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Abstract: Organic material incorporation are important agricultural practices, which can influence
soil organic carbon (SOC) sequestration and stabilization. However, the response of interaction
between SOC structure and soil microbial to organic material incorporation management are still
poorly understood. In 2021, we conducted a three years field experiment in Guangrong country,
northeastern China. Five treatments were established: conventional tillage (CK), conventional
tillage with straw incorporation (T1); subsoil tillage with straw incorporation (T2); subsoil tillage
with straw and organic manure incorporation (T3) and subsoiling tillage with organic manure
incorporation (T4). Fulvic–like and protein–like components were found in fulvic acid (FA) in a
0–15 cm soil layer, while fulvic–like components in humic acid (HA) were found in 0–15 cm and
15–35 cm soil layers. In the 15–35 cm soil layer, the bacterial, fungal and total phospholipid fatty
acid (PLFA) contents were significantly higher by 159.62%, 687.00%, and 139.02% in T3 than CK,
respectively. The fungal to bacterial PLFA ratios (F/B) were significantly higher by 97.46% and the
Gram–positive bacteria to Gram–negative bacteria PLFA ratios (G+/G−) were lower by 20.99% in
T3 than CK in the 15–35 cm soil layer. Therefore, subsoil tillage with straw and organic manure
incorporation could be recommended to improve soil quality in Mollisol.

Keywords: organic material return; tillage depths; PLFAs; humus substance; black soil

1. Introduction

Soil organic carbon (SOC) plays a major role in the global carbon cycle, such as main-
tenance of soil fertility and support of plant growth [1,2]. Nowadays, the management of
SOC is even more important than before because of high-intensity land use in terms of
storing more carbon in the land and maintaining yields of crops. As the largest constituents
of SOC, humic substances (HS) play a vital role in maintaining soil ecosystem services [3],
which account for 85–90% of the total SOC, including fulvic acid (FA), humic acid (HA)
and humin (HM). Compared to other soil compounds, HS have a unique structural pattern
and its chemical composition can provide a good representation of natural organic mat-
ter [4]. In recent years, increasing attention was devoted to elucidate humic substances’
structural characteristics [5]. These studies demonstrated that HS structural characteristics
undergo significant changes upon shifts in soil management practices. Three-dimensional
excitation emission matrix (3D–EEM) fluorescence spectroscopy has gradually been used
to analyze the structure, configuration and kinetics of HS interactions with molecules and
intramolecular interactions by researchers [6,7]. Furthermore, 3D–EEM has advantages of
strong selectivity, high sensitivity and no damage to the sample, and its potential to ana-
lyze HS structures was demonstrated [8,9], while parallel factor analysis (PARAFAC) can
mathematically quantify and qualitatively decompose complex fluorescence spectra into
individual fluorescence components [10]. Therefore, 3D–EEM fluorescence spectroscopy
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combined with PARAFAC was used for the description of HS structures, and provides
a variety of spectral matrix data that can be excellent taxonomic resolution used to cal-
culate specific indicators to characterize and evaluate the properties of HS components.
Overall, understanding the chemical compositions of HS will help us clarify the response
mechanism of SOC structure to soil management.

Soil microorganisms also play a key role in mediating changes in soil via mineralization
of SOC [11]. Studies have shown that characterization of soil microbial communities is
an early means of quantifying the increase and stability of SOC levels under different
soil management systems [12,13]. Researchers have widely used phospholipid fatty acid
(PLFA) method to analyze the overall composition and relative abundance of soil microbial
communities. [14,15]. Although genomic methods have excellent taxonomic resolution,
PLFA analysis is more relevant for quantitative characterization of the relative biomass
of a group [12]. The PLFA analysis can help us to explore the effects of different organic
material incorporation on microbial communities to investigate the role of microorganisms
in soil management practices. Many studies have reported that soil management practices
influence SOC contents by affecting soil microorganisms [16–18]. However, our study will
explore the effects of soil microorganisms on the HS structure.

The region of Mollisol is an important soil resource for crop production and plays
a unique role in food security in China [19]. However, SOC contents have decreased by
22.3% over the past three decades in the Mollisol region in Northeastern China because
of intensive cultivation with lack of organic material inputs [20]. Moreover, HS structure
characteristics have significantly changed because of improper soil management, such as
a decrease of aliphatic C and hydrophobic C [21]. Tillage, as one of the most significant
anthropogenic activities, significantly alters soil properties. However, conventional tillage
practice decreases the contents of carbon and the soil microbial activities in the whole
cultivated layer (0–35 cm soil layer) [22]. Moreover, long-term conventional tillage practice
inhibits the exchange of heat, gas and water between the 0–15 cm soil layer and 15–35 cm
soil layer [23]. Therefore, it is urgent to improve soil fertility after long-term conventional
tillage without organic material incorporation [24]. In an agroecosystem, crop straw is a
major source of organic carbon [25], and straw incorporation is considered as an important
practice for offsetting carbon loss in agricultural soil [26]. Few data are available to date on
the response of soil to different organic material incorporation depths, and changes in HS
structural characteristics and soil microbial communities remain unclear. The aims of the
study were to (I) identify the humus components according to PARAFAC under organic
material incorporation, (II) examine the effects of organic material incorporation on soil
microbial community composition characteristics, and (III) identify interaction between
humus components and the soil microbial community.

