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Abstract: Reduced available water resources have become the main limiting factor for the production
of leafy vegetable, such as pakchoi, which can be effectively addressed by growing water-efficient
varieties. Therefore, it is particularly important for evaluation and verification of drought tolerant
varieties. In this study, 50 different varieties of pakchoi were detected for their morphological and
physiological indicators under both normal-irrigated and water-deficiency environments. Based on
systematic analysis of these evaluation indicators using different evaluation methods, the signifi-
cant indicators were identified and the prediction model was established followed by validation
of different drought tolerant of pakchoi varieties. The results showed that considerable differences
were observed in all the indicators detected under conditions of water deprivation compared with
normal irrigation. Frequency distribution revealed that the indictors sensitivity with significant
changes to water-deficient conditions was ordered as follows: aboveground fresh and dry weight,
followed by belowground fresh and dry weight, root volume, root length, root activity, and soluble
sugar. Correlation analysis showed that each indicator was significantly or extremely significantly
associated with other indices, indicating that there is a certain degree of association between the
indices. Principal component analysis (PCA) turned 16 indicators into four independent components,
with a cumulative contribution ratio of 80.147%. According to the results of drought tolerance
comprehensive evaluation value (D-value) analysis and cluster analysis, 50 varieties were ranked
in relation to drought tolerance and classified into five categories, among them Jinhui, Qingguan,
Dongyue, Xiazhijiao, and Hanszifei, which were classified as highly drought-tolerant cultivars.
Moreover, the stepwise regression model was established and demonstrated that soluble sugar,
average root diameter, belowground fresh weight, root volume, and leaf number were selected as
key indicators which can be used for screening and identifying drought-pakchoi varieties. Further-
more, the tolerance capacity of pakchoi varieties was further validated using one representative
variety selected from five groups and treated with water-deficit stress. It was demonstrated that
the established model was verified consistent with drought tolerance of pakchoi varieties, and
tolerance capacity was closely related to increasing epidermal stomatal density, maintaining high
photosynthesis, and increasing antioxidant enzyme activity to reduce damage (ROS). The results
proposed the key drought tolerance indicators and evaluation methods, which provide the basis
for the screening of leaf-vegetable varieties with different drought-tolerances, as well the identified
varieties could be used for effective water-saving production.

Keywords: pakchoi; water deficit; drought tolerance; indicators screening; tolerance verification;
systematic evaluation; physiological response
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1. Introduction

Pakchoi (Brassica rapa L. ssp. Chinensis), a fresh leafy vegetable with high leaf-water
content and a shallow root system, is widely cultivated and consumed around the world,
especially in China, accounting for 30–40% [1,2]. However, a shortage of available water
resources has become the main limiting factor for the production [3,4]. To meet the re-
quirement of such a huge population, water saving is a significant approach to enhance
leaf-vegetable yield especially such as pakchoi, which can be effectively addressed by
growing water-efficient varieties. Therefore, it is great important for screening a high level
of drought tolerance in pakchoi varieties and verification of drought tolerance for its stable
production [5]. This can become an effective measure to save manpower in the agricultural
sector and increase water use efficiency [6].

At present, many countries and regions have made effective efforts in selecting
drought-tolerant crop varieties in agricultural production [7,8]. Among them, in areas
with frequent high-temperature risks and water shortages, drought-tolerant varieties have
shown a prominent role in overcoming water consumption to achieve the goal of water
conservation [9]. Many researches have shown that planting varieties with high drought
tolerance potential had shown significant water-saving efficiency and increases yield [10,11].
Presently, the screening of drought-tolerant varieties mainly focus on agronomic and field
crops, such as wheat [12–14], barley [14], maize [15], cotton [16], rice [17], millet [18], and
potato [19]; however, there is no key report on the comprehensive evaluation and verifica-
tion based on indicators that screen pakchoi drought-tolerant varieties for morphological,
physiological, and biochemical indicator changes.

Over the last two decades, several indicators and indicators features have been pro-
posed to identify the most drought-tolerant varieties [20]. Generally, drought stress in-
dicators based on yield loss under drought circumstances have been utilized to identify
drought-tolerant varieties [7]. Drought susceptibility is also typically measured by compar-
ing its yield reduction under both normal and water deficient environments [11]. However,
due to multiple aspects of crop genotype tolerance and susceptibility, the tolerance of plants
to drought is also a comprehensive performance of multiple factors [21–23] and a single
indicator cannot fully or accurately evaluate drought tolerance as it is too one-sided and
unrepresentative. Until now, no single indicator can adequately represent plant drought
tolerance [24]. So, the identification of plant drought tolerance needs to be a comprehensive
evaluation of its morphological, physiological, and biochemical indicators to achieve the
purpose of selecting accurate drought-tolerant varieties.

Furthermore, the majority of evaluation indicators for assessing drought tolerance
have been primarily focused on crops, which may not be applicable for screening pakchoi
varieties due to variations in growth morphology, harvested parts, and water requirements.

In the stages of plant growth and development, it is crucial to identify drought tol-
erance indicators markers for genotype screening process [25–28]. Previous studies have
discovered various indicators for tolerant crop varieties under drought. These indicators
markers include leaf water potential, net photosynthesis, water use efficiency, maximum
quantum efficiency of PSII, proline, betaine content, soluble sugars, chlorophyll, malon-
dialdehyde (MDA), antioxidant enzyme activity, leaf area, and yield output [20,29–33].
Nonetheless, the abundance and complexity of these indicators have been acknowledged.
Studies have demonstrated the significance of identifying key indicators and streamlining
evaluation methods in order to effectively select drought-tolerant varieties [14,15]. To
address this, a novel and advanced indicator called D-value was proposed. This indicator
aims to evaluate and screen varieties under both normal and drought conditions, providing
a more comprehensive and effective approach [24]. The utilization principal component
analysis (PCA) enables simplification of extensive and intricate datasets by transformation
the original multiple indicators into a reduced set of representative indicators [34]. Multiple
linear regression enables the creation of predictive models that utilize morphology and
physiological indicators to elucidate the level of water-deficit tolerance [35]. Therefore, it is
of utmost importance to identify a simple set of indicators for evaluating drought stress or
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effective modelling using a combination of different evaluation methods that will apply for
the rapid identification drought stress tolerance of elite pakchoi germplasm or cultivars.

The limited adaptability of modern varieties primarily results in reduced yield as a
consequence of water deficit, posing a significant threat to crop drought tolerance [25].
However, plants possess various mechanisms, such as osmotic adjustments or osmoreg-
ulation through the accumulation of proline, sugars and other substances, which allow
them to thrive best and attain significant output yield [36]. Additional mechanisms involve
in mitigating oxidative damage (ROS) through heightened antioxidant activity system
(SOD, POD, CAT) and protect the plants from oxidative stress [37]. Furthermore, enhanced
water use efficiency through the regulation of the stomatal activity leads to an increase in
CO2 concentration, elevated chlorophyll levels, and ultimately, ameliorate photosynthe-
sis [16,38,39]. Moreover, root growth also plays a crucial role in maintaining water and
nutrient supply when subjected to water deficit.

However, there is a lack of comprehensive studies analyzing the morphological,
physiological, and biochemical characteristics using a multivariate approach to identify
marker indicators associated with drought tolerance in pakchoi varieties. Therefore, it is
crucial to identify simple and effective indicators for evaluating drought stress, enabling
quick evaluation and validation of elite germplasm or varieties tolerant to drought
stress. In this study, 50 different pakchoi varieties were cultivated under two irrigation
conditions: normal irrigation (with a soil water content of 70–80% of field capacity) and
water shortage (with a soil water content of 30–40% of field capacity). By determining the
morphological and physiological indicators, the drought tolerance of pakchoi varieties
was assessed and classified through systematic analysis using techniques such as PCA, D-
value calculation, and cluster analysis. Additionally, a prediction model was developed
using stepwise regression to validate the drought tolerance capacity and mechanisms
of different pakchoi varieties. These findings provide a basis for screening drought
tolerance indicators and offer valuable insights into the tolerance and susceptibility of
leafy vegetable varieties to drought.

2. Materials and Methods
2.1. Experimental Plant Material

In this study, 50 varieties of pakchoi were selected, including loose leaf, girdling
different type, green and red leaf different leaf color, green and white different petiole color,
narrow and hypertrophy different petiole type, and so on (Table 1).

