, 2.95%,
2.06%, 2.92%, and 5.38% respectively. This improved model can efficiently detect “Yuluxiang” pears
in non-structural environments in real-time and provides a theoretical basis for recognition systems
used by picking robots.

Keywords: “Yuluxiang” pear; non-structural environments; lightweight; YOLO-GEW

1. Introduction

Currently, smart orchards have emerged as an innovative agricultural production
method. Among them, fruit harvesting plays a pivotal role in smart orchards as it directly
impacts the quality and storage effectiveness of the fruits [1,2]. “Yuluxiang” pears, which
are Chinese geographical indication protected products renowned for their wide adaptabil-
ity and high nutritional value, have successfully been exported to multiple countries [3–5].
However, these pears are highly seasonal fruits with a short optimal harvesting window
that requires timely picking. Currently, manual picking is predominantly relied upon for
“Yuluxiang” pears in a non-structural environment, resulting in labor-intensive operations
and low efficiency. With the continuous advancement of information technology, achieving
intelligent picking robots for “Yuluxiang” pears to replace manual operations holds signifi-
cant importance. Therefore, in order to enhance harvesting efficiency and improve quality
aspects, fruit detection methods with superior stability, rapid detection speed, and precise
recognition rates would be more advantageous.

The orchard environment is typically non-structural. When conducting fruit picking
operations, “Yuluxiang” pears exhibit color characteristics that resemble leaves and tree
canopies. Factors such as variations in lighting conditions, complex weather situations,
and intricate backgrounds pose certain challenges for intelligent recognition of “Yuluxiang”
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pears in non-structured environments. With the advancement of smart agriculture pro-
cesses and the development of deep learning techniques, convolutional neural networks
efficiently extract fruit image information within orchard environments. These networks
integrate feature extraction with selection and classification into a unified model that en-
sures real-time detection while maintaining accuracy. Among them, the YOLO series of
networks transforms object detection problems into regression problems and utilizes data
from different positions on collected images to accomplish candidate box extraction and
target recognition classification [6–9]. In recent years, it has been widely applied in fruit
recognition in orchards [10–12]. The achievements of fruit target detection based on the
YOLO algorithm are shown in Table 1.

Table 1. The achievements of fruit target detection based on the YOLO algorithm.

Fruit Type Research Method Purpose of Research Research Achievement Reference

Strawberry YOLOv3

Utilized an enhanced YOLOv3
recognition approach to
continuously detect and
identify strawberries in
complex environments.

Exhibiting robustness against
occlusion, overlap, and density with a
mAP of 87.51%. The accuracy rate for
identifying ripe strawberries reached

97.14% with a recall rate of 94.46%,
while the accuracy rate for identifying
unripe strawberries was 96.51% with a

recall rate of 93.61%.

[13]

Blueberry YOLOv4-Tiny

Proposed integrating CBAM
into the feature pyramid

structure of the target detection
network (I-YOLOv4-Tiny) to

recognize blueberries at
different maturity levels.

Achieving fruit detection accuracy of
up to 96.24% within only an average
detection time of 5.72 milliseconds.
The memory size occupied by the

network structure is merely 24.20 MB,
satisfying both high precision

requirements and ensuring
fast response.

[14]

Jujube YOLOv5s

Proposed L-YOLOv5s-RCA, a
lightweight convolutional

neural network, for
jujube recognition.

The network incorporates detection
layers of varying scales and the BiFPN

structure to enhance detection
accuracy, while introducing the Dual

Coordinate Attention module for
efficient operations. The model

achieves a mAP of 97.2% with a size of
7.1 MB.

[15]

Citrus YOLOv5s

Enhanced the visual saliency
detection model by integrating

it with YOLOv5s for the
identification of citrus fruits in

natural environments.

This approach achieves a mAP of
95.4% with a single image detection

time of 70 ms.
[16]

Tomato YOLOv8s

Addresses the limited level of
automation in tomato

harvesting within agriculture
and proposes a method for
automatic tomato detection

based on YOLOv8s, DSConv,
DPAG, and FEM

fusion techniques.

Test results demonstrate a mAP of
93.4%, while reducing the model size

to 16 MB and achieving a real-time
detection speed of 138.8 FPS.

[17]
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Table 1. Cont.

Fruit Type Research Method Purpose of Research Research Achievement Reference

Apple YOLOv5

Further improved the YOLOv5
architecture by combining

feature pyramid networks and
data augmentation, enabling it

to detect smaller targets,
improve feature quality in
complex backgrounds, and
achieve effective detection

of apples.

The research findings demonstrated
exceptional precision, recall, and F1

scores of 0.97, 0.99,
and 0.98 respectively.

[18]

Green passion YOLOv5

Conducted a study on green
passion fruit and proposed a

lightweight real-time detection
model, MbECA-v5, specifically

designed for
complex environments.

The model achieved an average
precision mean of 88.3%,

computational complexity of 6.6
GFLOPs, volume of only 6.41 MB, and
a real-time detection speed of 10.92 f/s

on embedded devices.