2. Materials and Methods
2.1. Study Description and Experimental Layout

The field experiment was established in 2018 at Guangrong country (47.27◦ N, 126.41◦ E;
240 m a.s.l.) in Heilongjiang Province, China. The USDA Soil Taxonomy System classifies
the soil at the site as a Mollisol [27]. The study site is in a moderate temperate continental
monsoon climate zone with average annual rainfall of 550 mm and air temperature of
1.5 ◦C.

The experimental design was a completely randomized block with three replicates of
five treatments: conventional tillage (CK, tillage depths to 15 cm with no straw incorpora-
tion), conventional tillage with straw incorporation (T1, tillage depths to 15 cm), subsoil
tillage with straw incorporation (T2, tillage depths to 35 cm), subsoil tillage with straw
and organic manure incorporation (T3, tillage depths to 35 cm) and subsoil tillage with
organic manure (T4, tillage depths to 35 cm). The rate of straw incorporation in T1, T2 and
T3 was 10,000 kg ha−1, with the corn straw being cut by a machine into segments <5 cm
long and evenly mixed into the 0–15 cm soil layer in T1 and the 0–35 cm soil layer in T2
and T3. The rate of straw incorporation was determined by the total straw production. The
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rate of organic manure incorporation in T3 and T4 was 30,000 kg ha−1. Furthermore, the
organic carbon and total nitrogen contents of corn straw were 40.5% and 0.62%, and those
of organic manure were 17.06% and 1.09%. Each plot was 12 m2 (4 m × 3 m); the cropping
system was a maize–soybean rotation. The rates of fertilization were 180 kg N ha−1 as urea,
70.0 kg P2O5 ha−1 as diammonium phosphate and 60 kg K2O ha−1 as potassium sulphate
in the maize field, and 27 kg N ha−1 as urea, 70 kg P2O5 ha−1 as diammonium phosphate,
60 K2O kg as potassium sulphate in the soybean field. The field management practices
adopted were the same as those used by local famers.

2.2. Soil Sampling

Soil samplings were collected in October 2021 from the 0–15 cm and 15–35 cm soil
layers for each treatment at four randomly selected points, and then mixed into composite
samples. These mixed samples were placed in sterile bags and transported to the laboratory
for analysis. Visible stones, plant residues, and other organic debris were removed by hand,
and we divided soil samples into two subsamples. The first set of subsamples were passed
through a 2.00 mm sieve and stored in plastic bags at 4 ◦C prior to analyses of microbial
biomass carbon (MBC), microbial biomass N (MBN) and PLFA. The other set of subsamples
were air dried at room temperature and used for chemical analysis. The air-dried samples
were sieved (0.25 mm) and milled for soil chemical properties, fulvic acid (FA) and humic
acid (HA) analyses.

2.3. Soil Properties Testing

Soil total carbon and nitrogen contents were analyzed using an elemental analyzer
(EA3000, Euro Vector, Pavia, Italy). Soil total carbon precisely represents SOC because the
Mollisol are carbonate-free in the study area. Soil pH was measured using a pH meter
(Delta 320, Mettler Toledo, Greifensee, Switzerland) on a 1:2.5 (w/v) mixture of soil and
water. The contents of available nitrogen (AN), available phosphorus (AP) and available
potassium (AK) were measured as described by Taylor and Francis [28]. Before and after
drying at 105 ◦C for 24 h, soil–moisture content was measured by weighing the soil. We
used chloroform fumigation-extraction to measure MBC and MBN [29].

2.4. Humic Substances Extraction, Fluorescence Spectra and EEM PARAFAC Analysis

Humus composition was analyzed following the method described by Zhang et al. [30].
Briefly, 3 g of air–dried soil was extracted with 30 mL distilled water (removed CO2) under
permanent shaking (180 r min−1) at 50 ◦C for 1 h. The mixture was centrifuged for 15 min
at 3000× g and filtered through a membrane filter. The supernatant was dissolved with
organic carbon. The remaining soil was extracted with a 30 mL mixture of 0.1 M alkali
solution (NaOH + Na4P2O7) under permanent shaking (180 r min−1) at 50 ◦C for 24 h.
The mixture was centrifuged for 15 min at 3000× g and filtered. The supernatant was
acidified to pH 1, then left standing at room temperature for 12 h, centrifuged, and filtered.
This supernatant was fulvic acid (FA). The sediments were dissolved with 0.05 mol L−1

NaHCO3 and filtered. The solution was humic acid (HA).
FA and HA concentrations were measured by a TOC analyzer (Elementar Analysen

systeme, Hanau, Germany), and fluorescence spectra were obtained for aqueous solu-
tions of FA and HA at a concentration of 10 mg L−1. Spectra were recorded using a
F7000 Fluorescence spectroscopy (Hitachi, Tokyo, Japan). Fluorescence spectra in the form
of excitation/emission matrices (EEMs) were recorded over the emission (EM) wavelength
range from 200 to 600 nm, and excitation (EX) wavelength range from 200 to 600 nm. The
sampling interval with EM and EX was 5 nm and 10 nm, respectively, and the scan speed
was 2000 nm min−1. We used PARAFAC analysis with the DOMFluor toolbox [10], which
includes all the tools used to identify outlier samples and perform split-half analysis and
residual errors diagnostics.

