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Abstract: DUF668s, a plant-specific gene family, encode proteins containing domain of unknown
function (DUF) domains. Despite their essential functions, there is a lack of insight into Triticum
aestivum TaDUF668s. Here, 31 TaDUF668s were identified from the wheat genome; according to
phylogenetic relationships, they were named TaDUF668-01 to TaDUF668-31. All TaDUF668s were
hydrophilic and unstable proteins. There were 22 TaDUF668s that showed subcellular localization
in nucleus. Evolutionary analysis demonstrated that TaDUF668s had undergone strong purifying
selection, and fragment duplication plays major role in TaDUF668 family expansion. Cis-element
prediction displayed that over 90% of TaDUF668 promoter regions contain the growth and abiotic
responsiveness element. Consistently, expression profiling showed that TaDUF668s were highly
induced in five wheat growth and development stages, seven main different tissues, five abiotic
stresses, and five pathogenic stresses. In total, 12 TaDUF668s were targeted by 20 miRNAs through
the inhibition of translation and cleavage patterns. RT-qPCR results confirmed that the expression
of six TaDUF668s was significantly regulated by NaCl, PEG, F. graminearum, and P. striiformis; nev-
ertheless, the regulation patterns were different. In summary, through systematic identification,
characterization, evolutionary analysis, and expression profiling, a comprehensive understanding of
TaDUF668 has been obtained, which lays a foundation for further functional studies of TaDUF668.

Keywords: bioinformatics; cis-element; expression profiling; gene structure; RT-qPCR; subcellular
localization; wheat

1. Introduction

Wheat (Triticum aestivum L.) is widely accepted as one of the most important food crops
all over the world [1]. With the rapid growth of population in recent years, food production
must keep up with population growth, especially for main food crops such as wheat [2].
However, the field production of wheat is seriously threatened by a variety of biotic and
abiotic stresses, such as bacteria, fungi, nematodes, drought, salt, and extreme temperature,
which heavily impact the production and quality of wheat [3]. Cultivating varieties with a
tolerance for stresses is the most economical and fundamental way to decrease losses [4],
and discovery of stress resistance genes is the fundamental for resistance breeding.

The domain of unknown function (DUF) is an unknown function protein domain
in the protein family database [5]. The Pfam database (version 35.0) currently includes
19,632 gene families, in which almost 24% (4795) consist of DUF families [6]. In recent years,
the rapid development of genomics and proteomics has provided important information
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and powerful tools for systematic identification and characterization of DUF family proteins,
which further set the basis for deciphering the biological roles of DUF proteins in regulating
plant growth and development, as well as responding to biotic and abiotic stresses [7,8].
For instance, in Arabidopsis, DUF506 family members respond to environmental changes
and participate in the calcium-signaling pathway [9]. In wheat, TaWTF1 encodes a protein
containing the DUF860 domain; the promoter region of this gene contains stress and
hormone response elements, and its expression is upregulated by high-temperature stress
in seedling and flowering stages [10]; TaDUF966-9B knockout showed severe leaf rolling
symptoms under salt stress, indicating that TaDUF966-9B played a positive regulatory role
in the response process of wheat to salt stress [7]. TaCRR1 encodes a protein consisting
of two DUF26 domains, and its expression was upregulated in wheat after infection by
Bipolaris sorokiniana; meanwhile, its exogenous expression products can inhibit the growth
of B. sorokiniana [11]. The protein encoded by TaGW5, a gene of the DUF4005 family, is
involved in the young spike development [12].

DUF668 is a protein family that is widely found in monocots, dicots, mosses, and
other species [13]. Its family members contain a conserved domain composed of 29 amino
acids. Previous studies have shown that DUF668 is not only closely related to plant growth
and development but also plays a vital regulatory effect in adverse situation response [13].
For example, in Oryza sativa, OsDUF668-3 is highly expressed in leaves, roots, immature
seeds, glumes, and panicles at 20 days after flowering, and OsDUF668-1, -3, -4, and -5
are upregulated when rice is subjected to mechanical damage and infected by Pirospora
griseum [13]. In Gossypium hirsutum, GhDUF668-05, -08, -11, -23, and -28 were significantly
induced under drought and verticillium wilt conditions and participated in the process
of stress response [8]. In Ipomoea batatas, IbDUF668-6, -7, -11, and -13 were upregulated in
response to ABA, drought, and salt stress [14].

DUF668 family members have been identified and analyzed in O. sativa [13], G. hirsu-
tum [8], and I. batatas [14], and their stress-responsive patterns have been studied. However,
systematic understanding of wheat TaDUF688 family members is lacking to date. Therefore,
in this study, we systematically identified TaDUF668 family members, characterized protein
features, and analyzed their expression patterns under several stresses, with the aim of
providing insights into TaDUF668 and laying a theoretical basis for further deciphering
their biological function.