2.2. Experimental Design
2.2.1. Screening of Pakchoi for Drought Tolerance and Development of Drought
Tolerance Indicators

All of the experimental samples were planted in the greenhouse of Dingxing County.
The test materials were divided into normal (70–80% of field capacity) and water deficit
treatments (30–40% of field capacity). The ZL6 data collector was used to monitor the soil
moisture content, and the water deficit treatment duration was 15 days. Measurement
of plant height during harvest period. Measurement of stem diameter (SD), leaf number
(LN), root length (RL), average root diameter (ARD), root surface area (RSA), root volume
(RV), aboveground fresh weight (AFW), belowground fresh weight (BFW), aboveground
dry weight (ADW), belowground dry weight (BDW), root activity (RA), leaf relative water
content (RWC), SPAD, relative electrolytic leakage (REL), soluble sugar (SS), and soluble
protein (SP) during harvest period.

2.2.2. Response of Pakchoi to Water Deficit with Varying Drought Tolerance Levels

Based on the ranking of the D-value of the comprehensive evaluation value of drought
tolerance in the preliminary test and the classification grade of cluster analysis, one type of
Pakchoi with varying drought tolerance grades was chosen at random as the test material.
In this experiment, 70% to 80% of the maximum field water capacity was designated as the
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control treatment, whereas 30% to 40% of the minimum field water capacity was designated
as the water deficit treatment. Measurement of key indicators that identified indicators in
regression models, and epidermal stomatal, photosynthesis, antioxidant enzyme activity,
reactive oxygen species and MDA content during harvest period.

Table 1. Names and numbers of 50 pakchoi varieties.

Number Name Feature Number Name Feature

1 Feicuiyihao Petiole emerald green 26 Naiyouheiyw Petiole thickness
2 Zijinkuaicai Purple leaves 27 Aijiao Petiole short
3 Lexialiangpin Petiole narrow 28 815 Kuaicai Leaf thickness
4 Shuoyuannaibaicai Petiole white 29 537 Xiaobaicai Girdling
5 Meihuiqinggengbaicai Petiole hypertrophy 30 Sucuibai Petiole white
6 Huangjinkuaicai Yellow-green leaves 31 Heimeigui Dark-green leaves
7 Qingshuangjimaocai Petiole green-white 32 Lvsongxiaobaicai Petiole slender
8 Vuguanheiyebaicai Petiole strong green 33 Qingguan Leaf nearly circular
9 Jinhui Leaf thickness 34 Heiniu Petiole white
10 Dongyue Light-green leaves 35 Dongchunsansan Petiole green
11 Feicuierhao Petiole hypertrophy 36 Lifei Petiole white
12 Xiazhijiao Petiole hypertrophy 37 Guoxiayihao Petiole hypertrophy
13 Dongxiu Petiole light green 38 Zhongyannaibaicai Petiole white
14 Zijinyoucai Purple leaves 39 Jingguanerhao Petiole green
15 Hansizifei Dark-purple leaves 40 Heiyouyihao Petiole slender
16 Zijiaren Purple leaves 41 Heixinwu Petiole short
17 Shanghaiqing Light-green leaves 42 Heiyoubaicai Dark-green leaves
18 Jinzuanziyi Light-purple leaves 43 Huangxinwu Petiole short
19 Kuishanheiyetianbaicai Dark-green leaves 44 Ruiguanqingbang Petiole slender
20 Baigengsijixiaobaicai Petiole slender 45 Ziyuyoucai Purple leaves
21 Teaibaixue Petiole short 46 Yuexiaqinggengcai Petiole green
22 Naiyouxiaobaicai Petiole long 47 Xinguanhua Petiole green
23 Beijingheidatou Leaf nearly circular 48 Qingbangyoucai Leaf-blade thin
24 Kangresijitianbaicai Tender green leaves 49 Jingpinwuyueman Petiole green
25 Xinsijisuzhouqing Girdling 50 Woyouganju Petiole short

2.3. Determination of Indicators and Methods
2.3.1. Determination of Growth Indices

An electronic balance (Ohouse/CP 114) was used to choose uniformly growing plants,
count the number of leaves, and then the fresh weight and dried weight of the upper part
of the plant and the lower part of the plant was measured, respectively. Dry weight was
determined by sterilization in a 105 ◦C oven for 30 min and then baking to a consistent
weight at 70 ◦C. The root system was scanned with the MRS-9600TFU2L and then analyzed
with LA-S root analysis software, which measured the root system’s overall dimensions,
including root length, surface area, volume, and average diameter. The root system was
thoroughly cleaned and laid out on the scanner panel before scanning could begin.

2.3.2. Determination of RWC

Take functional leaves from the same part of each plant, measure the fresh weight of
the leaves first, then completely immerse the leaves in distilled water to make them absorb
water to a saturated state. After taking them out, dry the leaves and weigh them to obtain
the saturated weight of the plant leaves. Place the plant leaves in an oven and bake them
for 105 ◦C for 30 min to before being dried at 85 ◦C until they reach a consistent weight.
The formula for calculating the relative water content (RWC) of leaves is: relative water
content of leaves = (fresh weight of leaves − dry weight of leaves)/(saturated weight of
leaves − dry weight of leaves) × 100% by method proposed by Meher et al., 2018 [40].
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2.3.3. SPAD and REL Assay

SPAD was measured with a SPAD502 chlorophyll meter. SPAD measurements at the
2/3 position on the third fully expanded leaves from the top of the plant.

The REL was measured by the immersion method. The leaves were cut into strips,
placed in a test tube, and 15 mL of pure water was added. The strips were removed
after pumping for 15 min with a vacuum pump and allowed to stand for 20 min, and
the conductivity was measured at room temperature (20–25 ◦C). Then, the sample was
placed in a 100 ◦C boiling water bath for 15 min, removed and cooled for 10 min, and its
conductivity was measured after boiling.

2.3.4. SS and SP Content Assay

Weigh 0.5 g of the sample, add 4 mL of distilled water and grind it to a homogenate.
Extract it in boiling water for 30 min. Take 0.1 mL of the supernatant and add it to a 10 mL
centrifuge tube. Dilute to 10 mL with pure water. Adding 1 mL of pure water, 1 mL of
sample extraction solution, slowly add 5 mL of anthrone sulfate to the wall in cold water,
mix well in cold water, then they are placed together in an 80 ◦C water bath for 10 min to
develop color. And measure the OD-value at 630 nm. The SS content were calculated based
on the standard curve.

Take 0.5 g of sample, add 2 mL of distilled water, and grind it into a homogenate.
Transfer it to a test tube, let it sit for 30 min, and then centrifuge. Suck 0.2 mL of supernatant,
add 0.8 mL of distilled water and 5 mL of coomassie brilliant blue solution, fully mix
them, and then colorimetric at 595 nm to determine the absorbance. The SP content were
calculated based on the standard curve.

2.3.5. Measurement of Stomatal Characteristics of the Leaves

Nail polish-imprinted slices were observed with CellSens image analysis software
(3.17.0.16686) and imaged under an Olympus BX51 fluorescence microscope (Olympus
Soft Imaging Solutions GmbH). Three slices were prepared for each variety. The stomatal
length, stomatal width, stomatal aperture, and stomatal density in each field were measured
by ImageJ image processing software. After observations were made and counting was
performed, the average value of the six fields was calculated [41].

2.3.6. Chlorophyll Content and chl a, chl b Calculations

The photosynthetic pigment was determined by ethanol acetone extraction colorimetry.
Use a punch to drill a hole on one side of the main vein at the same node and sample
0.2 g. Soak the leaves in a 1:1 mixture of anhydrous ethanol and acetone (10 mL, V), after
the leaves turn white the absorbance values at 663 nm and 645 nm were measured, and
chlorophyll a and chlorophyll b were calculated.

2.3.7. Measurement of Photosynthetic Parameters

The LI-6400XT (Lincoln, NE, USA), a portable photosynthetic instrument, was used
to take a single reading from the leaves of five different types of pakchoi on a sunny
morning. For each treatment, three plants were chosen for their steady development,
strong growth, and lack of disease and insect pests. For each plant, three usable leaves
were chosen at random, and within each leaf, three alternative orientations were chosen
to determine its photosynthetic qualities. The net photosynthetic rate (Pn), stomatal
conductance (Gs), transpiration rate (Tr), and intercellular CO2 concentration are the
measurable indicators (Ci).

2.3.8. Enzymatic Activity, MDA Content and O2
− Production Rate Assay

Weigh 0.5 g of pakchoi leaves, add 50 mmol/L, pH 7.8 PBS buffer solution, grind in
ice bath, then centrifugate at 4 ◦C at 12,000× g rpm for 10 min, take out the supernatant to
determine SOD activity, POD activity and CAT activity, according to a previously described
method [42,43]. MDA content was determined by the thiobarbiturate method. A total of
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0.5 g of leaves was used to determine the O2
− production rate according to a previously

published method for determination [44].

2.4. Data Processing and Statistical Analysis

The indicator drought-tolerance coefficient (DC) was calculated according to Formula (1),
where CKi and Ti represent the indicator measureD-values of normal irrigation and water
deficit treatment, respectively.