[19]

However, despite the high accuracy and fewer parameters offered by improved target
detection algorithms based on YOLO for fruits with similar colors in complex environ-
ments, they have not yet demonstrated effective results for “Yuluxiang” pears or efficient
identification in non-structured environments using resource-limited picking robots.

In conclusion, this study focuses on the detection of “Yuluxiang” pears in non-
structural orchards. To address challenges such as large model size and low detection
accuracy in natural environments, a lightweight pear detection model called YOLO-GEW
is proposed. This method is based on YOLOv8s as the base model and optimized using
GhostNet as the backbone network to reduce computational complexity and improve
detection accuracy. Additionally, an EMA attention mechanism is introduced in the neck
part to enhance feature fusion capability. Furthermore, by utilizing WIoUv3 Loss as an
improved loss function, the model’s fitting ability is enhanced. The proposed YOLO-GEW
can effectively detect “Yuluxiang” pear fruits while reducing parameters and model size.

2. Materials and Methods
2.1. Construction of Data Set

This study focuses on the research of “Yuluxiang” pear fruits, and the collected images
are from an experimental base of the Pomology Institute located in Jinzhong City, Shanxi
Province. “Yuluxiang” pear is a hybrid of “Kuerle” pear as female and Snowflake pear
as male. It belongs to the tree plant of the rose family. The cultivation mode is high stem
open heart with soil deep application of organic fertilizer, expanding holes to improve
soil permeability, and the implementation of inter-row grass. The average fruit weight is
250 g, and the yield per mu is 2000–3000 kg. The TNY-AL00 model camera with a focal
length of 35 mm and a resolution of 3456 × 3456 pixels was utilized for capturing. The
shooting period ranged from 8:00 to 18:00, while maintaining a distance range between the
equipment and the fruits at 10–50 cm. During the image collection process, various weather
conditions, time periods, and backgrounds were considered when capturing images of
“Yuluxiang” pears. A total of 1050 experimental sample images were collected and divided
into training set (734 images), validation set (211 images), and test set (105 images) in a ratio
of 7:2:1. The LabelImg tool was employed to annotate the minimum bounding rectangle
for identifying “Yuluxiang” pears as “pear”. The dataset is illustrated in Figure 1.



Agronomy 2023, 13, 2418 4 of 16

Agronomy 2023, 13, x FOR PEER REVIEW 3 of 16 
 

 

However, despite the high accuracy and fewer parameters offered by improved tar-
get detection algorithms based on YOLO for fruits with similar colors in complex envi-
ronments, they have not yet demonstrated effective results for “Yuluxiang” pears or effi-
cient identification in non-structured environments using resource-limited picking robots. 

In conclusion, this study focuses on the detection of “Yuluxiang” pears in non-struc-
tural orchards. To address challenges such as large model size and low detection accuracy 
in natural environments, a lightweight pear detection model called YOLO-GEW is pro-
posed. This method is based on YOLOv8s as the base model and optimized using Ghost-
Net as the backbone network to reduce computational complexity and improve detection 
accuracy. Additionally, an EMA attention mechanism is introduced in the neck part to 
enhance feature fusion capability. Furthermore, by utilizing WIoUv3 Loss as an improved 
loss function, the model’s fitting ability is enhanced. The proposed YOLO-GEW can effec-
tively detect “Yuluxiang” pear fruits while reducing parameters and model size. 

2. Materials and Methods 
2.1. Construction of Data Set 

This study focuses on the research of “Yuluxiang” pear fruits, and the collected im-
ages are from an experimental base of the Pomology Institute located in Jinzhong City, 
Shanxi Province. “Yuluxiang” pear is a hybrid of “Kuerle” pear as female and Snowflake 
pear as male. It belongs to the tree plant of the rose family. The cultivation mode is high 
stem open heart with soil deep application of organic fertilizer, expanding holes to im-
prove soil permeability, and the implementation of inter-row grass. The average fruit 
weight is 250 g, and the yield per mu is 2000–3000 kg. The TNY-AL00 model camera with 
a focal length of 35 mm and a resolution of 3456 × 3456 pixels was utilized for capturing. 
The shooting period ranged from 8:00 to 18:00, while maintaining a distance range be-
tween the equipment and the fruits at 10–50 cm. During the image collection process, var-
ious weather conditions, time periods, and backgrounds were considered when capturing 
images of “Yuluxiang” pears. A total of 1050 experimental sample images were collected 
and divided into training set (734 images), validation set (211 images), and test set (105 
images) in a ratio of 7:2:1. The LabelImg tool was employed to annotate the minimum 
bounding rectangle for identifying “Yuluxiang” pears as “pear”. The dataset is illustrated 
in Figure 1. 

    
(a) (b) (c) (d) (e) 

Figure 1. “Yuluxiang” pear dataset. (a) leaf occlusion; (b) fruit overlap; (c) density; (d) front lighting; 
(e) backlighting. The blue bounding boxes represent the true box of “Yuluxiang” pear manually 
calibrated. 