2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of TaDUF668

The reference genome and protein sequences of common wheat were collected from
the International Wheat Genome Sequencing Consortium website (https://wheat-urgi.
versailles.inra.fr/Seq-Repository/Assemblies/ accessed on 15 August 2023) [15]. The hid-
den Markov model (HMM) of DUF668 (PF05003) was downloaded from Pfam
(http://pfam.xfam.org/ accessed on 15 August 2023) [16], and 6 DUF668 protein sequences
from Arabidopsis thaliana [13], 12 sequences from O. sativa [13], 14 sequences from Zea
mays [13], and 32 sequences from G. hirsutum [8] were collected. They were merged and
used as reference sequences to perform BLASTp (e-value < 1 × 10−5) searching against
the wheat protein sequences to identify the candidate TaDUF668s. After checking with
Pfam (v35.0, http://Pfam.xfam.org/ accessed on 15 August 2023) and InterProScan (v94.0,
http://www.ebi.ac.uk/InterProScan/ accessed on 15 August 2023), candidates contain-
ing DUF668 domain were extracted. After eliminating redundant sequences and incom-
pletely annotated sequences, the remaining sequences were considered as TaDUF668 family
members [8].

Multiple sequence alignment of TaDUF668 proteins was performed by neighbor-
joining (1000 replicated bootstraps) using ClustalW2 [17]. A phylogenetic tree containing
TaDUF668s, AtDUF668s, OsDUF668s, ZmDUF668s, and GhDUF668s was drawn using
the iTOL (Interactive Tree of Life, http://itol.embl.de/ accessed on 15 August 2023) [3].

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies/
http://pfam.xfam.org/
http://Pfam.xfam.org/
http://www.ebi.ac.uk/InterProScan/
http://itol.embl.de/
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TaDUF668 members were classified and named according to their phylogenetic relation-
ships [3].

2.2. Chromosome Localization and Interspecific Evolutionary Analysis of TaDUF668

The position information of TaDUF668s was obtained from the GFF3 file, and the
chromosome distribution map was drawn using MapInspect [18]. To investigate the type of
gene replication events, TaDUF668 collinearity analysis was performed using TBtools [19].
DUF668s of Aegilops tauschii, Triticum dicoccoides, and Triticum urartu were identified using
the same strategy as wheat TaDUF668s. DUF668s of four species were merged and ana-
lyzed by BLASTn to find orthologous gene pairs (e-value < 10−5, similarity > 80%) [20].
After removing duplicate pairs, TBtools was used to calculate the Ka (nonsynonymous
substitution rate), Ks (synonymous substitution rate), and Ka/Ks values [20] between
DUF668 gene pairs of four species.

2.3. TaDUF668 Gene Structure and Conserved Motif Analysis

According to the GFF3 gene structure annotation information, TBtools was used to
draw the exon/intron structure map of TaDUF668 genes [21]. The conserved motif of
TaDUF668s was identified using the online website MEME (version 5.5.2, http://meme-
suite.org/tools/meme/ accessed on 15 August 2023) [22]. The parameters were set as
follows: each protein sequence can incorporate any number of non-overlapping protein
motifs, the quantity of different protein motifs is 10, and the width of protein motifs ranges
from 6 to 50 amino acids. TBtools was used to analyze the output results and draw the
protein motif structure map [21].

2.4. Characteristics, Three-Dimensional Structure Prediction, and Subcellular Localization of
TaDUF668 Proteins

Using ExPASyServer10 (https://prosite.expasy.org/PS50011/ accessed on 15 August 2023),
the physical and chemical properties of TaDUF668s, including protein sequence length
(Len), the molecular weight (MW), the isoelectric point (pI), and total hydrophilicity
(GRAVY) were analyzed [23]. Through the Plant-mPLoc (http://www.csbio.sjtu.edu.cn/
bioinf/Plant/ accessed on 15 August 2023), subcellular localization of TaDUF668s was pre-
dicted [24]. A three-dimensional structure of TaDUF668s was built using SWISS-MODEL
(https://www.swissmodel.expasy.org/ accessed on 15 August 2023) [25].

2.5. Cis-Regulatory Element Analysis of TaDUF668

To analyze the cis-acting elements in the promoter region of the TaDUF668 genes,
the upstream promoter sequence (1–1500 bp) of TaDUF668s was manually extracted
from the reference genome. Then, sequences were uploaded into PlantCARE website
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ accessed on 15 August 2023)
to identify cis-elements. The analysis results were organized and presented using the R
package “pheatmap” [26].

2.6. Expression Profiling of TaDUF668s

Wheat transcriptome sequencing data were downloaded from the NCBI-SRA database
and compared with the wheat reference genome using Hisat2 [7]. The expression level of
TaDUF668 genes (represented by normalized TPM value) was calculated by Cufflinks. The
Log2(TPM + 1) value was used to plot a heatmap through the R package “pheatmap” to
exhibit the expression profiling of TaDUF668 genes under different conditions [7].

2.7. Prediction of the Targeting Relationship between miRNAs and TaDUF668

To identify miRNAs targeting TaDUF668s transcripts, mature sequences of wheat
miRNAs (http://www.mirbase.org/ accessed on 15 August 2023) were collected from a
previous study [7]. Then, the miRNA and TaDUF668s CDS sequences were submitted to
psRNA Target (https://www.zhaolab.org/psRNA/ accessed on 15 August 2023) [15,27]

http://meme-suite.org/tools/meme/
http://meme-suite.org/tools/meme/
https://prosite.expasy.org/PS50011/
http://www.csbio.sjtu.edu.cn/bioinf/Plant/
http://www.csbio.sjtu.edu.cn/bioinf/Plant/
https://www.swissmodel.expasy.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.mirbase.org/
https://www.zhaolab.org/psRNA/
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to analyze the targeting relationships between TaDUF668s and miRNAs. The R packages
“ggplot2” and “ggalluvial” were used to draw the targeting relationship map between
miRNA and TaDUF668s [28].