The fluorescence index (FI) and humification index (HIX) were the indexes used for
evaluating of changes of FA and HA. FI and HIX were calculated as [9,10];
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FI = Em
370 nm
450 nm

(Ex = 370 nm) (1)

HIX = Em
435 − 480 nm
300 − 345 nm

(Ex = 254 nm) (2)

where the values of Ex and Em are the results in the fluorescence spectrogram after parallel
factor analysis.

2.5. PLFA Analysis

PLFAs were extracted from 8 g of the freeze–dried soil samples to analyze microbial
community structure [31]. The freeze–dried soil samples were taken and added with
30.4 mL of single-phase, citrate buffer–chloroform–methanol (volume ratio 0.8:1:2), shaken
for 150 min away from light, and centrifuged for 7 min (4000× g). The phospholipid layer
existed in the lower layer of the chloroform layer; the chloroform layer was transferred
to a test tube and then the chloroform was blown dry with nitrogen at 30 ◦C. Then,
phospholipids were separated from these glycolipids and neutral lipids by silica solid-
phase extraction columns (Supelco, Bellefonte, PA, USA). Polar lipids were methylated
and PLFA methyl esters were analyzed using an Agilent 6890A gas chromatograph (GC)
(Agilent Tech, Santa Clara, CA, USA) equipped with an HP–5 capillary column and a
flame ionization detector. Prior to GC analysis, the samples were dissolved in 150 µL of
hexane, and methyl nonyl decanoate (19:0, Sigma-Aldrich, St. Louis, MO, USA) was added
as an internal standard for quantification. Purified nitrogen was used as carrier gas at a
0.8 mL min−1 flow rate. Ultrapure nitrogen at a flow rate of 0.8 mL min−1 was used as
the carrier gas. The Supelco 37 Component fatty acid methyl esters (FAMEs) were mixed,
and bacterial acid methyl esters (Sigma-Aldrich) were used for peak identification and
quantification. There were 27 PLFAs identified and used for data analysis.

For the taxonomic categorization of PLFA biomarker data, we used fatty acids 14:0,
a14:0, i14:0, 15:0, a15:0, 15:0DMA, i15:0, i15:1ω6c, 16:0, i16:0, 16:1ω7c, 17:0, a17:0, cy17:0ω7c,
i17:0, 17:1ω8c, 18:0, 18:1ω5c, 18:1ω7c, cy19:0ω7c and 20:0 to represent bacterial PLFAs.
Fatty acids 18:1ω9c and 18:2ω6c were used as indicators of fungal PLFAs [32]. We used
fatty acids 10Me16:0, 10Me17:0, 10Me18:0 and 10Me18:1ω7c to represent actinomycetic
PLFAs [33]. Fatty acids i14:0, a14:0, i15:0, a15:0, i16:0, i17:0, a17:0 and i15:1ω6c were used
as biomarkers of Gram–positive (G+) bacteria and 16:1ω7c, cy17:0ω7c, 17:1ω8c, 18:1ω5c,
18:1ω7c and cy19:0ω7c were used as biomarkers of Gram–negative (G−) bacteria [34]. The
ratio of Gram–positive to Gram–negative biomass (G+/G−) was considered to be a stress
indicator based on PLFA [35]. The ratio of fungal to bacterial biomass (F/B) was used to
assess the relative advantage of fungi over bacteria [36]. The sum of PLFAs represent the
microbial lipid biomass.

2.6. Statistical Analysis

We used SPSS 17.0 (IBM, Armonk, NY, USA) to conduct statistical analyses. Signifi-
cant differences among treatments were identified using a one-way analysis of variance
(ANOVA) in combination with an LSD test (p ≤ 0.05, p ≤ 0.01) for all data. Figures for
the principal component analysis (PCA) were created using Origin 2019b (IBM, Armonk,
NY, USA). Figures for fluorescence spectra was performed using Matlab 2020a software
(MathWorks, Natick, MA, USA). The partial least squares path modelling (PLS–PM) was
used to evaluate the direct and indirect relationships among all indicators by using the
R v4. 2. 3 software and PLS–PM packages. Direct effects (i.e., path coefficients) represent
the direction and strength of linear relationships between variables [37].

3. Results
3.1. Soil Properties

The T1, T2, T3 and T4 significantly increased SOC contents by 6.16–15.38% I then
0–15 cm soil layer compared with CK (p < 0.05). The SOC and TN contents significantly
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increased by 1.09–20.11% and 5.73–19.11% in T2, T3 and T4 in the 15–35 cm soil layer,
compared with CK, respectively (p < 0.05). Soil pH did not differ significantly between CK
and other treatments in the 15–35 cm soil layer, and no significant difference appeared in the
AK contents in the 0–35 cm soil layer among the five treatments. The AN and AP contents
were increased by 3.17–12.76% and 2.31–134.98% in T1, T2, T3 and T4 in the 0–15 cm soil
layer, compared with CK. The AN and AP contents were 15.78–33.91% and 232.97–323.84%
higher in T2, T3 and T4 than those in CK for the 15–35 cm soil layer. MBC contents of
T3 were significantly higher by 79.31% than CK in the 0–15 cm soil layer (p < 0.05). In the
15–35 cm soil layer, T2, T3 and T4 significantly increased the MBC contents by 43.44–97.49%,
compared with CK (p < 0.05). MBN contents were significantly higher by 19.95% in T3 than
those in CK (p < 0.05) for the 0–15 cm soil layer. Compared with CK, the T2, T3 and T4
exhibited significantly increased MBN contents of 18.87–46.75% (p < 0.05) in the 15–35 cm
soil layer (Table 1).