2.2. YOLOv8 Model and Performance Comparison 
The YOLOv8 model, which has been enhanced and refined based on previous itera-

tions, showcases exceptional performance and versatility. It comprises four key compo-
nents: the input module, backbone feature extraction network, neck network, and detec-
tion module. The input module encompasses functionalities such as image input, data 
augmentation, and adaptive anchor box calculation. The backbone feature extraction net-
work leverages Conv + Bn + SiLU (CBL), CSPLayer_2Conv (C2F), and spatial pyramid 
pooling-fast (SPPF) structures to extract features from the input images. The neck network 
adopts the path aggregation network (PAN) structure, which enhances its ability to fuse 
features of objects at different scales. Concat indicates that it concatenates itself according 

Figure 1. “Yuluxiang” pear dataset. (a) leaf occlusion; (b) fruit overlap; (c) density; (d) front
lighting; (e) backlighting. The blue bounding boxes represent the true box of “Yuluxiang” pear
manually calibrated.

2.2. YOLOv8 Model and Performance Comparison

The YOLOv8 model, which has been enhanced and refined based on previous itera-
tions, showcases exceptional performance and versatility. It comprises four key compo-
nents: the input module, backbone feature extraction network, neck network, and detection
module. The input module encompasses functionalities such as image input, data aug-
mentation, and adaptive anchor box calculation. The backbone feature extraction network
leverages Conv + Bn + SiLU (CBL), CSPLayer_2Conv (C2F), and spatial pyramid pooling-
fast (SPPF) structures to extract features from the input images. The neck network adopts
the path aggregation network (PAN) structure, which enhances its ability to fuse features of
objects at different scales. Concat indicates that it concatenates itself according to a certain
dimension, which is usually used to merge two feature maps, upstands for deconvolution
upsampling. The detection end decouples the processes of classification and detection,
primarily including loss calculation and target detection box filtering. VFL Loss is utilized
for classification loss, while DFL Loss + CIoU Loss is employed for regression loss. The
obtained feature maps are decoded and predicted to output the class of detected targets
and generate bounding boxes. YOLOv8 controls the depth and number of layers through
adjustable parameters such as width (w), depth (d), and ratio (r). This model consists of
five network structures with varying sizes: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
and YOLOv8x. The network structure of YOLOv8 is shown in Figure 2.
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Figure 2. YOLOv8 basic network model structure.

The YOLOv8 model was initially evaluated on the constructed dataset to detect accu-
rately and efficiently “Yuluxiang” pears in non-structural environments. Comparing the
performance of the base models (YOLOv8x, YOLOv8l, and YOLOv8m), Table 2 demon-
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strates minimal disparity in mAP values, with a maximum achievement of 87.72% by
YOLOv8m. Additionally, among the five YOLOv8 models, YOLOv8n exhibits the smallest
size (only 5.95 MB). Maintaining consistent layers, depth, and ratio comparisons with
YOLOv8n, Yolov8s showcases an improved mAP by 0.99%. Despite its slightly lower
mAP compared to that of YOLOV8m (a difference of only 1.21%), its model size is merely
21.48 MB (equivalent to just 43.29% of the size of YOLOV8m). Furthermore, when con-
trasted with both YOLOv8x and YOLOv8l variants, it is noteworthy that YOLOv8s reduces
layer count by as much as 140.

Table 2. Performance comparison of YOLOv8 base models.

Model d (Depth) w (Width) r (Ratio) AP (%) Model Size (MB) Layer

YOLOv8n 0.33 0.25 2.0 85.52 5.95 225
YOLOv8s 0.33 0.50 2.0 86.51 21.48 225
YOLOv8m 0.67 0.75 1.5 87.72 49.62 295
YOLOv8l 1.00 1.00 1.0 87.51 83.60 365
YOLOv8x 1.00 1.25 1.0 87.40 130.39 365

To further monitor the dynamic trends of network training, Figure 3 displays the
classification loss curve, bounding box loss, and mAP curve of five YOLOv8 models. The
convergence and stabilization of these three curves after 100 epochs indicate that the models
have achieved good training results without overfitting. It is worth noting that this study
focuses solely on detecting target “Yuluxiang” pears in non-structural environments while
considering both real-time performance and accuracy of model detection. Improvements
were made based on the YOLOv8s model.
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2.3. Improved “Yuluxiang” Pear Detection Model
2.3.1. Lightweight Model

The computational costs of deep neural networks are typically high due to the inclu-
sion of a large number of convolutional layers. In 2020, Huawei Noah’s Ark Lab proposed
the GhostNet lightweight network in order to achieve model lightweighting and enhance
detection efficiency. This network employs ghost modules to generate an equal number of
feature maps as regular convolutional layers, which are then substituted with the original
convolutional layers to reduce computational costs [20]. The ghost module compresses
the input feature layer through non-linear convolution operations, followed by linear
convolution operations that process the feature maps layer by layer, resulting in another
set of feature maps. Finally, these two sets of feature maps are combined to obtain new
feature maps.