DC =
Ti

CKi
(1)

For the DC value of each indicator, correlation, frequency analysis and principal
component analysis were performed. The factor weight coefficient (ωi), membership
functional value [µ(xi)] and drought comprehensive evaluation value (D) were calculated
according to Equations (2)–(4).

Where Pi denotes the contribution rate of the ith comprehensive indicator and xi max
and minimum represent the maximum and minimum values of the ith comprehensive
indicator, respectively.

ωi = Pi ÷ ∑n
i Pi (2)

µ(xi) =
xi − xi, min

xi, max − xi, min
or µ(xi) = 1 − xi−xi, min

xi, max−xi, min
(3)

D = ∑n
i=1

[
µ(xi)×

(
Pi ÷ ∑n

i Pi
)]

(4)

The comparison series is the DC value of each indicator, and the reference series is
the D-value for gray correlation analysis. Finally, cluster analysis was carried out for the
D-value of pakchoi, and the drought tolerance grade was divided. Finally, taking d as the
dependent variable, the DC values of each indicator are analyzed by stepwise regression,
and the regression equation is calculated.

2.5. Data Analysis

Microsoft Excel 2010 was used for data processing. PCA, stepwise regression analysis,
correlation and significance were evaluated by using IBM SPSS Statistics 22nd edition
software (Armonk, NY, USA). OriginPro 2022 (Origin Lab Corp, Northampton, MA, USA)
was used for drawing.

3. Results
3.1. Screening of Drought-Tolerant Varieties and Identification of Drought-Tolerant Indicators of
Pakchoi under Water Deficit Stress Treatment
3.1.1. Analysis of the MeasureD-Value of the Variety Indicator of Pakchoi

Water deficit treatment has a significant effect on the measureD-values of 16 indicators
across 50 kinds of pakchoi (Table 2). Varieties of pakchoi selected for this study showed
a wide range of diversity in terms of material type, with coefficients of variation ranging
from 0.05 to 0.62. Additionally, the selected indicators were sensitive to water deficit, and
exhibited a positive treatment effect. Furthermore, the correlation coefficient of the selected
Chinese cabbage varieties under water deficit treatment and normal water supply treatment
ranged from 0.07 to 0.95, indicating that the sensitivity of each indicator to water deficit
varies, making it challenging to directly consider the drought tolerance of each pakchoi
variety by directly using the measureD-values of each indicator.
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Table 2. Difference analysis of 16 indicators of pakchoi under normal irrigation and water
deficit irrigation.

Indicators Treatment Average Value Coefficient of
Variation Standard Error T-Value p-Value Correlation

Coefficient

SD
NI 9.79 0.19

0.26 9.99 0.00 0.63WDI 7.16 0.33

LN
NI 18.01 0.17

0.28 11.15 0.00 0.82WDI 14.90 0.23

RL
NI 66.11 0.17

1.39 15.78 0.00 0.63WDI 44.17 0.25

ARD
NI 0.75 0.14

0.01 14.41 0.00 0.42WDI 0.55 0.12

RSA
NI 18.98 0.27

0.48 12.54 0.00 0.75WDI 13.00 0.30

RV
NI 1.40 0.40

0.05 11.22 0.00 0.75WDI 0.79 0.40

AFW
NI 188.64 0.50

7.48 8.42 0.00 0.85WDI 125.68 0.48

BFW
NI 3.45 0.51

0.16 6.76 0.00 0.75WDI 2.34 0.51

ADW
NI 8.88 0.57

0.27 10.47 0.00 0.95WDI 6.10 0.62

BDW
NI 0.31 0.45

0.01 9.99 0.00 0.86WDI 0.21 0.53

RA
NI 4.33 0.31

0.17 8.49 0.00 0.49WDI 2.88 0.34

RWC
NI 94.39 0.05

1.82 10.46 0.00 0.21WDI 75.36 0.17

SPAD
NI 45.23 0.17

0.73 5.14 0.00 0.52WDI 41.45 0.22

REL
NI 26.92 0.26

2.01 −6.94 0.00 0.39WDI 40.87 0.38

SS
NI 31.38 0.41

2.28 2.76 0.01 0.07WDI 25.07 0.36

SP
NI 1.19 0.49

0.09 −2.30 0.03 0.09WDI 1.40 0.35

NI: normal irrigation; WDI: water deficit irrigation; SD: stem diameter; LN: leaf number; RL: root length;
ARD: average root diameter; RSA: root surface area; RV: root volume; AFW: aboveground fresh weight; BFW:
belowground fresh weight; ADW: aboveground dry weight; BDW: belowground dry weight; RA: root activity;
RWC: leaf relative water content; SPAD: soil and plant analyzer development; REL: relative electrolytic leakage;
SS: soluble sugar; SP: soluble protein.

3.1.2. Evaluation of Drought Tolerance Indicator Coefficients of Pakchoi

Different indicators for pakchoi changed by varying degrees after being subjected to
drought treatment compared to the normal treatment (Table 3). Although all the variations
of a given indicator have a variation coefficient of between 0.13–0.79 for their DC values,
the drought tolerance reflected by these values varies among varieties, showing that the
sensitivity of these indicators to water shortage varies as well. Even within the same time
interval, DC values for different indicators have very distinct distributions. Stem diameter,
leaf number, root surface area, root average diameter, relative electrolyte leakage, relative
water content, SPAD, and soluble protein distribution frequency are all greater than or
equal to 80% from 0.6 ≤ DC, demonstrating that they are insensitive to water deficiency.
Furthermore, the aboveground fresh weight, underground fresh weight, aboveground dry
weight, belowground dry weight, root volume, root length, root activity, and soluble sugar
distribution frequency were 68.0%, 74.0%, 78.0%, 68.0%, 50.0%, 76.0%, 72.0%, and 72.0%,
respectively. The aboveground fresh weight, aboveground dry weight, belowground dry
weight, root activity and soluble sugar indicators were more sensitive to water deficit than
the other indicators.
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Table 3. DC of indicators in 50 pakchoi varieties.