Table 1. Soil properties under different organic materials and their incorporation depths.

Treatments Layers SOC TN pH AN AP AK MBC MBN

(cm) (g kg−1) (g kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1)

CK 0–15 19.5 ± 0.02 d 1.72 ± 0.01 c 6.57 ± 0.01 a 101.1 ± 0.73 d 28.99 ± 1.84 c 130.5 ± 4.86 a 179.3 ± 8.40 c 12.88 ± 1.21 c
15–35 18.4 ± 0.02 c 1.57 ± 0.01 c 6.60 ± 0.01 a 78.71 ± 0.41 d 7.34 ± 1.12 d 104.3 ± 2.87 a 111.8 ± 3.09 c 9.54 ± 0.39 c

T1 0–15 21.9 ± 0.10 b 1.74 ± 0.01 c 6.34 ± 0.01 b 108.7 ± 1.81 b 41.55 ± 1.99 b 140.0 ± 5.21 a 269.1 ± 8.10 b 13.12 ± 2.39 c
15–35 19.2 ± 0.04 bc 1.61 ± 0.01 bc 6.61 ± 0.01 a 88.75 ± 0.59 c 14.88 ± 1.52 c 105.3 ± 2.87 a 148.4 ± 3.70 b 10.13 ± 1.23 c

T2 0–15 20.8 ± 0.02 c 1.78 ± 0.01 b 6.41 ± 0.01 b 104.4 ± 0.98 c 29.66 ± 0.53 c 139.5 ± 5.33 a 214.8 ± 8.68 c 12.39 ± 7.97 c
15–35 19.9 ± 0.01 b 1.67 ± 0.01 b 6.61 ± 0.01 a 96.00 ± 1.11 b 22.71 ± 1.14 b 109.3 ± 6.45 a 204.7 ± 1.35 a 11.46 ± 0.096 b

T3 0–15 22.5 ± 0.01 a 1.94 ± 0.01 a 6.35 ± 0.01 b 114.0 ± 0.78 a 68.12 ± 1.24 a 149.0 ± 3.24 a 321.5 ± 7.97 a 15.45 ± 8.68 a
15–35 22.1 ± 0.03 a 1.87 ± 0.01 a 6.61 ± 0.01 a 105.4 ± 0.38 a 31.11 ± 1.47 a 112.3 ± 4.68 a 220.9 ± 2.39 a 14.00 ± 2.92 a

T4 0–15 20.7 ± 0.01 c 1.78 ± 0.02 b 6.23 ± 0.01 d 104.3 ± 1.11 c 32.95 ± 1.31 c 139.0 ± 2.27 a 296.8 ± 4.70 b 14.34 ± 1.28 b
15–35 18.6 ± 0.03 bc 1.66 ± 0.01 b 6.61 ± 0.01 a 91.22 ± 0.59 c 24.44 ± 3.00 b 109.8 ± 3.82 a 160.5 ± 1.28 b 11.34 ± 0.69 b

Two-way ANOVA results (p values)
Treatment

(T) p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.01 p < 0.001 p < 0.001

Layer (L) p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
T × L p < 0.001 N.A. p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.01 N.A.

Different letters indicate significant differences between samples in the same soil layer (p < 0.05). Values are
mean ± errors (n = 4). Abbreviations: SOC: Soil Organic Carbon; TN: Total Nitrogen; AN: Available Nitro-
gen; AP: Available Phosphorus; AK: Available potassium; MBC: Microbial Biomass Carbon; MBN: Microbial
Biomass Nitrogen.

3.2. Fluorescence Spectra of Humus Substance

The T1, T2, T3 and T4 significantly increased FA–C and HA–C contents by 9.36–40.90%
and 14.86–43.79% (p < 0.05) in the 0–15 cm soil layer, respectively. The FA–C and HA–C
contents were significantly increased by 25.19–29.70% and 7.46–41.79% in T2 and T3,
compared with CK (p < 0.05), in the 15–35 cm soil layer. The contents of FA–C and HA–C
increased in the order of T3 > T1 > T2 > T4 in the 0–15 cm soil layer, and the FA–C and
HA–C contents increased in the order of T3 > T2 > the T4 in 15–35 cm soil layer. FA–C and
HA–C contents were higher in the 0–15 cm soil layer than the 15–35 cm soil layer under T1,
T2, T3 and T4 (Figure 1).