2.8. Stress Treatment of Wheat

Wheat seeds of cultivar Yangmai 20 were surface-sterilized with 1% sodium hypochlo-
rite solution then washed completely using double-distilled water and cultured for two
days at 25 ◦C in Petri dishes, which were lined with two layers of saturated filter paper [29].
The germinated seeds were then transplanted into a 25% concentration Hoagland solution.
After three days, we increased the density of solution to 50% and set growth conditions to
a 16/8 h (day/night) photoperiod at 25 ◦C [1]. According to the methods reported by Yang
et al. [30], Fusarium graminis (PH-1) spores were obtained. When the seedlings reached one
leaf stage, 10 µL of the spore suspension (5 × 105 cells/mL) was drawn with a pipette and
dropped onto the leaves. They were then wrapped in wet paper towels to retain moisture
and incubated at 25 ◦C at 65% relative humidity. Wheat leaves were harvested at 6 h, 12 h,
24 h, 48 h, 72 h, and 96 h after inoculation, and uninoculated wheat seedlings were used
as controls. Referring to the methods of Zhan et al. [31], the spore suspension of Puccinia
striiformis were gained. Afterwards, we inoculated wheat leaves with stripe rust spore
suspension. Leaves were taken at 6 h, 12 h, 24 h, and 48 h after inoculation and using
uninoculated wheat as a control [31]. In the meantime, 150 mM NaCl and 20% PEG6000
solution were used to treat wheat, and double-distilled water was used as a control. Growth
conditions were a 16 h/8 h (day/night) photoperiod at 25 ◦C. Leaves were collected at 2 h,
6 h, 12 h, 24 h, 48 h, and 72 h after treatment [1,32]. These experimental samples were saved
in liquid nitrogen right away and preserved at −80 ◦C until use. Each sample contained at
least three biological replications.

2.9. Real-Time Quantitative PCR

Total RNA was extracted from each wheat leaf sample using TRIzol reagent (GenStar,
Beijing, China). RNA was reverse-transcribed into cDNA using HiScript II 1st Strand
cDNA Synthesis Kit (+gDNA wiper) (Vazyme, Nanjing, China). Six TaDUF668 genes,
which respond to multiple stresses, were selected for the RT-qPCR analysis. The primers
were designed using Primer Premier 5.0 (Table 1). The RT-qPCR was initiated on a CFX 96
Real-Time PCR system (Bio Rad, Hercules, CA, USA) using ChamQ SYBR qPCR Master
Mix (Vazyme, Nanjing, China). Ta2291 was used as the internal reference gene for RT-qPCR
analysis, which is ADP-ribosylation factor, and its expression level was stable with different
treatments [1]. Three independent biological replicates and three independent technical
replicates were performed for each treatment and control sample. Gene expression was
calculated using a 2−∆∆Ct method [7].

Table 1. RT-qPCR primers for six TaDUF668 genes.

Gene Name Forward Primer Reverse Primer

TaDUF668-09 GGGAACCACCCGAGGAAATA TATCCGCACGCCATCTGAAT
TaDUF668-11 GCAGGAAGTGAAGAGCCAAAGT ATGACCAAAGGCGTCGTAAATC
TaDUF668-14 TTCTCGCTCATCTTCTGTTCCT CAAGCCACCGTAATGTCTTCTC
TaDUF668-26 GCGGAAGCAACGGTTCAG CAACGAGCACCTGGACGAT
TaDUF668-27 GGACGAGCCAAGCGAGAAG CTGTCAACGGAGGTGGCAAT
TaDUF668-28 GGACGAGCCAAGCGAGAAG CTGTCAACGGAGGTGGCAAT

In order to investigate the normality between RT-qPCR gene expression data, skewness
and kurtosis tests were used to determine the normality between the data through a
data processing system (DPS). One-factor analysis of variance was used to determine
significant differences between the means through the DPS (Tang Qi-Yi, Zhejiang University,
Hangzhou, China).
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3. Results
3.1. Identification and Phylogenetic Analysis of TaDUF668s

Through a systematic bioinformatics analysis, 31 TaDUF668 genes were identified
from T. aestivum. To determine the relationships between A. thaliana, O. sativa, Zea mays,
and G. hirsutum DUF668s, a phylogenetic tree containing 95 DUF668 protein sequences
was constructed. As demonstrated in Figure 1, TaDUF668s showed the closest evolutionary
relationships with OsDUF668s. Thus, following the grouping method of OsDUF668s,
31 TaDUF668s were divided into two groups. Group I contained 15 TaDUF668 members,
and Group II contained 16 TaDUF668 members; according to the evolutionary relationships
shown in the phylogenetic tree, they were named TaDUF668-01 to TaDUF668-31.
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Figure 1. Phylogenetic tree of Triticum aestivum, Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa,
and Zea mays DUF668s.