Varieties SD LN RL ARD RSA RV AFW BFW ADW BDW RA RWC SPAD REL SS SP

1 0.64 0.75 0.32 0.88 0.64 0.61 0.51 0.61 0.47 0.60 0.72 0.86 0.82 0.65 0.67 1.13
2 0.69 0.74 0.36 0.91 0.42 0.33 0.47 0.57 0.57 0.54 0.67 0.87 0.79 0.68 0.57 0.98
3 0.99 0.88 0.77 0.86 0.82 0.62 0.58 0.88 0.71 0.88 0.87 0.79 0.76 0.91 1.68 2.10
4 0.60 0.80 0.51 0.78 0.63 0.62 0.47 0.65 0.64 0.67 0.79 0.83 0.95 0.68 0.75 1.26
5 0.39 0.89 0.57 0.81 0.53 0.49 0.79 0.27 0.78 0.38 0.52 0.78 0.81 0.50 0.47 0.81
6 0.56 0.62 0.50 0.77 0.45 0.44 0.64 0.47 0.67 0.47 0.32 0.63 0.79 0.52 0.36 0.68
7 0.34 0.68 0.57 0.76 0.74 0.79 0.47 0.46 0.50 0.45 0.37 0.72 0.75 0.35 0.43 0.77
8 0.83 0.90 0.67 0.76 0.52 0.34 0.59 0.79 0.71 0.82 0.78 0.92 0.87 0.75 0.79 1.27
9 0.98 1.00 0.87 0.61 0.88 0.72 0.95 0.97 0.85 0.97 0.95 0.96 1.08 0.97 3.63 2.84
10 0.94 0.98 0.85 0.74 0.84 0.60 0.88 0.92 0.79 0.93 1.02 0.94 1.20 0.93 3.55 2.55
11 0.88 1.00 0.86 0.80 0.76 0.77 0.84 0.84 0.68 0.86 0.87 0.84 1.06 0.90 1.40 1.95
12 0.87 0.99 0.95 0.97 0.90 0.60 0.72 0.84 0.93 0.90 0.74 0.82 0.94 0.88 2.30 2.55
13 0.85 0.95 0.61 0.73 0.78 0.54 0.88 0.80 0.91 0.86 0.76 0.93 1.10 0.87 1.21 1.76
14 0.79 0.75 0.48 0.88 0.73 0.65 0.50 0.62 0.89 0.52 0.76 0.87 1.10 0.80 0.92 1.40
15 0.84 0.92 0.68 0.87 0.75 0.79 0.80 0.87 0.77 0.86 0.85 0.89 1.03 0.84 2.11 2.32
16 0.87 0.69 0.84 0.82 0.75 0.54 0.80 0.85 0.71 0.74 0.91 0.88 0.99 0.81 0.94 1.44
17 0.81 0.95 0.75 0.68 0.76 0.65 0.80 0.74 0.85 0.70 0.88 0.82 0.93 0.86 1.09 1.62
18 0.80 0.96 0.65 0.84 0.69 0.68 0.61 0.79 0.67 0.85 0.84 0.86 0.85 0.78 1.23 1.83
19 0.84 0.80 0.50 0.77 0.67 0.64 0.72 0.89 0.62 0.84 0.71 0.83 0.97 0.80 0.98 1.54
20 0.82 0.89 0.74 0.78 0.86 0.66 0.97 0.79 0.76 0.77 0.83 0.92 0.98 0.76 1.13 1.70
21 0.24 0.94 0.81 0.88 0.92 0.78 0.58 0.28 0.85 0.26 0.46 0.56 1.00 0.39 0.50 0.93
22 0.73 0.80 0.62 0.65 0.62 0.58 0.57 0.74 0.74 0.68 0.74 0.83 0.76 0.79 0.74 1.21
23 0.42 0.69 0.69 0.83 0.51 0.42 0.69 0.48 0.75 0.41 0.41 0.55 0.87 0.33 0.33 0.56
24 0.67 0.76 0.57 0.89 0.64 0.65 0.63 0.62 0.46 0.69 0.55 0.63 0.69 0.70 0.62 1.10
25 0.61 0.84 0.70 0.76 0.76 0.89 0.53 0.48 0.44 0.47 0.73 0.79 0.80 0.67 0.69 1.15
26 0.75 0.78 0.61 0.68 0.83 0.52 0.64 0.78 0.58 0.67 0.67 0.80 1.02 0.61 0.65 1.12
27 0.68 0.88 0.63 0.78 0.71 0.68 0.73 0.65 0.71 0.67 0.96 0.74 0.87 0.73 0.90 1.39
28 0.94 0.78 0.62 0.74 0.62 0.56 0.84 0.91 0.77 0.86 0.86 0.97 0.78 0.82 1.05 1.56
29 0.99 0.86 0.71 0.78 0.80 0.65 0.86 0.97 0.76 0.94 0.78 0.97 0.92 0.92 1.52 2.03
30 0.37 0.79 0.69 0.77 0.80 0.56 0.44 0.36 0.68 0.33 0.49 0.40 0.67 0.39 0.38 0.69
31 0.39 0.66 0.71 0.76 0.66 0.47 0.38 0.29 0.59 0.30 0.41 0.49 0.88 0.27 0.97 0.42
32 0.76 0.89 0.68 0.83 0.61 0.61 0.55 0.69 0.70 0.67 0.60 0.74 0.87 0.61 0.73 1.15
33 0.96 0.96 0.77 0.70 0.90 0.84 0.83 0.98 0.71 0.88 0.83 0.98 0.95 0.88 3.59 2.67
34 0.77 0.66 0.41 0.64 0.58 0.50 0.74 0.72 0.68 0.64 0.86 0.79 0.82 0.65 0.60 1.01
35 0.46 0.69 0.81 0.72 0.73 0.82 0.49 0.52 0.61 0.48 0.26 0.67 0.87 0.36 0.39 0.73
36 0.71 0.76 0.61 0.72 0.82 0.56 0.46 0.75 0.43 0.57 0.71 0.81 0.99 0.62 0.62 1.09
37 0.57 0.98 0.72 0.78 0.66 0.48 0.60 0.54 0.82 0.46 0.61 0.64 0.99 0.77 0.60 1.08
38 0.74 0.85 0.55 0.71 0.77 0.51 0.69 0.63 0.61 0.56 0.82 0.73 0.93 0.86 0.75 1.21
39 0.85 0.95 0.72 0.60 0.71 0.44 0.94 0.88 0.61 0.70 0.76 0.95 1.01 0.86 0.80 1.31
40 0.76 0.73 0.62 0.68 0.62 0.42 0.70 0.65 0.71 0.73 0.55 0.79 1.16 0.75 0.58 0.99
41 0.60 0.84 0.85 0.65 0.61 0.45 0.63 0.75 0.69 0.63 0.36 0.84 0.93 0.58 0.49 0.91
42 0.98 0.75 0.61 0.61 0.68 0.49 0.65 0.86 0.44 0.87 0.86 0.96 0.77 0.83 0.83 1.36
43 0.73 0.85 0.81 0.55 0.47 0.34 0.85 0.66 0.77 0.61 0.45 0.85 0.77 0.78 0.48 0.84
44 0.92 0.80 0.77 0.62 0.51 0.61 0.75 0.87 0.72 0.85 0.83 0.96 0.89 0.77 0.86 1.35
45 0.49 0.62 0.84 0.69 0.73 0.62 0.52 0.45 0.65 0.48 0.27 0.52 1.02 0.30 0.30 0.55
46 0.87 0.88 0.62 0.77 0.45 0.28 0.88 0.87 0.81 0.83 0.89 0.90 0.87 0.73 0.83 1.31
47 0.70 0.65 0.59 0.58 0.60 0.48 0.65 0.49 0.49 0.63 0.66 0.76 0.90 0.74 0.48 0.87
48 0.87 0.88 0.69 0.68 0.57 0.36 0.98 0.84 0.88 0.76 0.89 0.92 0.96 0.64 0.76 1.27
49 0.73 0.77 0.76 0.59 0.71 0.47 0.63 0.62 0.81 0.58 0.51 0.65 1.07 0.87 0.56 0.96
50 0.86 0.76 0.66 0.55 0.77 0.62 0.82 0.76 0.52 0.67 0.70 0.83 0.92 0.80 0.63 1.10
AV 0.73 0.82 0.67 0.74 0.69 0.57 0.68 0.69 0.69 0.67 0.69 0.80 0.91 0.71 0.99 1.33
CV 0.26 0.13 0.20 0.13 0.18 0.24 0.23 0.27 0.19 0.27 0.28 0.17 0.13 0.26 0.79 0.43

SD: stream diameter; LN: leaf number; RL: root length; ARD: average root diameter; RSA: root surface area; RV:
root volume; AFW: aboveground fresh weight; BFW: belowground fresh weight; ADW: aboveground dry weight;
BDW: belowground dry weight; RA: root activity; RWC: leaf relative water content; SPAD: soil and plant analyzer
development; REL: relative electrolytic leakage; SS: soluble sugar; SP: soluble protein.
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3.1.3. Correlation Analysis for Various Indicators

The correlation analysis revealed that the indicators were significantly or highly
significantly related to one another (Figure 1). SP was significantly correlated with other
indicators except for ARD and was significantly correlated with RL; similarly, SS showed a
significant association with other indicators except for ARD and was significantly correlated
with ADW. Moreover, there were no correlations found among ARD with other indicators
except with AFW.
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0.01 levels, respectively. 

3.1.4. PCA for Indicators in Pakchoi Varieties 
Through PCA, the cumulative contribution rate of the first four factors in the char-

acteristic value of each factor is 80.147%, and the eigen root is >1.198 (Table 4). Therefore, 
the first four factors were extracted, and the original 16 indicators were replaced by four 
new independent comprehensive indicators (PCA1, PCA2, PCA3, and PCA4). PCA1 
showed higher load capacity on SD, LN, AFW, BFW, BDW, RA, RWC, SPAD, REL, SS, 
and SP. In addition, PCA2 represented higher loads on RL, RSA, and RV. For PCA3, ADW 
exhibited higher load capacity, and for PCA4, ARD constituted the highest variability. 

Table 4. Eigenvectors and contribution rates of all indicators in pakchoi varieties by PCA. 

Indicators  PCA1 PCA2 PCA3 PCA4 
SD  0.886 −0.356 0.093 −0.089 
LN  0.690 0.333 −0.156 0.303 
RL  0.342 0.545 −0.484 −0.259 

ARD  −0.08 0.379 0.396 0.758 
RSA  0.391 0.742 0.191 −0.315 
RV  0.184 0.684 0.500 −0.238 

AFW  0.719 −0.175 −0.408 −0.024 

Figure 1. Correlation of drought tolerance coefficient of each indicator of leaf lettuce varieties. SD:
stream diameter; LN: leaf number; RL: root length; ARD: average root diameter; RSA: root surface
area; RV: root volume; AFW: aboveground fresh weight; BFW: belowground fresh weight; ADW:
aboveground dry weight; BDW: belowground dry weight; RA: root activity; RWC: leaf relative
water content; SPAD: soil and plant analyzer development; REL: relative electrolytic leakage; SS:
soluble sugar; SP: soluble protein. * and ** indicate significant correlations at the p < 0.05 and
p < 0.01 levels, respectively.