We found three identified fluorescent components in the 0–15 cm soil layer and four
components in the 15–35 cm soil layer (Figure 2). Components C1 and C2 were fulvic–
like components associated with high-molecular weight (HMW) and aromatic organic
compounds originating from some sources, such as straw incorporation, in the 0–15 cm
soil layer. Components C3 were protein–like components (tyrosine or tryptophan-like),
representing proteinaceous compounds from microbial activity, such as amino acids, pep-
tide materials and free or bound proteins, in the 0–15 cm soil layer. In the 15–35 cm soil
layer, components C1, C2 and C3 were fulvic–like components and components C4 were
protein–like components. In the 0–15 cm and 15–35 cm soil layers, the HMW aromatic
fluorophores from plant sources were abundant, while the protein–like components from
microbial activity contributed little. The FA was comprised in HMW aromatic and LMW
proteinaceous and condensed organic compounds in the 0–15 cm and 15–35 cm soil layers.
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Figure 2. Components identified using PARAFAC analysis of FA under different organic materials
and their incorporation depths. Abbreviations: C1: Component 1; C2: Component 2; C3: Component 3;
C4: Component 4.

In the 0–15 cm soil layer, the fulvic–like components of FA (C1, C2) were the most
abundant, accounting for 83.95% [80.58–87.26%] of the total fluorescence, whereas the
protein–like component (C3) accounted for 16.05% [12.74–19.42%]. In the 15–35 cm soil
layer, the fulvic–like components of FA (C1, C2, C3) and protein–like component (C4)
accounted for 89.60% [83.73–91.48%] and 12.40% [8.52–16.27%] of the total fluorescence
(Figure S1). The protein–like component contributed less than fulvic–like components in
the whole layer of the fluorescent FA.

The PARAFAC modeling for HA fluorescence was conducted in the 0–15 cm and
15–35 cm soil layers (Figure 3). We found three identified fluorescent components in
the 0–15 cm and 15–35 cm soil layers. Components C1, C2 and C3 were all fulvic–like
components associated HMW in the 0–15 cm and 15–35 cm soil layers, and the HMW
aromatic fluorophores were derived from plant sources. In the 0–15 cm soil layer, C1, C2
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and C3 of HA accounted for 48.20% [42.59–53.81%], 28.30% [24.63–31.97%], and 23.50%
[16.40–30.60%] of the total fluorescence, respectively. And in the 15–35 cm soil layer, C1,
C2 and C3 of HA accounted for 55.51% [52.11–58.19%], 22.56% [20.46–24.66%] and 21.93%
[17.67–26.19%] of the total fluorescence, respectively (Figure S2).
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T1, T2 and T3 significantly increased the fluorescence index (FI) of FA in the 0–15 cm
soil layer by 9.36–40.90% (p < 0.05), but the FI of FA did not differ significantly among all
treatments in the 15–35 cm soil layer. The humification index (HIX) of FA were significantly
increased by 4.35–20.11% in the 0–15 cm soil layer, and by 4.35–20.11% in the 15–35 cm
soil layer in T1, T2, T3 and T4, compared with CK (p < 0.05). T1, T2 and T3 significantly
increased the FI of HA by 9.36–40.90% (p < 0.05) in the 0–15 cm soil layer, but the FI of
HA did not differ significantly among all treatments in the 15–35 cm soil layer. The HIX
of HA also did not differ significantly among all treatments in the 0–15 cm soil layer, but
significantly increased by 4.35–20.11% under the 15–35 cm soil layer in T2, T3 and T4,
compared with CK (p < 0.05) (Figure 4).
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3.3. Soil Microbial Community Structure Characteristics

Bacterial PLFA, fungal PLFA, actinomycetic PLFA and total PLFA contents increased
by 20.32–56.86%, 1.17–99.30%, 1.69–31.22% and 11.97–48.98% in the 0–15 cm soil layer un-
der the T1, T2, T3 and T4, compared with CK, respectively (Table 2). Bacterial PLFA,
fungal PLFA, actinomycetic PLFA and total PLFA contents increased in the order of
T3 > T2 > T4 > T1 > CK in the 15–35 cm soil layer. And compared with CK, the T2,
T3 and T4 significantly increased bacterial PLFA, fungal PLFA, actinomycetic PLFA and
total PLFA contents by 79.57–159.62%, 133.74–687.00%, 52.21–96.21% and 81.77–139.02%
(p < 0.05) in the 15–35 cm soil layer, respectively.

Table 2. Bacterial PLFA, fungal PLFA, actinomycete PLFA and total PLFA contents under different
organic materials and their incorporation depths.

Treatment Layer Bacteria Fungi Actinomycetic G+ G− Total PLFAs

(cm) noml g−1 noml g−1 noml g−1 noml g−1 noml g−1 noml g−1

CK 0–15 34.84 ± 0.75 d 4.28 ± 0.13 c 7.11 ± 0.32 b 12.12 ± 1.41 c 13.47 ± 0.38 d 47.53 ± 1.85 d
15–35 20.42 ± 0.42 d 1.66 ± 0.06 d 4.75 ± 0.11 d 7.1 ± 0.12 d 7.24 ± 0.19 d 26.83 ± 0.57 d

T1 0–15 45.52 ± 0.29 b 6.00 ± 0.29 b 8.92 ± 0.23 a 14.54 ± 0.58 b 17.25 ± 0.21 b 60.45 ± 0.53 b
15–35 29.53 ± 0.70 c 2.6 ± 0.07 c 6.6 ± 0.13 c 9.76 ± 0.12 c 10.69 ± 0.26 c 38.74 ± 0.89 c