3.2. Chromosome Localization and Evolution Analysis of TaDUF668s

As shown in Figure 2A, 31 TaDUF668 genes were distributed on 18 chromosomes
and were not uniformly distributed. Chr1A, Chr2A, Chr7A, Chr1B, Chr2B, Chr7B, Chr1D,
Chr2D, Chr4D, and Chr7D had the fewest TaDUF668s with only one, while Chr5B had the
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most TaDUF668s with five. Among them, there were 11, 11, and 9 TaDUF668 genes in sub
genomes A, B, and C, respectively.
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Figure 2. Chromosomal localization and evolution analysis of TaDUF668s. (A) Distribution of
chromosomal localization of TaDUF668 genes. The scale mark on the left denotes the physical map
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and lengths. (B) collinearity analysis for TaDUF668 genes in T. aestivum. (C) Ka and Ks scatter
diagram of DUF668 homolog gene pairs among T. aestivum and three ancestors of wheat.

According to the sequence similarity and chromosome location, as depicted in Figure 2B,
a total of 15 pairs of fragment duplications were discovered among 31 TaDUF668 genes,
and no tandem duplication event was discovered. The result indicated that fragment
duplication plays a major role in the expansion of the TaDUF668 family.

In order to deeper understand the evolutionary history of TaDUF668 genes, we worked
out the Ka/Ks rates of 15 pairs of TaDUF668 fragment duplications using TBtools. Mean-
while, 15 (T. aestivum vs. T. aestivum), 18 (T. aestivum vs. A. tauschii), 33 (T. aestivum vs.
T. dicoccoides), and 30 (T. aestivum vs. T. urartu) homologous gene pairs were identified.
The Ka/Ks ratio was calculated by TBtools. As depicted in Figure 2C, the Ka/Ks value
between all homologous gene pairs was less than 1, which indicated that DUF668s had un-
dergone strong purifying selection pressure among common wheat and the three ancestral
wheat species.
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3.3. TaDUF668 Gene Structure and Conserved Motifs

Based on the annotation information in GFF3 file, the TaDUF668 exon/intron structure
was analyzed using TBtools. As exhibited in Figure 3B, the CDS regions of TaDUF668 genes
ranged from 1 to 13. Interestingly, among the members in Group II, only TaDUF668-27,
and -28 contained one intron, whereas all Group I members had multiple introns. In
addition, TaDUF668-01, -05, -06, -07, -08, -09, -10, -13, 18, -20, -21, -22, -26, -27, -28, and
-31 contained UTR regions at both the 5′ and 3′, and TaDUF668-04 only contained UTR
regions at the 3′. Conserved motif analysis showed that TaDUF668s contain conserved
motifs ranging from 3 to 10 (Figure 3B). TaDUF668-01 contains the fewest motifs (3), and
TaDUF668-04 to TaDUF668-15 contains the most motifs (10). Among them, Motifs 6, 7, and
8 constituted the typical DUF668 domain; Motifs 1 and 3 constituted the DUF3475 domain;
the remaining motifs did not match the known functional domains. In addition, combined
with phylogenetic analysis, it was found that members in the same branch had similar gene
structure and conservative motifs.
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3.4. TaDUF668 Protein Characteristics, Subcellular Localization, and 3D Structure Prediction

As exhibited in Table 2, the length of the TaDUF668s ranged from the 156 amino acid
(aa) (TaDUF668-01) to 667 aa (TaDUF668-13) length, with an average of 537.87 aa. The
protein molecular weight ranged from 17.45 (TaDUF668-01) to 74.07 (TaDUF668-13) kDa,
with a mean value of 59.38 kDa. The isoelectric points ranged from 6.43 (TaDUF668-01) to
9.96 (TaDUF668-26), with an average of 8.77. All proteins were basic (pI > 7) except
TaDUF668-01. The protein instability index ranged from 39.64 (TaDUF668-19) to 62.02
(TaDUF668-02), with an average value of 51.99. All TaDUF668s were unstable proteins
(instability index > 40) except TaDUF668-19. The hydrophilic coefficients of TaDUF668s
ranged from −0.707 (TaDUF668-08) to −0.096 (TaDUF668-01), all of which were less than
zero, indicating that TaDUF668s were hydrophilic. No signal peptide was detected, indi-
cating that all TaDUF668s were non-secreted proteins. Subcellular localization prediction
demonstrated that 29% of TaDUF668 proteins were predicted to be localized only in chloro-
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plasts; 58% of TaDUF668s were predicted to be localized only in the nucleus. While 10% of
the TaDUF668s were localized in the chloroplast, nucleus, and cell membrane, TaDUF668-03
was predicted to be simultaneously localized in the nucleus, cytoplasm, and chloroplast.

Table 2. Protein characteristics of TaDUF668s.

Name Gene ID Len. MW. pI. Ins. GRAVY Sig. Sub.