3.1.4. PCA for Indicators in Pakchoi Varieties

Through PCA, the cumulative contribution rate of the first four factors in the charac-
teristic value of each factor is 80.147%, and the eigen root is >1.198 (Table 4). Therefore, the
first four factors were extracted, and the original 16 indicators were replaced by four new
independent comprehensive indicators (PCA1, PCA2, PCA3, and PCA4). PCA1 showed
higher load capacity on SD, LN, AFW, BFW, BDW, RA, RWC, SPAD, REL, SS, and SP. In
addition, PCA2 represented higher loads on RL, RSA, and RV. For PCA3, ADW exhibited
higher load capacity, and for PCA4, ARD constituted the highest variability.
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Table 4. Eigenvectors and contribution rates of all indicators in pakchoi varieties by PCA.

Indicators PCA1 PCA2 PCA3 PCA4

SD 0.886 −0.356 0.093 −0.089
LN 0.690 0.333 −0.156 0.303
RL 0.342 0.545 −0.484 −0.259

ARD −0.08 0.379 0.396 0.758
RSA 0.391 0.742 0.191 −0.315
RV 0.184 0.684 0.500 −0.238

AFW 0.719 −0.175 −0.408 −0.024
BFW 0.897 −0.258 0.083 −0.111
ADW 0.413 0.247 −0.626 0.483
BDW 0.904 −0.231 0.116 −0.032
RA 0.812 −0.197 0.251 0.135

RWC 0.796 −0.400 0.124 −0.013
SPAD 0.455 0.292 −0.400 −0.158
REL 0.872 −0.216 0.076 0.005
SS 0.788 0.352 0.094 0.004
SP 0.928 0.251 0.179 0.103

Characteristics root 7.625 2.425 1.575 1.198
Contribution rate (%) 47.659 15.159 9.843 7.487

Cumulative contribution rate (%) 47.659 62.817 72.66 80.147
Factor weights 0.595 0.189 0.123 0.093

Note: SD: stream diameter; LN: leaf number; RL: root length; ARD: average root diameter; RSA: root surface area;
RV: root volume; AFW: aboveground fresh weight; BFW: belowground fresh weight; ADW: aboveground dry
weight; BDW: belowground dry weight; RA: root activity; RWC: leaf relative water content; SPAD: soil and plant
analyzer development; REL: relative electrolytic leakage; SS: soluble sugar; SP: soluble protein.

3.1.5. Comparative Study of Pakchoi Drought Tolerance

According to the results of PCA, the comprehensive score of each D-value of the
50 varieties was calculated according to the proportion of the variance contribution rate
of each principal component to the cumulative variance contribution rate of the extracted
principal components. Furthermore, the D-values of the 50 varieties ranged from 0.108 to
0.710, with a mean of 0.313 and a coefficient of variance of 0.476, showing that the D-values
were more representative. The 50 varieties were sorted based on the size of the D-value,
with the extremely drought-tolerant types being Jinhui, Dongyue, and Qingguan, and the
highly sensitive varieties being Huangjinkuaicai, Sucuibai, Heidatou, Ziyuyoucai, and
Heimeigui. The other varieties fell somewhere in the middle (Table 5).

3.1.6. Drought Tolerance Levels Dissected Using Cluster Analysis

Cluster analysis resulted in the classification of the 50 varieties of pakchoi into five
categories based on the D-value at λ = 0.2 (Figure 2). The first category included particularly
drought-tolerant cultivars such as Jinhui, Qingguan, Dongyue, Xiazhijiao, and Hanszifei.
The second category contained 12 varieties with moderate drought tolerance; the third
category contained 15 drought-tolerant varieties; the fourth category contained 12 sensitive
varieties; and the fifth category contained 6 highly sensitive varieties.

3.1.7. The Classification of Complete Evaluation Indicators of Pakchoi Varieties under
Drought Conditions

The values of the SD, LN, RV, AFW, BFW, BDW, RA, RWC, REL, SS, and SP member-
ship functions and the above three drought tolerance evaluation indicators (D-value) all
increased with increasing drought tolerance grade. Note the grading statistics of drought
tolerance evaluation indicators of 50 varieties (Table 6).
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Table 5. D-value of drought tolerance evaluation of pakchoi varieties.

Varieties
Membership Function Value

D-Value Sorting
µ1 µ2 µ3 µ4

1 0.152 0.183 0.848 0.696 0.294 20
2 0.121 0.000 0.609 0.982 0.238 35
3 0.393 0.542 0.870 0.732 0.512 6
4 0.189 0.282 0.652 0.643 0.306 18
5 0.070 0.282 0.163 0.929 0.202 38
6 0.035 0.107 0.250 0.625 0.130 49
7 0.029 0.405 0.587 0.268 0.191 41
8 0.244 0.099 0.424 0.768 0.288 23
9 0.637 0.992 0.772 0.518 0.710 1

10 0.598 0.939 0.739 0.643 0.684 3
11 0.389 0.573 0.620 0.536 0.466 7
12 0.475 0.885 0.663 1.000 0.625 4
13 0.357 0.397 0.391 0.732 0.404 10
14 0.232 0.397 0.565 0.857 0.362 13
15 0.445 0.710 0.815 0.804 0.574 5
16 0.293 0.305 0.478 0.482 0.336 17
17 0.316 0.435 0.435 0.607 0.380 12
18 0.322 0.435 0.783 0.768 0.441 9
19 0.283 0.260 0.685 0.518 0.350 16
20 0.334 0.458 0.500 0.554 0.398 11
21 0.059 0.779 0.196 0.661 0.268 30
22 0.209 0.198 0.522 0.536 0.276 27
23 0.018 0.252 0.065 0.696 0.132 48
24 0.143 0.260 0.707 0.554 0.273 28
25 0.154 0.458 0.761 0.268 0.296 19
26 0.195 0.267 0.467 0.250 0.247 34
27 0.244 0.374 0.587 0.679 0.351 15
28 0.322 0.160 0.587 0.661 0.355 14
29 0.414 0.435 0.685 0.571 0.466 8
30 0.006 0.466 0.337 0.536 0.183 42
31 0.000 0.473 0.261 0.393 0.158 45
32 0.184 0.328 0.478 0.679 0.294 21
33 0.588 1.000 1.000 0.464 0.705 2
34 0.176 0.023 0.500 0.518 0.219 37
35 0.043 0.473 0.359 0.107 0.169 44
36 0.166 0.275 0.641 0.196 0.248 33
37 0.156 0.389 0.196 0.786 0.264 32
38 0.211 0.260 0.522 0.500 0.285 25
39 0.287 0.160 0.304 0.304 0.267 31
40 0.180 0.160 0.207 0.393 0.200 39
41 0.139 0.237 0.130 0.304 0.172 43
42 0.273 0.038 0.739 0.214 0.280 26
43 0.158 0.038 0.000 0.429 0.141 47
44 0.285 0.137 0.446 0.393 0.287 24
45 0.012 0.427 0.109 0.071 0.108 50
46 0.275 0.015 0.293 0.929 0.289 22
47 0.127 0.076 0.413 0.179 0.157 46
48 0.275 0.099 0.163 0.732 0.270 29
49 0.166 0.282 0.109 0.286 0.192 40
50 0.219 0.176 0.467 0.000 0.221 36

µ1, µ2, µ3, and µ4 represent the subordinate function values of the five factors. D-value: drought tolerance
comprehensive evaluation value.
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Figure 2. Cluster diagram of drought tolerance in pakchoi based on the D-value. Group I, Group II,
Group III, Group IV, and Group V represent different drought tolerance levels.

Table 6. Classification of comprehensive evaluation of indicators for pakchoi varieties under water
deficit conditions.

Indicators
Membership Function

I II III IV V

SD 0.920 0.855 0.727 0.646 0.493
LN 0.971 0.865 0.851 0.746 0.706
RL 0.823 0.681 0.638 0.618 0.707

ARD 0.778 0.788 0.747 0.689 0.726
RSA 0.856 0.746 0.646 0.663 0.603
RV 0.711 0.636 0.551 0.537 0.474

AFW 0.835 0.760 0.660 0.623 0.587
BFW 0.917 0.811 0.690 0.612 0.454
ADW 0.812 0.754 0.660 0.614 0.684
BDW 0.908 0.790 0.659 0.582 0.433
RA 0.880 0.836 0.734 0.571 0.390

RWC 0.919 0.867 0.813 0.776 0.573
SPAD 1.040 0.943 0.878 0.919 0.835
REL 0.901 0.830 0.714 0.626 0.432
SS 3.033 1.172 0.727 0.541 0.470
SP 2.584 1.694 1.206 0.945 0.623

D-value 0.660 0.402 0.282 0.207 0.138

I, II, III, IV, and V represent different drought tolerance levels. SD: stem diameter; LN: leaf number; RL: root
length; ARD: average root diameter; RSA: root surface area; RV: root volume; AFW: aboveground fresh weight;
BFW: belowground fresh weight; ADW: aboveground dry weight; BDW: belowground dry weight; RA: root
activity; RWC: leaf relative water content; SPAD: soil and plant analyzer development; REL: relative electrolytic
leakage; SS: soluble sugar; SP: soluble protein.
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3.1.8. PCA of Individual Indicators

According to the PCA results of 12 individual indicators of pakchoi, the cumulative
contribution rate of the total variance of the four principal components is greater than 80%.
Pakchoi SD, AFW, BFW, BDW, and other indicators are the main factors of PCA1; LN, RL,
ADW, and SPAD are the main factors of PCA2; RSA and RV are the main factors of PCA3;
and ARD are the main factors of PCA4 (Table 7). To avoid collinearity of indicators, select
indicators with higher contribution rates from each principal component, including, SS,
ARD, BFW, ADW, RV, LN, and construct a regression model.