Ghost bottleneck is obtained by stacking ghost modules. In the ghost bottleneck
structure, the first ghost module acts as an expansion layer to increase the number of
channels, while the second ghost module reduces the number of channels to match the
shortcut path. The ghost bottleneck includes two bottleneck modules with different strides:
a stride 1 bottleneck is used to expand the channel count, while a stride 2 bottleneck is used
to reduce the channel count and maintain consistency with the output when connected.
This design helps reduce model computation.

The GhostNet network is primarily composed of ghost bottleneck stacks, with the
ghost module serving as building blocks. The first layer consists of a standard convolutional
layer with 16 filters, followed by a series of gradually increasing ghost bottlenecks. These
ghost bottlenecks are divided into different stages based on the size of their input feature
maps. Except for the last bottleneck in each stage, which has a stride of 2, all other ghost
bottlenecks have an applied stride of 1.

2.3.2. EMA Attention Mechanism

The attention mechanism is a technique that facilitates the learning process of the
network model by assigning varying weights to different segments of input data, thereby
enabling the model to prioritize important information and enhance its performance while
mitigating overfitting scenarios [21–23]. Efficient multi-scale attention (EMA) transforms
certain channels into batch dimensions and group channel dimensions into multiple sub-
features, effectively preserving channel-specific information while reducing computational
costs [24], thus ensuring an equitable distribution of spatial semantic features within each
feature group.

The EMA model employs three parallel pathways to extract attention weight descrip-
tors for grouping feature maps. Among these pathways, two are 1 × 1 branches, while the
third pathway is a 3 × 3 branch. In the 1 × 1 branches, two 1D global average pooling oper-
ations are utilized to encode channels along two spatial directions. As for the 3 × 3 branch,
it only utilizes one stacked 3× 3 kernel to capture multi-scale feature representations. Addi-
tionally, EMA incorporates cross-spatial learning to aggregate cross-space information from
different spatial dimensions, thereby achieving more comprehensive feature aggregation.

2.3.3. WIoU Loss Function

The loss function of bounding box regression (BBR) plays a crucial role in object de-
tection, and its precise definition significantly enhances the performance of the model. In
YOLOv8’s architecture, DFL Loss + CIoU Loss is adopted as the regression loss. However,
CIoU only considers the overlapping area between predicted boxes and ground truth
boxes, neglecting the intermediate region which may introduce biased evaluation results.
Weighted intersection over union (WIoU) addresses this potential bias issue by incorporat-
ing weights for the region between predicted boxes and ground truth boxes [25]. WIoU has
three versions: WIoUv1 constructs a boundary box loss based on an attention mechanism;
WIoUv2 designs a monotonic static focus mechanism (FM); and WIoUv3 utilizes dynamic
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non-monotonic FM for gradient gain allocation strategy. The spatial relationship between
the ground truth box and the predictive box is shown in Figure 4.
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represent the width and height of the minimum rectangle formed by the predictive box and true box,
while w and h represent the width and height of the predictive box. wgt and hgt denote the width and
height of the true box, while Wi and Hi respectively indicate the width and height of the overlapping
rectangle between predictive box and true box. The red line represents the distance between the
center points of the two boxes.

The calculation formula for WIoUv1 is shown in Equations (1)–(3):

LIoU = 1− IoU = 1− Wi Hi
wh + wgthgt −Wi Hi

(1)

RWIoU = exp(
(x− xgt)2 + (y− ygt)2

(W2
g + H2

g)
∗ ) (2)

LWIoUv1 = RWIoU LIoU (3)

where r stands for gradient gain, r = Lγ*
IoU ∈ [0; 1]. During the model’s training, the

gradient gain decreases with the decrease of LIoU, resulting in a slow convergence rate in
the late stages of training. Therefore, the mean of LIoU is introduced as the normalizing
factor. The calculation formula for WIoUv2 is shown as Equation (4):

LWIoUv2 = (
L∗IoU

LIoU
)γLWIoUv1 (4)

r = (
L∗IoU

LIoU
)γ (5)

where LIoU is the running mean with momentum m. Dynamically updating the normalizing
factor keeps the gradient gain r at a high level overall, which solves the problem of slow
convergence in the late stages of training.

The abnormality degree of the anchor box β is represented by the ratio of L*IoU and
LIoU , as shown in Formula (6):

β =
L∗IoU

LIoU
∈ [0,+∞) (6)
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The non-monotonic focus coefficient was constructed using β and applied to WIoUv1
to obtain WIoUv3, as shown in Equation (7):

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(7)

where the mapping of outlier degree is β and gradient gain is r, which is controlled by the
hyper-parameters α and δ.

Since LIoU is dynamic, the quality demarcation standard of anchor boxes is also
dynamic, which allows WIoU v3 to make the gradient gain allocation strategy that is most
in line with the current situation at every moment. The training process adopts an α value
of 1.9 and a δ value of 3 to effectively allocate smaller gradient gains to anchor boxes with
lower quality, thereby enhancing the fitting ability of the bounding box loss function for
improved model performance.