TaDUF668-01 TraesCS5A03G0714700 156 17.45 6.43 44.15 −0.10 No Nuc
TaDUF668-02 TraesCS4B03G0220500 492 56.11 9.48 62.02 −0.59 No Nuc
TaDUF668-03 TraesCS4A03G0577300 552 62.15 8.87 55.17 −0.56 No Chl/Nuc/Cyt
TaDUF668-04 TraesCS2B03G0837000 538 59.50 8.66 43.69 −0.33 No Chl
TaDUF668-05 TraesCS2D03G0700600 538 59.74 8.73 44.08 −0.37 No Chl
TaDUF668-06 TraesCS2A03G0759400 534 59.33 8.80 41.33 −0.32 No Chl
TaDUF668-07 TraesCS7A03G1285000 624 70.07 8.98 57.30 −0.70 No Nuc
TaDUF668-08 TraesCS7D03G1219600 622 69.85 8.97 59.03 −0.70 No Nuc
TaDUF668-09 TraesCS7B03G1202200 622 69.66 8.95 58.49 −0.70 No Nuc
TaDUF668-10 TraesCS1A03G0682400 645 72.40 7.18 52.38 −0.52 No Nuc
TaDUF668-11 TraesCS1D03G0646400 644 72.05 7.44 52.28 −0.50 No Nuc
TaDUF668-12 TraesCS1B03G0776500 647 72.53 7.74 52.66 −0.52 No Nuc
TaDUF668-13 TraesCS3A03G0907200 667 74.07 9.17 54.52 −0.68 No Nuc
TaDUF668-14 TraesCS3D03G0833600 666 73.96 9.16 55.08 −0.68 No Nuc
TaDUF668-15 TraesCS3B03G1028600 667 74.06 9.16 54.80 −0.68 No Nuc
TaDUF668-16 TraesCS5B03G1360500 537 57.58 9.61 48.32 −0.18 No Nuc
TaDUF668-17 TraesCS5D03G1204500 542 57.93 9.67 49.08 −0.20 No Nuc
TaDUF668-18 TraesCS4A03G0791000 541 57.95 9.67 48.51 −0.21 No Nuc
TaDUF668-19 TraesCS5B03G0355900 240 26.25 6.50 39.64 −0.40 No Nuc
TaDUF668-20 TraesCS5B03G0360900 545 59.58 9.65 47.45 −0.25 No Chl
TaDUF668-21 TraesCS5D03G0347700 542 59.32 9.62 47.93 −0.22 No Chl
TaDUF668-22 TraesCS5A03G0365500 545 59.49 9.53 47.11 −0.23 No Chl
TaDUF668-23 TraesCS5B03G1143800 573 62.51 7.03 60.36 −0.27 No Nuc
TaDUF668-24 TraesCS5D03G1034300 569 62.12 7.63 59.34 −0.24 No Nuc
TaDUF668-25 TraesCS5A03G1081600 571 62.29 7.30 58.04 −0.23 No Nuc
TaDUF668-26 TraesCS4B03G0579600 464 50.95 9.96 55.67 −0.33 No Chl
TaDUF668-27 TraesCS4D03G0514500 465 51.17 9.84 57.11 −0.35 No Chl
TaDUF668-28 TraesCS4A03G0195500 465 51.19 9.92 55.40 −0.35 No Chl
TaDUF668-29 TraesCS3D03G0788700 487 53.13 9.37 50.59 −0.22 No Cem/Chl/Nuc
TaDUF668-30 TraesCS3B03G0984500 487 53.13 9.37 49.99 −0.20 No Cem/Chl/Nuc
TaDUF668-31 TraesCS3A03G0859800 487 53.13 9.37 50.04 −0.21 No Cem/Chl/Nuc

Len, length of amino acid (aa); MW, molecular weight (kDa); pI, isoelectric point; Ins, instability index; GRAVY,
grand average of hydropathicity; Sig, signal peptide; Sub, subcellular localization; Nuc, nucleus; Chl, chloroplast;
Cyt, cytoplasm; Cem, cell membrane.

SWISS-MODEL was used for 3D homology modeling of TaDUF668s. As shown in
Figure 4, the 3D structures of 31 TaDUF668s are mainly composed of α-helices, β-turns,
extended chains, and random coils. Among them, α-helices accounted for the largest
proportion (35.42–61.94%), followed by random coils (26.08–40.42%) and extended strands
(5.81–16.10%), and β-angles accounted for the smallest proportion (3.66–8.33%). The figure
indicates that members within the same group have more similarities in 3D structure than
members between different groups.
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(GARE-motif and P-box), abscisic acid (ABRE), salicylic acid (TCA-element), and jasmonic 
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3.5. TaDUF668 cis-Element Analysis

In this study, the upstream 1.5 kb regions of 31 TaDUF668s were analyzed and, in
total, 50 kinds of cis-acting elements were identified. The results are depicted in Figure 5.
They were divided into four categories: light response (20), abiotic stress (8), growth and
development (9), and phytohormones (13). Among them, light-responsive elements are the
most common (Figure 5A), including ACE, ATC-motif, AE-box, Box 4, Box II, CAG-motif,
chs-CMA1a, chs-CMA2b, GA-motif, GATA-motif, Gap-box, G-box, GTGGC-motif, GT1-
motif, I-box, MRE, Sp1, TCCC-motif, TCT-motif, and ATCT-motif. As exhibited in Figure 5B,
stress response elements, such as anaerobic induction regulatory elements (GC-motif and
ARE), drought response elements (MBSs), defense and stress-related elements (TC-rich
repeats), and low-temperature response (LTR) elements, were also found in the TaDUF668
promoter. Meanwhile, growth- and development-related elements were also detected, such
as the cis-element related to meristem expression (CAT-box), the seed-specific regulatory
element (RY-element), the palisade mesophyll cell differentiation element (HD-Zip1), and
cell cycle regulatory elements (MSA-like). As shown in Figure 5D, phytohormone response
elements, such as auxin (AuxRR-core and TGA-element), gibberellin (GARE-motif and P-
box), abscisic acid (ABRE), salicylic acid (TCA-element), and jasmonic acid (TGACG-motif
and CGTCA-motif), were also detected.
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3.6. TaDUF668 Expression Profiling Analysis