Table 7. Component matrix after principal component rotation of 16 indicators.

Indexes PCA1 PCA2 PCA3 PCA4

SD 0.948
LN 0.452 0.598
RL 0.700

ARD 0.921
RSA 0.873
RV 0.883

AFW 0.611 0.525
BFW 0.916
ADW 0.857
BDW 0.921
RA 0.860

RWC 0.894
SPAD 0.589
REL 0.878
SS 0.584 0.494
SP 0.770 0.446

SD: stem diameter; LN: leaf number; RL: root length; ARD: average root diameter; RSA: root surface area; RV:
root volume; AFW: aboveground fresh weight; BFW: belowground fresh weight; ADW: aboveground dry weight;
BDW: belowground dry weight; RA: root activity; RWC: leaf relative water content; SPAD: soil and plant analyzer
development; REL: relative electrolytic leakage; SS: soluble sugar; SP: soluble protein.

3.1.9. Screening of Drought Tolerance Indicators by Stepwise Regression Analysis

Stepwise regression analysis on the DC and D-values of the selected SS, ARD, BFW,
ADW, RV, LN, and the coefficient of determination (R2) was 0.976; the F test value was
highly significant, indicating that the regression equation was optimal, the predictions were
accurate, and the model was a good fit for the given data (Table 8). In the evaluation of
pakchoi drought tolerance, the drought tolerance of pakchoi varieties can be identified by
measuring the indicators closely related to the D-value, such as soluble sugar, average root
diameter, belowground fresh weight, root volume, and leaf number, thus simplifying the
identification work.

Table 8. Drought tolerance model prediction in pakchoi varieties by stepwise regression analysis.

Multiple Regressive Equations Coefficient of
Determination R2 F-Value p-Value

y = −0.427 + SS × 0.120 + ARD × 0.298 + BFW × 0.203 + RV × 0.147 + LN × 0.214 0.976 393.394 <0.01

SS: soluble sugar; ARD: average root diameter; BFW: belowground fresh weight; RV: root volume; LN: leaf number.

3.2. Verification of the Drought Regression Equation and Assessment System for Pakchoi
Water-Deficit Tolerance
3.2.1. Regression Equation Verification

One pakchoi variety was randomly selected from each of the five drought tolerance
classes and used to validate the regression equation: I-Jinhui (I-JH), II-Dongxin (II-DX),
III-Suoyuannaibaicai (III-SY), IV-Xinganhua (IV-XGH), and V-Ziyuyoucai (V-ZY). After
measuring BFW, ARD, RV, RA, SS, and SP, the y value of five was 0.128–0.450, consistent
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with drought tolerance of different varieties. The validation results were consistent with
the ranking order using D-values, indicating the drought tolerance is accuracy (Table 9).

Table 9. Verification of regression equation for non-heading Chinese cabbage varieties.

Varieties BFW ARD RV RA SS SP y Value Storing D-Value

I-JH 0.817 0.618 0.726 0.994 1.869 1.808 0.450 1 0.710
II-DX 0.815 0.733 0.599 0.818 1.653 1.642 0.407 2 0.404
III-SY 0.681 0.786 0.644 0.721 1.420 1.214 0.331 3 0.306

IV-XGH 0.602 0.635 0.486 0.560 0.881 0.622 0.158 4 0.157
V-ZY 0.545 0.695 0.617 0.498 0.390 0.511 0.128 5 0.108

BFW: belowground fresh weight; ARD: average root diameter; RV: root volume; RA: root activity; SS: soluble
sugar; SP: soluble protein.

3.2.2. The Effect of Water Deficit on Pakchoi Stomatal Morphology

Stomatal densities increased both in the upper and the lower epidermis of five verities,
under water deficit (Figure 3). In addition, the stomatal density of varieties that are
sensitive to drought was higher than that of varieties that are drought-tolerant. Upper
epidermis stomatal density of I-JH and V-ZY increased 88.92% and 37.5%, respectively;
lower epidermis stomatal density of I-JH and V-ZY increased 68.0% and 4.3%, respectively.
Stomatal length of upper and lower epidermis stomatal in I-JH, II-DX, III-SY, and IV-XGH
significantly increased and V-ZY significantly decreased. Stomatal width of I-JH and V-ZY
decreased 46.2% and 19.0% in upper epidermis, and 30.1% and 12.2% in lower epidermis.
Stomatal aperture of upper epidermis and lower epidermis in I-JH, II-DX, III-SY, and
IV-XGH significantly decreased (Table 10).

1 
 

 
Figure 3. Differences in stomatal indicators in the upper and lower epidermis of five cultivars under
water deficit conditions. S-NI: normal irrigation treatment of upper epidermis; S-WDI: irrigation
treatment of water deficit in upper epidermis; X-NI: normal irrigation treatment of lower epidermis;
X-WDI: irrigation treatment of water deficit in lower epidermis. The direction indicated by a red
arrow is stomatal. The scale bar represent 100 µm.
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Table 10. Effect of water deficit treatment on stomatal morphology of pakchoi.

Varieties Treatments
Stomatal Density (No·mm−2) Stomatal Length (µm) Stomatal Width (µm) Stomatal Aperture (µm)

Upper
Epidermis

Lower
Epidermis

Upper
Epidermis

Lower
Epidermis

Upper
Epidermis

Lower
Epidermis

Upper
Epidermis

Lower
Epidermis

I-JH NI 12.00 ± 0.57 g 16.67 ± 0.33 h 35.93 ± 0.51 a 26.34 ± 0.15 d 25.52 ± 0.24 a 22.15 ± 0.11 b 7.77 ± 0.11 bc 7.49 ± 0.19 c
WDI 22.67 ± 0.33 e 28.01 ± 0.57 f 24.45 ± 0.32 d 20.05 ± 0.31 f 17.46 ± 0.25 d 17.03 ± 0.10 f 5.42 ± 0.21 e 4.76 ± 0.12 f

II-DX NI 10.67 ± 0.32 g 25.00 ± 0.55 g 34.17 ± 0.21 a 33.55 ± 0.64 a 22.41 ± 0.81 b 22.49 ± 0.12 b 7.82 ± 0.13 b 8.41 ± 0.21 b
WDI 19.66 ± 0.31 f 36.02 ± 0.98 de 24.63 ± 0.51 d 28.49 ± 0.23 c 18.60 ± 0.24 c 17.09 ± 0.21 f 5.88 ± 0.22 e 6.03 ± 0.22 d

III-SY NI 14.00 ± 0.58 g 28.04 ± 0.51 f 24.94 ± 0.25 d 24.66 ± 0.12 e 18.34 ± 0.31 cd 18.35 ± 0.20 e 7.96 ± 0.14 ab 11.29 ± 0.37 a
WDI 22.00 ± 0.51 e 38.67 ± 0.33 d 19.35 ± 0.54 f 21.91 ± 0.11 f 16.48 ± 0.54 e 14.72 ± 0.14 g 7.20 ± 0.10 d 8.58 ± 0.25 b

IV-XGH NI 24.33 ± 0.33 d 32.00 ± 0.58 e 24.25 ± 0.47 e 30.33 ± 0.22 b 18.97 ± 0.22 c 20.59 ± 0.22 d 7.98 ± 0.21 ab 7.26 ± 0.21 c
WDI 36.00 ± 0.54 c 41.00 ± 0.51 c 20.26 ± 0.26 f 27.31 ± 0.12 c 18.37 ± 0.11 cd 18.24 ± 0.18 e 7.31 ± 0.11 c 5.52 ± 0.22 e

V-ZY NI 40.00 ± 0.44 b 47.00 ± 0.57 b 25.35 ± 0.48 c 25.31 ± 0.13 d 17.15 ± 0.14 d 23.63 ± 0.11 a 8.55 ± 0.13 a 7.83 ± 0.11 bc
WDI 45.00 ± 0.53 a 49.00 ± 0.55 a 27.76 ± 0.43 b 24.18 ± 0.27 e 16.96 ± 0.15 e 21.06 ± 0.12 c 8.32 ± 0.29 a 7.24 ± 0.33 c

NI: normal irrigation; WDI: water deficit irrigation. Different lowercase letters indicates significant differences
among various varieties and treatments at p < 0.05 level.