2.4. Test Platform

The research was conducted on a Windows 10 operating system, equipped with an
Intel Core i5-10400H CPU @ 2.90 GHz, 32 GB RAM, a 1 T hard drive, and a NVIDIA GeForce
RTX 3060 GPU with a memory of 12,288.0 MB. The software used during the experiment
primarily consisted of python version 3.8.8, torch version 1.12.1, CUDA version 11.3, and
CUDNN version 8.6 for deep learning computations in pycharm2021.

The network input image size was 640 × 640 × 3 pixels, stochastic gradient descent
optimization (SGD) was used and the parameters were updated using a stochastic gradient
descent optimizer with a momentum of 0.9. The initial learning rate is set to 0.01 with
weight decay of 0.0005. Batch-size is 8, and 200 epochs are trained. All models use the same
dataset and training parameters.

2.5. Evaluation Indicators

The evaluation of the model’s performance in this study employed commonly used
metrics for object detection algorithms, namely F1 score and average precision (AP). Both
F1 and AP are measures that assess precision and recall, with specific calculation formulas
shown in Equations (8)–(11):

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

AP =
∫ 1

0
Precision(Recall)d(Recall) (10)

F1 =
2× Precision× Recall

Precision + Recall
(11)

where, the term TP represents the accurate detection of “Yuluxiang” pears by the model.
FP indicates false detections, where a pear is mistakenly identified as “Yuluxiang”. FN
denotes undetected instances of “Yuluxiang” pears.

Additionally, complexity metrics such as floating point operations per second (FLOPs),
model layers, and parameter count are computed to assess computational complexity. The
size of the model is evaluated based on its dimensions.

3. Results and Analysis
3.1. Test Results and Analysis of Different Lightweight Backbone Feature Network Models

In order to lighten the network and improve the model’s feature extraction ability, this
study replaced the backbone networks of the YOLOv8s model with lightweight models
GhostNet, MobileNetv3 [26], and FasterNet [27] for experimental analysis. The results
are shown in Table 3. After optimization, the three lightweight models exhibit certain
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improvements in accuracy and F1 score compared to YOLOv8s, while simultaneously
reducing model size and FLOPs. Among them, GhostNet demonstrates superior precision
and AP performance, with a 4.73% and 1.33% increase respectively over YOLOv8s, while
maintaining a model size that is only 64.85% of YOLOv8s. Although MobileNetv3 has a
smaller model size and computational complexity compared to YOLOv8s, it experiences a
slight decrease in AP by 0.5%. FasterNet achieves the highest accuracy and F1 score among
the four models, with the lowest computational complexity of 17.2 G. The replacement of
GhostNet and FasterNet with YOLOv8s as the backbone improves the lightweight nature
of the model and its ability to extract features like “Yuluxiang” pears. In terms of detection
accuracy, GhostNet’s F1 score is only 0.19% lower than that of FasterNet, while GhostNet’s
AP is 0.4% higher than that of FasterNet. In terms of lightweight networks, despite being
only 0.4 G higher in FLOPs compared to FasterNet, GhostNet has a smaller model size by
2.77 MB. In consideration of the lightweight nature of the model and the feature extraction
capability of the backbone network, this study selected GhostNet as the backbone for
YOLOv8s to extract features of “Yuluxiang” pears, naming it YOLO-G. This model not only
reduces model parameters but also suppresses useless features to improve model efficiency,
laying a foundation for subsequent research.

Table 3. Test results of backbone feature networks of different lightweight models.

Model Precision (%) Recall (%) F1 (%) AP (%) Model Size (MB) FLOPs (G)

YOLOv8s 86.59 77.12 81.58 86.51 21.48 28.5
GhostNet 91.32 76.52 83.28 87.84 13.93 17.6

MobileNetv3 88.73 77.22 82.58 86.01 14.93 21.7
FasterNet 87.51 79.79 83.47 87.44 16.70 17.2

3.2. Effects of Adding Attention Mechanism to Neck on Model Performance

In order to enhance the feature fusion capability of the lightweight YOLO-G model
for “Yuluxiang” pear, this study introduced an EMA attention mechanism prior to fusing
features in the neck section of the model. This modification enables the model to prioritize
target information relevant to “Yuluxiang” pear fruit, thereby enhancing target recognition
and localization accuracy. Four EMA modules are added at positions shown in Figure 5 in
the neck.

The effectiveness of EMA in enhancing model detection performance was validated
through a comparative analysis with YOLO-G under identical experimental conditions.
Furthermore, the impacts of various attention mechanisms, such as the convolutional block
attention module (CBAM) [28], coordinate attention (CA) [29], squeeze and excitation
(SE) [30], along with the EMA attention module, on feature fusion within the model were
thoroughly examined. The results are shown in Table 4.