In order to further explore the expression characteristics of TaDUF668 genes, their
expression patterns were analyzed using the RNA-seq transcriptomic data. As demon-
strated in Figure 6A, the TaDUF668 expression pattern was tissue-specific. The expression
levels of TaDUF668-10 to TaDUF668-15 were generally higher throughout the growth and
development stages, especially in root tissues. TaDUF668-10, -11, -12, -13, -14, and -15
were highly expressed in roots, leaves, and spikes in Chinese Spring wheat. In contrast,
the expression levels of TaDUF668-10 to TaDUF668-15 were lower in the Chinese spring
wheat seeding stage and three leaf stage. TaDUF668-11, -27, and -28 were highly expressed
in flag leaves and leaf sheaths at the grain filling stage; the three genes were also highly
expressed in roots of the three leaf stage and three leaf stage of Chinese spring wheat. But
TaDUF668-27 and -28 were hardly expressed in grain, spikes, leaves, stems, and seedlings
of Chinese spring wheat. As exhibited in Figure 6B, the expression levels of TaDUF668-10 to
TaDUF668-15 in the root were higher than those in the shoot under phosphorus deficiency
stress. After 1 h of drought treatment, the expression levels of TaDUF668-14, -15, and -28
were higher than those in the control in the 7-day-old leaves of TAM107 wheat. The expres-
sion of TaDUF668-11 was upregulated at 2 h and 12 h of drought treatment compared with
the control. As depicted in Figure 6C, the expression levels of five TaDUF668 (TaDUF668-11,
-14, -15, -27, and -28) genes were highly induced in response to the stress of Fusarium
pseudograminearum, F. graminearum, Blumeria graminis, Puccinia striiformis, and Zymoseptoria
tritici. Among them, TaDUF668-27 and -28 were highly induced only by B. graminis and
P. striiformis stresses. The expression levels of TaDUF668-14 and -15 were highly induced
only by Z. tritici stress, whereas TaDUF668-11 was highly induced only by F. graminearum
stress. These results indicate that TaDUF668 not only participates in wheat growth and
development but also plays a momentous effect in wheat stress response.
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Figure 6. Expression patterns of TaDUF668s under growth and development as well as biotic and
abiotic stress treatment conditions. Red indicates high expression level, and blue represents low
expression level. Numbers from 0 to 5 indicate expression levels from low to high. L, leaf; Rs, roots;
SAM, shoot apical meristem; RAM, root apical meristem; SS, seedling stage; TS, tillering stage; MGS,
milk grain stage; TLS, three leaf stage; FLS, flag leaf stage; Ps, phosphorous starvation; D, drought; H,
heat; D&H, drought and heat combined; Sus, susceptible; Res, resistant; FG, Fusarium graminearum;
FP, Fusarium pseudograminearum; SA, spikelet anthesis; BG, Blumeria graminis; PS, Puccinia striiformis;
ZT, Zymoseptoria tritici.

3.7. Post-Transcriptional Regulation of TaDUF668 by miRNAs

As can be seen from Figure 7, 20 wheat miRNAs were forecasted to target 12 TaDUF668
gene transcripts through cleavage and translation repression. It is suggested that tae-
miR6197-5p target TaDUF668-11 and tae-miR9671-5p target TaDUF668-14 by inhibiting
translation; the remaining miRNAs target TaDUF668s by cleavage. Among them, tae-
miR1119 and tae-miR9652-5p can simultaneously target TaDUF668-13, -14, and -15; tae-
miR5086 targets TaDUF668-18 and -28. Meanwhile, TaDUF668-11 and TaDUF668-18 were
also targeted by tae-miR9677b and tae-miR9673 through cleavage. Interestingly, TaDUF668-
27 was targeted by four miRNAs, namely tae-miR10521, tae-miR1134, tae-miR9667-5p, and
tae-miR9669-5p; TaDUF668-28 was targeted by five miRNAs, namely tae-miR1124, tae-
miR1136, tae-miR5086, tae-miR5384-3p, and tae-miR9666a-3p. Last but not least, TaDUF668-
06, -07, -08, -09, and -26 were targeted by tae-miR5085, tae-miR120b-3p, tae-miR1117, tae-
miR9776, and tae-miR9676-5p, respectively. The results showed that multiple miRNAs
degrade TaDUF668 transcription products by cleavage or inhibit their translation process
to form diverse regulatory relationships.
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3.8. Real-Time Quantitative PCR Analysis