T2 0–15 43.91 ± 1.37 bc 4.66 ± 0.08 c 8.61 ± 0.75 a 13.19 ± 0.12 bc 16.57 ± 0.28 bc 55.39 ± 2.65 bc
15–35 39.08 ± 0.16 b 4.06 ± 0.04 b 8.25 ± 0.03 b 12.9 ± 0.17 b 14.53 ± 0.08 b 51.39 ± 0.14 b

T3 0–15 54.65 ± 0.48 a 8.53 ± 0.3 a 9.33 ± 0.7 a 16.96 ± 1.29 a 20.38 ± 0.65 a 70.81 ± 2.09 a
15–35 52.94 ± 1.77 a 8.52 ± 0.30 a 9.32 ± 0.35 a 16.96 ± 0.65 a 21.01 ± 0.15 a 64.13 ± 2.09 a

T4 0–15 41.92 ± 0.48 c 4.33 ± 0.18 c 7.23 ± 1.14 b 13.06 ± 0.49 bc 14.8 ± 1.1 cd 53.22 ± 1.33 cd
15–35 37.67 ± 3.59 b 3.88 ± 0.49 b 7.22 ± 0.57 bc 13.03 ± 0.25 b 14.8 ± 1.1 b 48.77 ± 4.64 b

Two-way ANOVA results (p values)
Treatment (T) p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Layer (L) p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
T × L p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Different letters indicate significant differences between samples in the same soil layer (p < 0.05). Values are
mean ± errors (n = 4).

T1, T2, T3 and T4 significantly increased the F/B ratios by 13.58–53.37% compared
with CK in the 0–15 cm soil layer (p < 0.05) (Figure 5). Compared with CK, the F/B ratios
significantly increased by 43.44–97.46% in T2, T3 and T4 (p < 0.05) in the 15–35 cm soil
layer. The contents of G+/G− ratios decreased in the order of CK > T1 > T2 > T4 > T3 in the
0–15 cm soil layer, and the G+/G− ratios decreased in the order of CK > T1 > T2 > T4 > T3
in the 15–35 cm soil layer. The G+/G− ratios were significantly lower by 11.44–17.5% in
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T1, T2, T3 and T4 than CK (p < 0.05) in the 0–15 cm soil layer. T2, T3 and T4 significantly
decreased the G+/G− ratios by 7.69–20.99% compared with CK (p < 0.05) in the 15–35 cm
soil layer.
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Principal component analysis (PCA) showed the changes in soil microbial community
structures under different organic material incorporation depths. Differences in microbial
community structures between T1, T3 and T2, T4, CK were mainly found in PC1, and the
difference between the T1, T2, T4 and T3 and CK was mainly reflected in PC2. PCA 1 and
PCA 2 explained 87.4% and 5.5% of the total variance for the 0–15 cm soil layer (Figure 6).
Differences between T1, T3, CK and T2, T4 were mainly found in PC1, and the difference
between the T1, T3 and T2, T4, CK was mainly reflected in PC2. In the 15–35 cm soil layer,
PCA 1 and PCA 2 explained 87% and 5.7% (Figure 6).
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3.4. Partial Least Squares Path Modeling of the Relationships between Humus Substance Structure
and Soil Microbial Community

Partial least squares path modeling (PLS–PM) explores the relationship between or-
ganic material incorporation, soil properties, soil microbial community (F/B and G+/G−)
and humus substance’s (HS) structure (a combination of six indicators about HS) (Figure 7).
This model indicates that organic materials and their incorporation depths had a signifi-
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cantly and directly positive effect on TN (0.558) and AK (0.784) in the 0–15 cm soil layer.
Moreover, the F/B and the G+/G− had a directly negative effect on the HS structure
(−0.750 and −0.284) in the 0–15 cm soil layer. FAHIX was the most important factor in
the HS structure (0.836) in the 0–15 cm soil layer. In the 15–35 cm soil layer, the organic
materials and their incorporation depths had a significantly and directly positive effect
on AN (0.668) and AP (0.813). The F/B had a directly positive effect on the HS structure
(0.696) in the 15–35 cm soil layer. F/B and G+/G−, and the HS structure were all affected
by organic material incorporation, proving that it was critical in regulating these factors
in the 15–35 cm soil layer. The HA–C was the most important factor in the HS structure
(0.919) in the 15–35 cm soil layer. We found that F/B and G+/G− directly affected the HS
structure differently in two soil layers, and the most important factors in the HS structure
were FAHIX and HA–C, respectively.
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Figure 7. Directed figure of the partial least squares path model (PLS–PM). Dashed rectangles indicate
the load of the HS structure and six HS structure indictors that produce potential variability. Red
lines indicate positive effects, wider lines indicate greater effects, and blue lines indicate negative
effects. Solid lines indicate no significant effect (p > 0.05). Numbers associated with the lines mean
correlation coefficients, * p <0.05, ** p <0.01, *** p <0.001. GoF, goodness-of-fit, numbers are 0.484 in the
0–15 cm soil layer and 0.501 in the 15–35 cm layer. The abbreviations of soil properties, soil microbial
community and HS structures are located in Tables 1 and 2, Figures 4 and 5, respectively. Abbreviation
for fluorescence index, FAFI: fulvic acid fluorescence index; FAHIX: fulvic acid humification index;
HAFI: humic acid fluorescence index; HAHIX: humic acid humification index.
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4. Discussion
4.1. Soil Properties