According to Table 4, the YOLO-G model with the added CBAM attention module
shows no significant change in F1 and AP performance, however it results in a slight
increase in model size and parameters. This suggests that the CBAM attention module
has minimal impact on the performance of YOLO-G. With the addition of the SE attention
module, there is a 0.33% improvement in F1 score but a 0.26% decrease in AP score.
Amongst the four added attention mechanisms, CA has the smallest increase in model
size and parameters, with an increase of only 0.1 MB and 0.04 M, respectively, achieving
improvements in recall, F1, and AP compared to YOLO-G. The EMA attention mechanism
achieves the highest F1 score at 84.50% and an AP value of 88.43%. Adding the EMA
attention mechanism only increases model size and parameters by 0.04 MB and 0.03 M
respectively, resulting in higher precision, F1 score, and AP compared to adding CA
attention mechanism by 1.17%, 0.3%, and 0.28%, respectively. Experiments show that
adding EMA attention mechanism to lightweight models’ neck part can effectively improve
detection performance without significantly increasing model size or parameters.



Agronomy 2023, 13, 2418 10 of 16
Agronomy 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 5. Location of EMA module addition in neck. 

The effectiveness of EMA in enhancing model detection performance was validated 
through a comparative analysis with YOLO-G under identical experimental conditions. 
Furthermore, the impacts of various attention mechanisms, such as the convolutional 
block attention module (CBAM) [28], coordinate attention (CA) [29], squeeze and excita-
tion (SE) [30], along with the EMA attention module, on feature fusion within the model 
were thoroughly examined. The results are shown in Table 4. 

Table 4. Influences of different attention mechanisms on model feature fusion. 

Model Precision (%) Recall (%) F1 (%) AP (%) Model Size 
(MB) 

Parameters 
(M) 

YOLO-G 91.32 76.52 83.28 87.84 13.93 7.12 
CBAM 89.01 78.22 83.27 87.82 14.72 7.53 

SE 88.81 78.98 83.61 87.58 14.03 7.17 
CA 89.33 79.62 84.20 88.15 14.03 7.16 

EMA 90.50 79.24 84.50 88.43 14.07 7.19 

According to Table 4, the YOLO-G model with the added CBAM attention module 
shows no significant change in F1 and AP performance, however it results in a slight in-
crease in model size and parameters. This suggests that the CBAM attention module has 
minimal impact on the performance of YOLO-G. With the addition of the SE attention 
module, there is a 0.33% improvement in F1 score but a 0.26% decrease in AP score. 
Amongst the four added attention mechanisms, CA has the smallest increase in model 
size and parameters, with an increase of only 0.1 MB and 0.04 M, respectively, achieving 
improvements in recall, F1, and AP compared to YOLO-G. The EMA attention mechanism 
achieves the highest F1 score at 84.50% and an AP value of 88.43%. Adding the EMA at-
tention mechanism only increases model size and parameters by 0.04 MB and 0.03 M re-
spectively, resulting in higher precision, F1 score, and AP compared to adding CA atten-
tion mechanism by 1.17%, 0.3%, and 0.28%, respectively. Experiments show that adding 
EMA attention mechanism to lightweight models’ neck part can effectively improve de-
tection performance without significantly increasing model size or parameters. 

Figure 5. Location of EMA module addition in neck.

Table 4. Influences of different attention mechanisms on model feature fusion.

Model Precision (%) Recall (%) F1 (%) AP (%) Model Size
(MB)

Parameters
(M)

YOLO-G 91.32 76.52 83.28 87.84 13.93 7.12
CBAM 89.01 78.22 83.27 87.82 14.72 7.53

SE 88.81 78.98 83.61 87.58 14.03 7.17
CA 89.33 79.62 84.20 88.15 14.03 7.16

EMA 90.50 79.24 84.50 88.43 14.07 7.19

3.3. Ablation Test

In order to verify the rationality of the improved YOLOv8s model, an ablation experi-
ment was conducted to validate the effectiveness of each improvement point. The results
of the ablation experiment are shown in Table 5. By improving the backbone to GhostNet
on the original YOLOv8s model, it is defined as YOLO-G model. In the YOLO-G neck,
the EMA attention mechanism is added and defined as YOLO-GE model. The model that
improves the loss function in YOLO-G to WIoUv3 is defined as YOLO-GW, and finally, all
improvement points are fused together and defined as YOLO-GEW.

Table 5. Results of ablation test.

Model Precision (%) Recall (%) F1 (%) AP (%) Model Size (MB)

YOLOv8s 86.59 77.12 81.58 86.51 21.48
YOLO-G 91.32 76.52 83.28 87.84 13.93

YOLO-GE 90.50 79.24 84.50 88.43 14.07
YOLO-GW 90.44 78.72 84.17 88.36 13.93

YOLO-GEW 89.93 79.64 84.47 88.83 14.07
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The results in Table 5 demonstrate the superior performance of the four enhanced
models in terms of precision, F1 score, and AP. Among them, YOLO-G achieves the highest
precision while maintaining a small model size. Furthermore, YOLO-G exhibits a 1.33%
higher AP compared to YOLOv8s, confirming the effectiveness of replacing the backbone
network for extracting “Yuluxiang” pear features and utilizing lightweight models. The
model sizes of YOLO-GE and YOLO-GEW increased by only 0.14 MB compared to YOLO-G
and YOLO-GEW, respectively. In comparison to YOLO-G, incorporating EMA attention
mechanism into the neck layer of YOLO-GE leads to improvements in recall, F1 score, and
AP; whereas adding the EMA attention mechanism further enhances recall, F1, and AP by
0.92%, 0.3%, and 0.47% respectively in the case of YOLO-GEW. This approach is feasible as
it allows better integration of backbone networks for extracting “Yuluxiang” pear features
without significantly increasing model size while enhancing target recognition ability and
localization accuracy.