According to expression profiling results, TaDUF668-09, -11, -14, -26, -27, and -28
were highly induced by F. graminearum, PEG6000, B. graminis, and Z tritici (Figure 8). To
further validate the role of TaDUF668 in wheat stress response, these six TaDUF668 genes
were selected for real-time PCR analysis. The expression levels of these six genes varied
according to the treatment type and time.
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Figure 8. Expression patterns of six TaDUF668 genes under different treatment conditions. The
treatments include PEG, NaCl, F. graminearum, and P. striiformis. In the figure, the Y-axis represents
the relevant expression level, and the X-axis represents the time point of stress treatment. The data
from all experiments were expressed as the means ± SE. The results of tests were consistent with the
approximate normal distribution. One-way analysis of variance was used to determine significant
differences between the means. Error bars represents standard error. Different letters indicate means
that are significantly different at the p < 0.05 level among different treatments conditions.
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In PEG-treated leaves, TaDUF668-09, -11, -14, -27, and -28 were highly upregulated
at 2 and 12 h; among them, the expression level of TaDUF668-09 was most significantly
increased to forty-fold that of the CK control. Then, it returned to the CK level after
48 h. TaDUF668-09 was only induced after 12 h and was consistent with the CK in rest
time points.

In NaCl-treated leaves, four TaDUF668 genes were highly upregulated at 2 h. Then,
the expression level declined to the CK level after 6 h. However, the relative expression
levels of TaDUF668-26 and TaDUF668-28 were similar to or lower than CK.

In leaves inoculated with F. graminearum, six TaDUF668 genes were intensively upreg-
ulated at 6 h. The expression levels of TaDUF668-09 and TaDUF668-14 were higher than the
other four TaDUF668 genes. TaDUF668-26, TaDUF668-27, and TaDUF668-28 were gradually
ascended from 24 h to 96 h. Notably, the 96 h expression of TaDUF668-27 was nearly six
times higher than CK. On the contrary, TaDUF668-11 and TaDUF668-14 approximatively
manifested a descending trend after 12 h. In particular, the expression level of TaDUF668-09
was obviously elevated after 96 h.

In leaves inoculated with P. striiformis, except for TaDUF668-09, which had a lower
expressed than CK at all time points, the expression levels of the genes (TaDUF668-11, -14,
-26, -27, and -28) were lower than CK only at 12 h; thus, their expression was mostly highly
induced after 6 h, 24 h, and 48 h. The increasing trend of TaDUF668-11 and -14 was clearly
more pronounced than that TaDUF668-26, -27, and -28.

4. Discussion

Previous studies indicated that DUF668 plays important roles in plant growth and
development and stress response in rice [13], cotton [8], and sweet potato [14]. Never-
theless, the DUF668 family in wheat, one of the most important main crops, is largely
unknown. In order to provide an insight into wheat TaDUF668, we carried out systematic
identification, characterization, and expression profiling analysis of family genes. In total,
31 TaDUF668s were identified (Figure 1 and Table 2). In comparison, there were 6, 11, 12,
and 32 DUF668s in the reference genome of Arabidopsis [13], sweet potato [14], rice [13],
and cotton [8]. Considering the ploidy and genome size, it seems that, during the evolu-
tion of wheat, the TaDUF668 family underwent the chromosome doubling process, and
hexaploidy contributed to the family expansion. However, a few duplication genes may
have been lost during evolution. The deduction explains the phenomenon for TaDUF668
whereby members are not evenly distributed in the chromosome (Figure 2A).

The Ka/Ks value, the ratio of non-synonymous replacement rate to synonymous
replacement rate, is generally used to represent the rate of genetic evolution of a species [33].
A value equal to, larger than, or smaller than 1 represents a neutral, positive, or negative
selection effect, respectively [34]. In this study, the result of evolution analysis manifested
DUF668 family members of four species (T. aestivum, T. dicoccoides, T. urartu, and A. tauschii)
that have undergone a strong selection pressure for purification during evolution, which
may have helped to maintain the function of DUF668 (Figure 2C). This result implies a new
possibility for the functional similarity of DUF668 in rice, cotton, and sweet potato.

According to the analysis results of protein characteristics, the majority of TaDUF668
members were predicted to show subcellular localization in the nucleus and chloroplasts.
However, the pI and GRAVY values of most Group II members are larger than those
of Group I (Table 2). This result indirectly indicates differences in function between the
two groups. Based on 3D models of TaDUF668s, in general, the models within the group
are similar, but the models between the groups are different (Figure 3). This result provides
evidence for functional differentiation of proteins.

To better understand the reasons for differentiation, we proceeded with the analysis
of gene structure. The structure of a gene determines its function [1]. The quantitative
differences between exons and introns may provide evidence for evolutionary conservation
and provide reference information for phylogeny [35]. The result of gene structure analysis
displayed that the exons and introns of the same group were similar in the gene structure of
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TaDUF668s, and the number and length of exons and introns of two groups were different,
which is likely one of the reasons leading to the of function evolution and differentiation of
TaDUF668s (Figure 3B). Avina-Padilla et al. [36] found that intron-deficient genes originated
from prokaryotes and could be replicated in plant genomes. The intron-free DUF668 gene
has also been analyzed in O. sativa [13], A. thaliana [13], G. hirsutum [8], and I. batatas [14],
suggesting that the DUF668 gene family is highly conserved across species. Moreover, the
results manifested in the two groups of DUF668 may have different evolution methods.
Protein-conserved motif analysis found that the number of motifs in Group I was larger
than that in Group II on the whole (Figure 3C). Motifs 1, 2, 3, 4, 5, 6, 7, and 8 were found
in most TaDUF668 family members, and their relative location distribution had certain
rules. Meanwhile, phylogenetic analysis showed that TaDUF668s in the same subgroup
contained more similar motifs, but the numbers of motifs in the two groups were different.
It is speculated that the reason for this phenomenon may be the loss or addition of motifs in
the evolutionary process of the TaDUF668 family. Motifs 6, 7, and 8 are the key components
of DUF668, and their functions need to be further studied.