Organic material incorporation is an important measure to increase soil microbial
activity and nutrient effectiveness [38], and plays an important role in maintaining and
increasing SOC levels and improving soil structure. Wang et al. [39] showed that SOC con-
tents increased by 13.97% on average after organic material incorporation, compared to no
organic material incorporation. Our study has found similar results. The subsoil tillage and
organic material incorporation increased the activity and quantity of soil microorganisms,
which accelerated the decomposition of organic material and the sequestration of SOC
in the 0–15 cm soil layer. While the T2, T3 and T4 increased the SOC and TN contents in
15–35 cm soil layer, this indicates that the subsoil tillage and organic material incorporation
homogenized in the 0–35 cm soil layer, and thus promoted the increase of SOC and TN
contents in the 15–35 cm soil layer [40]. Meanwhile, subsoil tillage and organic material
incorporation improved the aeration of the15–35 cm soil layer and broke the plough pan,
which promoted the growth of crop roots in the 15–35 cm soil layer and increased the input
of root carbon [41]. Huang et al. [38] showed that organic material incorporation was bene-
ficial to increase the contents of AN, AP and AK in the 0–15 cm soil layer, compared with
no organic material incorporation. Our study is consistent with them. Organic material
incorporation can improve the contents and effectiveness of soil nutrients [42], promote soil
nutrients uptake and organic material fixation, and reduce the leaching loss of effective soil
nutrients [8]. The microbial biomass in the 0–15 cm soil layer is usually higher than that in
the 15–35 cm soil layer [43], while MBC and MBN contents respond to the activity status
of soil microorganisms. In this study, T3 exhibited the greatest increase in MBC contents
in the 0–15 cm and 15–35 cm soil layers, compared with CK, because the subsoil tillage
and organic material incorporation provided rich substrate for soil microorganisms. The
subsoil tillage and organic material incorporation transferred soil nutrients to the 0–35 cm
soil layer, which in turn increased soil fertility in the 15–35 cm soil layer. Therefore, subsoil
tillage and organic material incorporation can further improve the nitrogen supply capacity
of the soil.

4.2. Effects of Different Organic Materials and Their Incorporation Depths on Humus Substance

As a constituent of HS, FA is closely related to HA, and is a precursor and degradation
product of HA. FA contains hydroxyl, carboxyl and aliphatic hydrocarbons and other
reactive functional groups, which are highly bioavailable and have an important impact
on the carbon cycle in soil [44]. Cui et al. [45] showed that the carbon contents in FA and
HA increased by 26.39% and 9.20%, respectively, in the 0–20 cm soil layer under subsoil
tillage and organic material incorporation, compared to no organic material incorporation.
Our study obtained similar results. The FA–C and HA–C contents increased further in our
study, indicating that the combined application of straw and organic manure promotes the
increase of C contents in HS, compared to organic manure alone.

The fluorescence index (FI) and humification index (HIX) characterize the origin of
the humic substance and the level of humification, respectively [46]. FI and HIX play
an important role in evaluating HS properties [47]. Our result demonstrated that FA
exhibited a distinct optical signature shared by both the 0–15 cm and 15–35 cm soil layers
(Figures 2 and 3). Due to different organic materials and their incorporation depths, FA in
the 0–15 soil layer was previously characterized by 15–35 cm soil layer materials, because
microbial exogenous metabolism and root exudates are relative in the 0–15 cm soil layer,
compared to 15–35 cm soil layer. In fact, our results showed that the fulvic–like component
contributes more than the protein–like component to the fluorescent FA and HA in the
0–35 cm soil layer. Further evidence of its high reactivity is the large contribution of
tyrosine to the fluorescent FA and its disappearance in HA [48]. Following organic material
incorporation with subsoil tillage, there are three main processes involved in reducing the
proteinaceous contents of HA. Firstly, soil microorganisms may favor the mineralization
of HS components similar to tyrosine, such as amino acids, because they almost instantly
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utilize aliphatic compounds [49]. Secondly, plants in northeastern China’s ecosystems
absorb amino acids and oligopeptides directly as a nitrogen sources, resulting in fewer
proteinaceous compounds in Mollisol [50]. Lastly, fewer aromatic compounds and protein–
like fluorophores were retained in the 15–35 cm soil layer. The release of HMW aromatic
fluorophores led to a decrease in the tyrosine-like components of soil fluorescent HA and
the relative concentration in aromatic compounds [51].

4.3. Effects of Different Organic Materials and Their Incorporation Depths on Soil Microbial
Community Structure

Soil microorganisms play a key role in biogeochemical processes and are closely
associated with soil fertility [52]. Typically, soil microorganisms respond strongly to large
amounts of straw and organic manure inputs [53]. Chen et al. [54] found that, compared to
no organic material incorporation, the bacterial PLFA, fungal PLFA and total PLFA contents
were significantly increased by 75%, 56% and 52% under organic material incorporation
treatment, respectively; our study found a similar phenomenon, because the organic
material incorporation could provide energy and nutrients for soil microbial growth [11].
Additionally, the increase in bacterial PLFA, fungal PLFA and total PLFA contents were
greater in the 15–35 cm soil layer under the organic material incorporation with subsoil
tillage than those in the 0–15 cm soil layer, because the nutrients in the 15–35 cm soil
layer were relatively low, while the subsoil tillage could break the plough pan layer and
promote the nutrient and energy flow between different soil layers [55]. So, organic material
incorporation with subsoil tillage would be conducive to soil microbial growth.