Compared to the YOLOv8s model, both YOLO-G and YOLO-GW achieved a reduction
in size of 7.55 MB, while YOLO-GE and YOLO-GEW achieved a reduction of 7.41 MB. Fur-
thermore, when compared to YOLO-G and YOLO-GE, both YOLO-GW and YOLO-GEW
exhibited a decrease in accuracy by 0.88% and 0.57%, respectively, but demonstrated an
increase in recall rate by 2.2% and 0.4%. Meanwhile, in comparison to YOLO-G, the utiliza-
tion of the enhanced loss function WIoUv3 in the model resulted in a 2.59% improvement
in F1 score. This signifies that without augmenting the model’s size, the improved loss
function can enhance bounding box fitting capability and elevate model performance. In
contrast to YOLOv8s, the upgraded model YOLO-GEW exhibited enhancements across all
evaluation metrics, with a 2.32% increase in AP score and a reduction of 7.41 MB in model
size. Figure 6 illustrates the P-R curve of the enhanced model, demonstrating a larger area
under its curve compared to other models and indicating superior overall performance for
YOLO-GEW while further validating the effectiveness of this approach.
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4. Discussion

Due to the similarity in color between the fruit of “Yuluxiang” pear and its leaves, tree
canopy, and other background elements, as well as challenges in distinguishing it under
various factors such as bagging, lighting conditions, and weather in natural environments,
efficient and intelligent identification of “Yuluxiang” pears becomes a formidable task.
Therefore, reducing the model size is advantageous for deployment and real-time picking.
To further validate the enhanced model performance, this study compared YOLO-GEW
with lightweight detection models YOLOv3-YOLOv8. The experimental results are shown
in Table 6.
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Table 6. Test results of “Yuluxiang” pear by different lightweight test models.

Model Precision
(%) Recall (%) F1 (%) AP (%) Model

Size (MB)
Parameters

(M) FLOPs (G) Inference
(ms)

YOLOv8s 86.59 77.12 81.58 86.51 21.48 11.13 28.5 5.8
YOLO-GEW 89.93 79.64 84.47 88.83 14.07 7.19 18.6 6.5

YOLOv7-Tiny 88.15 79.27 83.47 87.32 11.72 6.01 13.1 3.0
YOLOv6s 87.12 78.01 82.31 85.88 31.32 16.30 44.1 6.3
YOLOv5s 88.38 77.72 82.71 86.77 13.78 7.01 15.8 4.5

YOLOv4-Tiny 83.59 79.71 81.60 85.91 21.21 10.86 23.8 7.4
YOLOv3-Tiny 89.22 76.20 82.20 83.45 16.63 8.67 12.9 3.1

According to Table 6, the YOLO-GEW model proposed in this study is superior to
other models in terms of precision, F1, and AP. Specifically, compared with YOLOv8s,
YOLOv7-Tiny, YOLOv6s, YOLOv5s, YOLOv4-Tiny, and YOLOv3-Tiny, its AP is 2.32%,
1.51%, 2.95%, 2.06%, 2.92%, and 5.38% higher, respectively. It shows the excellence of the
model in precision. In addition, YOLOv7-Tiny has the smallest model size and parameters,
2.35 MB and 1.18 M smaller than YOLO-GEW, respectively. The model size, parameters,
and FLOPs of YOLO-GEW are all lower compared to those of YOLOv8s, YOLOv6s, and
YOLOv4-Tiny. The model size and parameters of YOLOv5s are slightly smaller than those
of YOLO-GEW at 0.29 MB and 0.18 M respectively. Among the seven lightweight models,
YOLOv7-Tiny has the smallest model size and parameters, being 2.35 MB and 1.18 M
smaller than YOLO-GEW, respectively; YOLOv3-Tiny has the lowest FLOPs at 12.9 G.
Compared to YOLOv7-Tiny and YOLOv3-Tiny, YOLO-GEW shows an improvement of
1.78% and 0.71% in precision, a boost of 0.37% and 3.44% in recall, as well as an increase of
1.00% and 2.27% in F1 score. The inference time of YOLO-GEW is 6.5 ms, with the longest
inference time for YOLOv4-Tiny being 7.4 ms, and the shortest for YOLOv7-Tiny being
3.0 ms. According to Figure 7, the test set demonstrates satisfactory detection performance
for the seven lightweight object detection models. However, YOLOV4-Tiny exhibits a
certain level of missed detections, while YOLOv7-Tiny and YOLOv3-Tiny display false
detections in Figure 7d, potentially attributed to the similarity in colors between fruits
and leaves as well as distant distances. After considering various factors, the YOLO-
GEW proposed in this study effectively achieves a harmonious balance among model size,
detection accuracy, and speed. This lays a solid foundation for deployment on embedded
devices and provides technical support for the development of the “Yuluxiang” pear-
picking robot.