3.2.3. Effect of Water Deficit on the Chlorophyll Content of Pakchoi

Five drought-tolerant varieties of pakchoi showed the same pattern of change in terms
of the leaf chlorophyll content after being subjected to the water deficit treatment (Table 11).
The levels of chlorophyll a, chlorophyll b, and total chlorophyll all decreased, but the
decrease in chlorophyll b was more significant than the decrease in chlorophyll a. This
led to an upward trend in the ratio of chlorophyll a/b. Chlorophyll a decreased by 3.8%,
4.6%, 7.7%, 17.9%, and 19.0% with the reduction in drought tolerance level; chlorophyll
b decreased by 5.1%, 6.5%, 12.6%, 28.6%, and 50.9%; and the total chlorophyll content
decreased by 4.2%, 5.1%, 9.0%, 21.5%, and 30.1%. Furthermore, the following table shows
that the chlorophyll a content of the five varieties decreased, whereas the chlorophyll a/b
ratio showed the significant increase of 1.4%, 1.7%, 5.5%, 13.9%, and 25.7%.

Table 11. Effect of water deficit treatment on the chlorophyll content of pakchoi.

Varieties Treatments Chlorophyll a
(mg. g−1)

Chlorophyll b
(mg. g−1)

Chlorophyll Content
(mg. g−1) Chlorophyll a/b

I-JH
NI 1.14 ± 0.22 ab 0.44 ± 0.08 ab 1.58 ± 0.31 ab 2.62 ± 0.07 b

WDI 1.10 ± 0.14 abc 0.41 ± 0.06 ab 1.51 ± 0.20 ab 2.65 ± 0.02 a

II-DX
NI 1.03 ± 0.13 abc 0.37 ± 0.05 ab 1.40 ± 0.18 ab 2.80 ± 0.14 ab

WDI 0.99 ± 0.04 abc 0.35 ± 0.01 ab 1.34 ± 0.05 ab 2.85 ± 0.02 ab

III-SY
NI 0.82 ± 0.15 bc 0.30 ± 0.05 b 1.12 ± 0.20 b 2.69 ± 0.06 ab

WDI 0.75 ± 0.12 c 0.27 ± 0.03 b 1.02 ± 0.15 b 2.83 ± 0.15 ab

IV-XGH
NI 1.05 ± 0.04 abc 0.37 ± 0.02 ab 1.42 ± 0.06 ab 2.85 ± 0.06 ab

WDI 0.85 ± 0.17 bc 0.26 ± 0.06 b 1.11 ± 0.23 b 3.25 ± 0.13 a

V-ZY
NI 1.25 ± 0.42 b 0.72 ± 0.63 a 1.97 ± 1.05 a 2.30 ± 0.97 b

WDI 1.02 ± 0.08 abc 0.35 ± 0.02 ab 1.37 ± 0.10 ab 2.89 ± 0.04 ab

NI: normal irrigation; WDI: water deficit irrigation. Different lowercase letters indicates significant differences
among various varieties and treatments at p < 0.05 level.

3.2.4. Differences in Photosynthetic Characteristics of Pakchoi Varieties under Water
Deficit Stress

The photosynthetic characteristics of the selected pakchoi varieties showed significant
differences when grown under normal irrigation and water deficit conditions (Table 12).
I-JH decreased 9.2% in the net photosynthetic rate (Pn), while ZY decreased 18.3%. Both
of these results were in comparison to the normal irrigation treatment. I-JH and V-ZY
decreased in stomatal conductance (Gs) by 32.0% and 15.5%, respectively, when compared
with the normal irrigation treatment. In addition, the transpiration rate (Tr), which was
consistent with the change in stomatal conductance, was significantly lower in the drought-
tolerant varieties compared to the sensitive varieties, and the I-JH decreased 44.5% under
the condition of water deficit, while the V-ZY decreased 18.3%. I-JH showed a decrease in
intercellular CO2 concentration (Ci) that was 35.8% higher than that of any other group.
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Table 12. Difference of photosynthetic characteristics of different pakchoi.

Varieties Treatments Pn Gs Ci Tr

I-JH
NI 8.24 ± 0.01 b 23.33 ± 0.33 a 135.71 ± 2.82 a 4.44 ± 0.10 a

WDI 7.69 ± 0.11 c 21.33 ± 0.33 b 118.23 ± 5.32 b 3.63 ± 0.08 b

II-DX
NI 8.74 ± 0.06 a 14.67 ± 0.33 c 66.21 ± 1.14 d 3.61 ± 0.26 b

WDI 7.04 ± 0.02 d 12.00 ± 0.12 d 55.96 ± 2.12 e 2.84 ± 0.48 c

III-SY
NI 6.06 ± 0.08 e 14.33 ± 0.32 c 73.68 ± 1.86 c 2.31 ± 0.06 cd

WDI 4.84 ± 0.05 g 10.67 ± 0.67 c 44.65 ± 2.02 f 1.57 ± 0.06 e

IV-XGH
NI 7.09 ± 0.10 d 14.67 ± 0.33 c 48.12 ± 2.42 f 3.76 ± 0.27 ab

WDI 5.33 ± 0.18 f 10.00 ± 0.58 e 27.55 ± 0.25 g 2.26 ± 0.14 cd

V-ZY
NI 7.62 ± 0.22 c 12.33 ± 0.33 d 59.64 ± 2.05 de 3.72 ± 0.15 ab

WDI 5.41 ± 0.10 f 8.33 ± 0.33 f 27.26 ± 0.43 g 2.00 ± 0.39 e

NI: normal irrigation; WDI: water deficit irrigation; Pn: net photosynthetic rate; Gs: stomatal conductance; Ci:
intercellular carbon dioxide concentration; Tr: transpiration rate. Different lowercase letters indicates significant
differences among various varieties and treatments at p < 0.05 level.

3.2.5. Effect of Water Deficit on Oxidative Damage and Enzymatic Activity in
Pakchoi Varieties

Under water deficit treatment, SOD, POD, CAT activity, MDA, and the rate of O2
−

production rate in five different pakchoi varieties increased. Compared to normal irrigation,
SOD, POD, and CAT activities in I-JH increased by 63.2%, 71.3%, and 79.1% under the water
deficit treatment compared to the normal irrigation treatment, while in V-ZY increased by
12.8%, 17.3%, and 17.2%, respectively (Figure 4A–C). The MDA content increased by 21.3%,
40.5%, 58.6%, 76.7%, and 84.3% in five varieties (Figure 4D). O2

− generation rate increased
by 13.6%, 41.2%, 56.5%, 64.0%, and 76.5%, respectively, in five varieties (Figure 4E). Both
the MDA content and the O2

− generation rate increased in response to a water deficit,
although the increase in drought-tolerant types was much smaller than in sensitive types.
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4. Discussion

Drought stress exerts a profound impact on the morphology of plants, diminishing
their performance across multiple dimensions, including physiological characteristics,
morphology, and yield. The presence of water stress adversely affects various aspects
of plant growth and development, resulting in reduced overall plant performance [45].
Numerous researchers have undertaken drought-tolerance assessments by focusing on
individual or limited aspects such as morphology, photosynthesis, and physiology. This
approach stems from the understanding that yield is influenced by the intricate processes
of growth and development, and plant growth serves as a reliable measure of drought
adaptability. As a result, to comprehensively evaluate drought tolerance, it is imperative
to incorporate indicators related to both yield and morphological characteristics into the
assessment framework [46,47]. The evaluation of drought-tolerance in cotton materials
has predominantly been conducted using morphological and yield indicators in most stud-
ies [48,49]. Furthermore, these indicators, which focus on morphological and yield aspects,
provide only a partial understanding of crop drought-tolerance, disregarding the crucial
roles of photosynthesis, physiology, and biochemistry. Osmotic adjustment, including
parameters like MDA and proline content, is recognized as a significant component of
drought-tolerance and should be considered in comprehensive assessments [50–52]. Hence,
when conducting evaluations and verifications of drought-tolerance, it becomes essen-
tial to integrate multiple indicators encompassing morphology, physiology, biochemical
changes, and representative indices. This comprehensive approach ensures a more holistic
understanding of drought-tolerance screening in plants.