Cis-elements are among the main regulatory factors of gene expression and regulate
the expression of related genes in response to growth and development processes and
environmental changes [37]. Cis-acting elements can provide a basis for exploring gene
expression patterns with different tissues or environmental stresses [38]. It has been
reported that there is a significant positive correlation between upstream promoter region
response genes and their cis-elements [39]. Nakashima et al. [40] found that there are
several cis-elements in gramineous plants that can improve their tolerance to abiotic stress.
Photoinductive elements are highly enriched in the rice DUF668 promoter and play an
important role in the regulation of adaptive growth in rice and development to UV [13].
Notably, rice and wheat belong to the same Gramineae family, and both species share similar
cis-elements in the DUF668 family. The results of TaDUF668s cis-element analysis showed
that light-responsive elements were widely distributed in the TaDUF668 family (Figure 5).
Therefore, combined with previous studies, it was speculated that these light-responsive
elements played an important role in wheat growth regulation and stress response.

Expression profiling analysis can provide a favorable basis for the determination of
gene function [8]. For instance, Xie et al. [41] analyzed the expression profiling of the tre-
halose gene family in winter wheat to reveal the molecular mechanism of winter wheat frost
resistance and provide clues for its application in frost resistance breeding. The expression
of plant stress response genes is one of the ways for plants to resist abiotic stress [1]. The
results of expression profiling revealed diversified regulation models of TaDUF668 genes in
different wheat development stages and environment condition (Figure 6). Combined with
the results of expression profiling, TaDUF668 genes may increase their relative expression
to resist environmental stress and pathogen invasion. In order to verify the hypotheses, we
designed a RT-qRCR experiment according to reported methods [1].

To further ascertain the biological function of TaDUF668s in response to stress, six
genes that respond to multiple stresses were selected for RT-qPCR. The results showed
that TaDUF668s was involved in the response of wheat to PEG, NaCl, F. graminearum, and
P. striiformis stresses (Figure 8). Zhong et al. [13] have shown that OsDUF668 genes are
involved in the process of rice stress response to PEG, NaCl, drought, and P. cinerea through
a RT-qPCR experiment. Apart from that, they verified through RT-qPCR experiments that
OsDUF668s were expressed in a tissue-specific manner and might have participated in
plant hormone regulation. Zhao et al. [8] have found through RT-qPCR experiments that
GhDUF668s play a crucial role in drought and Verticillium wilt stress. The reason for the
similar results may be that the domain of protein family is conservative and thus similar
in biological function. Combined with the results of expression profiling analysis and
RT-qPCR analysis, we further suspect that these adverse stresses may increase the relative
expression level of the corresponding gene to adapt to the change in environment and the
damage from pathogens (Figure 8).
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The miRNAs act in two ways: one is complementary to target miRNA and interferes
with the expression of target genes through cleavage; the other is regulatory by inhibiting
the translation process [42]. miRNAs are involved in plant growth, development, and
stress response by regulating the transcripts of target genes [43]. In this study, miRNAs
targeting TaDUF668s were identified, and the regulatory relationship between them was
analyzed (Figure 7). There are 20 tae-miRNAs, including tae-miR5086, tae-miR1119, and tae-
miR9652. Shi et al. [44] found that tae-miR1119 plays a significant part in plant response to
drought stress by cutting mechanisms and regulating target genes. Through the integration
of cis-element analysis, expression profiling, and miRNA target analysis of TaDUF668,
some interesting clues were uncovered. For instance, the expression of TaDUF668-13,
-14, and -15 rapidly dropped in drought and heat stress, as their promoter regions lack
drought response elements (MBSs). However, their promoter regions contain multiple
“growth and development” elements, and they have high expression levels in growth and
development stages. The three genes were targeted by tae-miRNA-1119, which is related to
drought. Thus, it seems that, through responsible cis-elements, TaDUF668-13, -14, and -15
are involved in wheat growth and development, and through suppression of the expression
level by tae-miRNA-1119, they are responsive to drought stress. In summary, miRNAs and
cis-elements form a complex regulatory mechanism in TaDUF668 expression.

5. Conclusions

In summary, a total of 31 TaDUF668 genes were identified in this study, which
were classified into two groups according to phylogenetic and evolutionary relationships.
TaDUF668s are unevenly distributed on 18 chromosomes. DUF668 is highly conserved
between wheat species and its three ancestral wheat species and has undergone strong
selection pressure for purification during its evolution. Analysis of gene structure and
protein-conserved motifs indicated that the TaDUF668 gene family in the same group
had a similar structure. The analysis of cis-elements and expression patterns provided
a theoretical basis for the response of the TaDUF668 gene family to wheat growth and
development and stress. miRNA analysis elucidates the regulatory relationship between
miRNA and TaDUF668s after transcription. The results of RT-qPCR analysis showed that
the TaDUF668 family participated in the process of wheat response to stress.
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