In the field of pear fruit detection, Li et al. [31] utilized a ground tripod and cameras
mounted on a drone platform to capture high-resolution images of pears for monitoring
their growth status. They proposed an advanced multi-scale collaborative perception
network known as YOLOv5sFP specifically designed for accurate pear detection. This
model achieved an impressive average precision (AP) value of 96.12% while maintain-
ing a compact model size of 50.01 MB. The introduction of Ma et al. [32] enhanced the
performance of the YOLOv4 model in recognizing ‘Hongxiangsu’ pear fruit in natural
environments by addressing challenges such as color similarity. This resulted in an im-
proved detection mAP of 90.18% and a reduced model size of 136 MB. Inspired by YOLOv5,
Sun et al. [33] proposed a model called YOLO-P for efficient and accurate detection of
Akidzuki pears. The model achieved an AP of 97.6%, representing a 1.8% improvement
over the original YOLOv5s. Moreover, the model also demonstrated volume compression,
reducing its size from 13.7 MB to merely 8.3 MB, resulting in a compression rate of 39.4%.
The aforementioned research primarily focused on conducting experimental studies on
various pear varieties and yielded significant outcomes. It is worth noting that compared
to “Yuluxiang” pears, the research samples consisted of untreated pears without bagging
treatment, thereby posing less difficulty.
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The present study conducted research on the detection of “Yuluxiang” pears in a
non-structural environment and successfully created an image dataset for “Yuluxiang”
pears. The proposed lightweight detection model, YOLO-GEW, has a small size of only
14.07 MB but achieves an impressive average precision (AP) score of 88.83%, fully satisfying
the current requirements for detection. In future research, it is imperative to employ more
efficient cameras for image capture and collection of large-scale datasets encompassing
diverse scenarios such as varying occlusions, lighting conditions, weather patterns, and
fruit quantities. This will significantly enhance the robustness of the model validation.
The primary focus should be on augmenting the detection speed of lightweight models on
embedded devices and effectively deploying them in harvesting robots specifically tailored
for “Yuluxiang” pear orchards.

5. Conclusions

In order to detect rapidly and accurately “Yuluxiang” pear fruits in non-structural
environments, enhancements were made to the YOLOv8s model based on the “Yuluxiang”
pear dataset. These enhancements addressed challenges such as fruit color similarity
to leaves, fruit bagging, and complex surroundings. First, we substituted the original
model’s backbone network with GhostNet to reduce parameters and enhance feature
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extraction capabilities. Second, four EMA attention mechanisms were introduced in the
neck section to emphasize the features of “Yuluxiang” pears and optimize feature fusion
while effectively preventing overfitting. Finally, by replacing CIoU Loss with WIoUv3 Loss,
we could strengthen the adaptability of bounding box loss function and improve model
performance. In summary, by integrating these three improvement strategies, a lightweight
“Yuluxiang” pear detection model YOLO-GEW, suitable for non-structural environments,
was successfully constructed. The main conclusions of this study are as follows.

First, the performance of the YOLOv8 model was tested considering both real-time
detection and accuracy. Based on this, further research was conducted using the YOLOv8s
model. Then, in order to reduce network complexity and enhance feature extraction
capability, experiments were carried out by replacing the backbone networks of YOLOv8s
with lightweight models such as GhostNet, MobileNetv3, and FasterNet. Among these
models, GhostNet achieved a maximum AP of 87.84% and had the smallest model size
of 13.93 MB. It is named the YOLO-G model for subsequent research. Next, the effects of
attention mechanisms CBAM, SE, CA, and EMA on the neck feature fusion ability were
compared, and it was concluded that the addition of EMA could effectively improve the
detection performance of the network model without significantly increasing model size
and parameters. Finally, ablation experiments were designed to verify that the improved
WIoUv3 loss function can strengthen the fitting ability of boundary frame loss and improve
the performance of the model without increasing the model size. The precision, recall,
F1, AP, and model size of YOLO-GEW are 89.93%, 79.64%, 84.47%, 88.83%, and 14.07 MB,
respectively, which provides a foundation for deployment in embedded devices.

The improved algorithm’s performance was further validated by comparing the
YOLO-GEW model with seven other models, namely YOLOv8s, YOLOv7-Tiny, YOLOv6s,
YOLOv5s, YOLOv4-Tiny, and YOLOv3-Tiny. Results demonstrated that compared to the
alternative models, the proposed method exhibited superior precision, F1 score, and AP.
However, it had a slightly larger model size and more parameters than YOLOv7-Tiny.
Moreover, in comparison to YOLOv3-Tiny, YOLO-GEW only increased the FLOPs by
6.9 G. Considering both accuracy and size considerations together suggests that utilizing
our proposed method for real-time detection of “Yuluxiang” pear fruit in non-structured
environments is advantageous.
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