The F/B ratios can be used to characterize the level of carbon sequestration in soil [56].
The dominance of fungi in the microbial community is considered to be an important
factor in promoting SOC accumulation and reducing SOC turnover. Mycelium of fungi
facilitates the formation and stabilization of soil aggregates, increases physical protection
against SOC [57], and tissues of fungal origin are more resistant to chemical decay than
those of a bacterial origin [58]. Liu et al. [18] showed that subsoil tillage combined with
straw incorporation significantly increased bacteria and fungi contents in the 0–20 cm
soil layer, total PLFAs in the 20–40 cm soil layer, as well as total PLFA contents and the
F/B ratios in the 20–40 cm soil layer (p < 0.05). In our study, with the organic matter
incorporation, fungi are the major decomposers of plant residues and organic manure, and
fungi benefit from organic incorporation [59]. Our result indicated that organic material
incorporation with subsoil tillage provided abundant substrate for fungi and improved the
carbon sequestration capacity of the soil.

Changes in the (G+/G−) ratios can reflect variations in the soil microbial habitat, as
well as assessing energy-limiting conditions in the soil [60]. The variation of G+/G− is
related to the quality of SOC, and the growth of G− under substrate-enriched conditions
leads to lower G+/G−. Our results indicated that the organic material input provided
sufficient plant carbon source for the growth of G− to increase the G− contents, and
as straw decomposes, the reduction of unstable carbon favors the growth of G+, which
usually contains high levels of N-acetylglucosamine, a relatively tolerant SOC precursor,
and can effectively promote the accumulation of SOC [61]. Moreover, for maize–soybean
rotation, G− is associated with soybean rhizobia. Therefore, the soybean plant system had
a lower G+/G−. From the perspective of G+/G−, it indicates that the organic material
incorporation with subsoil tillage can promote SOC accumulation and thus restore soil
fertility, and G+/G− increases with the decrease of available carbon after soil profile or
stable substrate depletion [24]. The G+/G− ratios in the 15–35 cm soil layer under the
organic material incorporation was greater than that in the 0–15 cm soil layer (Figure 5),
because the available carbon and nutrients in the 15–35 cm soil layer were less, and therefore,
G+/G− was lower in the 15–35 cm soil layer. So, the organic material incorporation with
subsoil tillage is a great measure to improve microbial community structure.
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4.4. Effects of Different Organic Materials and Their Incorporation Depths on HS Structure and
Soil Microbial Community Structure Characteristics

In this study, a PLS–PM was used to analyze the contribution of each indicator to
SOC under different organic materials and their incorporation depths. Two factors mainly
affect soil properties, HS structure and soil microbial communities. On one side, SOC–rich
soils usually have more available C, which may be beneficial for microbial growth [62].
This was evidenced by the positive correlation between the six indicators (FA–C, HA–C,
FAFI, FAHIX, HAFI and HAHIX) and SOC contents in our study (Figure 7). On the other
side, microbial communities along the PC1 axis varied with different organic material
incorporation management (Figure 6). Taken together with the significant differences in
bacterial PLFA contents in different organic material incorporation systems, we found
that different crops provide unique percentages of unstable organic matter to microbial
decomposer communities [63]. In maize–soybean planting systems, the relatively large
proportion of unstable carbon sources is more favorable to the growth of the most com-
petitive fungi [64,65]. PLS–PM results indicated that fungi communities have a significant
direct effect on soil HS structure. It is suggested that fungi took a more positive role in
nutrient cycling via biochemical reactions in the 15–35 cm soil layer under different soil
management. In conclusion, we found that the HS structure and soil microbial communities
could be distinguished under different organic materials and their incorporation depths,
based on PLFA analysis and HS structure. Microbial community indicators, FAHIX and
HA–C, were most closely associated with HS structure.

5. Conclusions

This study showed that organic material incorporation with subsoil tillage had positive
effects on soil properties, HS structure and microbial community structure characteristics.
Compared to conventional tillage with no organic material incorporation, organic material
incorporation with subsoil tillage significantly increased bacterial and fungi and total PLFA
contents in the 0–35 cm soil layer. PLS–PM indicated that fungi played a dominant role in
organic material degradation of the 0–35 cm soil layer. Thus, the effect of different organic
materials and their incorporation depths on soil microbial community characteristics could
be amplified under organic material incorporation with subsoil tillage practice, which
could provide energy and nutrients for microbes. We concluded that straw and organic
manure incorporation with subsoil tillage practice could be a strong potential to improve
HS structure and microbial community characteristics of the 0–35 cm soil layer by increasing
SOC and nutrient contents distinctly, and, ultimately, promote soil fertility in northeast
China. In this study, we only studied the chemical properties; the physical properties of
the soil are just as important. Our next study will explore the effects of different organic
materials and their incorporation depths on the physical composition of SOC.
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