Our study involved the cultivation of 50 pakchoi varieties in the field, where we
assessed 16 indicator variables closely associated with drought tolerance, encompassing
morphological, physiological, and biochemical indicators. From the seedling stage to
harvesting, the variance analysis of the drought tolerance coefficient revealed notable
differences among the pakchoi varieties grown under different water treatments, partic-
ularly under drought stress (Table 3). These findings indicate that the selected pakchoi
varieties exhibit sufficient genetic diversity to serve as representative samples for the re-
gion. Notably, drought stress exerted a significant influence on all the studied indicators
(p < 0.05), as evidenced by decreasing drought tolerance coefficients (<1) and increasing
drought tolerance coefficients (>1) (Table 2). Additionally, the coefficient of variation
(CV) values for most indicators were higher under water deficit conditions compared to
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normal treatment. This observation suggests that the pakchoi cultivars chosen for this
study demonstrate ample diversity, manifesting noticeable effects of drought stress and
yielding representative results.

To mitigate inherent variations among cultivars, the evaluation of different pakchoi
varieties under drought stress was conducted using relative values. However, drought
tolerance is a complex indicator influenced by multiple factors, and assessing it solely
based on individual or single-type indicators can lead to errors. Currently, there is no
single indicator that can provide a complete and accurate evaluation of drought-tolerance.
Therefore, it is crucial to identify more comprehensive indicators and employ suitable eval-
uation methods for plant assessments. Furthermore, many indicators exhibit correlations
with each other, resulting in overlapping responses as indicators of crop stress tolerance
(Figure 1). Hence, utilizing multivariate analysis methods becomes essential in evaluat-
ing and screening comprehensive indicators associated with drought-tolerance. PCA can
effectively reduce multiple variables to underlying factors, thus addressing missing data
issues and facilitating efficient grouping of drought-tolerant varieties [53,54]. By PCA,
we were able to transform 16 individual indicators of pakchoi varieties under drought
stress into four distinct independent comprehensive indices. Notably, the cumulative
contribution rate of the first four independent comprehensive indicators exceeded 80%,
suggesting that a significant portion of the data pertaining to the 16 indicators was effec-
tively encompassed by these comprehensive indicators (Table 4). The drought tolerance
membership function value serves as a multivariate indicator that combines the drought
tolerance coefficients of various indicators, providing a comprehensive representation of
the overall performance of plants under drought stress. This indicator effectively captures
and reflects the collective response of plants to drought conditions. Utilizing the principal
component scores, the membership function values were computed, and subsequently,
the D-value was determined by incorporating the respective weights. This facilitated
the ranking of pakchoi varieties based on their drought tolerance, with higher D-values
indicating superior drought tolerance. In previous studies, the waterlogging tolerance of
12 onion cultivars and the salt tolerance of wheat and maize varieties were classified into
two groups based on their respective characteristics. This classification was determined by
evaluating the Euclidean distances between the cultivars or varieties, providing insights
into their relative tolerance levels [55–57]. Similarly, the drought tolerance of cotton cul-
tivars was classified based on the membership function and D-value. This classification
method enabled the categorization of cotton cultivars into distinct groups according to
their respective levels of drought tolerance [58]. In this study, pakchoi varieties differed
significantly in various morphological, physiological, and biochemical characteristics, indi-
cating that there was sufficient genetic diversity among the selected pakchoi varieties. We
used PCA to convert the 16 drought-tolerance indicators of pakchoi varieties into 4 inde-
pendent composite indicators. D-values of different pakchoi varieties were obtained by the
membership function. Furthermore, the use of PCA in conjunction with the membership
function and cluster analysis makes assessing stress-tolerance in crops more reliable and
practical. Hierarchical clustering analysis classified 50 pakchoi varieties into five categories
based on the D-value (Figure 2): highly drought-tolerant, moderately drought-tolerant,
drought-tolerant, highly drought-sensitive, and drought-sensitive. Step wise regression
analysis revealed that among the 16 indicators studied, 6 drought-tolerance indicators
(BFW, ARD, RV, RA, SS, and SP) exhibited significant effects on the drought tolerance of
pakchoi. These identified indicators can serve as primary indicators for evaluating and
screening drought-tolerant pakchoi varieties in future studies. Additionally, we developed
a robust regression model for assessing the drought tolerance of pakchoi, represented by
the equation: y= −0.427 + SS × 0.120 + ARD × 0.298 + BFW × 0.203 + RV × 0.147 + LN
× 0.214 (R2 = 0.976, p-value < 0.01) (Table 9). This model provides a reliable means for
evaluating the drought-tolerance of pakchoi, incorporating multiple indicators as predic-
tors. For the validation of the regression model, varieties were randomly selected from
each group based on their D-values. The high contribution of each of the six indicators,
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as well as the high D-value, indicates that these varieties possess a high level of drought
tolerance and ranking is as follows: I-JH, II-DX, III-SY, IV-XGH, and V-ZY (Table 10). The
results of the grey relational analysis provided additional confirmation of the accuracy of
the regression analysis, further enhancing the scientific reliability and credibility of the
identified indicators in assessing drought tolerance.

Comprehensive evaluation methods were highly effective to screen drought-tolerant
varieties. Many morphological and physiological are included in the process of plants
responding to drought-tolerance. It is also very important to further verify the classification
of plants by using comprehensive evaluation methods by different indicators. Among
many drought-tolerant indicators, stomatal behavior, patterning, and morphology are
important factors that contribute to water use efficiency. Stomata exhibit a diverse range
of shapes, sizes, and numbers across different plant species. Variation in size and density
of stomata may arise due to genetic factors and/or growth under different environmental
conditions. With the rise of drought stress, the stomata closed down and their density in
the upper and lower epidermis also decreased to prevent evapotranspiration [59,60]. The
drought-tolerant wheat cultivar ‘Changhan 58’ showed lower stomatal density under well-
watered and water-stressed conditions, and the drought-sensitive cultivar ‘Xinong 9871’
had a non-significantly larger decrease under water-stressed conditions [61]. In this current
study, we explored potential modifications in stomatal indicators among five groups of
drought-tolerant varieties in order to enhance their drought tolerance. These modifications
include reducing stomatal density, length, width, and stomatal aperture in both the upper
and lower epidermis of the leaf under water deficit conditions (Figure 3, Table 11). We
observed that the reduction in stomatal density and opening of stomatal aperture was more
pronounced in group I-JH compared to group V-ZY, indicating that I-JH exhibits higher
levels of drought-tolerance. Drought stress experienced during the vegetative stage led to
a significant reduction in the levels of chlorophyll a, chlorophyll b, and total chlorophyll
content. However, the limited water supply throughout the vegetative phase had only
a mild impact on these chlorophyll contents. Importantly, the ratio of chlorophyll a to
chlorophyll b remained unaffected, suggesting that chlorophyll b is not more susceptible
to drought stress compared to chlorophyll a (Table 12). These findings are consistent
with a study by Nyachiro et al. [61] which observed a notable decrease in chlorophyll
a and b levels due to water scarcity in six cultivars of Triticum aestivum [62]. Similar
changes in chlorophyll levels, either decreased or unchanged, have been reported in other
species under drought conditions, although the severity and duration of drought may
influence the outcome [63]. The decrease in total chlorophyll content during drought
stress indicates a reduced capacity for capturing light energy. To prevent the generation of
reactive oxygen species, which are primarily produced due to excessive energy absorption
in the photosynthetic apparatus, the degradation of absorbing pigments may be employed
as a protective mechanism [64].

When exposed to drought stress, all five varieties exhibited a reduction in transpiration
rate and stomatal conductance (Table 12). This decrease can be attributed to the initial
response of plants to drought, wherein stomata close to limit the exchange of gases between
the leaf interior and the atmosphere. The I-JH showed a substantial reduction in stomatal
conductance of 32.0% compared to the other drought sensitive varieties. This reveled
that I-JH, when faced drought, instantly closed stomata to overcome drought stress and
increase the survival efficiency. Moreover, in response to drought, there was an observed
increase in the Ci concentration. Numerous experiments have consistently demonstrated a
correlation between a decrease in Gs and a concurrent decrease in Pn [65,66]. According to
the findings of Chaves and Oliveira, the impact of Gs on Pn is primarily significant under
severe drought-stress conditions. The reduction in Pn observed in plants experiencing
drought stress can be attributed to both stomatal factors, such as stomatal closure, as well as
non-stomatal factors, including impairments in metabolic processes [67]. Currently, there
is a consensus among most researchers that under mild and moderate drought stress, the
primary cause of decreased photosynthesis is stomatal closure, which leads to a deficit
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of CO2 in the chloroplasts [68]. Likewise, the impact of drought stress on Tr exhibited a
striking resemblance to its effect on Pn. The provision of ample water supply resulted in
a significant increase in stomatal conductance, net photosynthesis, and transpiration [69].
The increase in Ci in drought-tolerant variety, I-JH indicates the predominance of non-
stomatal limitations (mesophyll tolerance) to photosynthesis. Based on the observations, it
can be inferred that during drought stress conditions, photosynthesis is primarily restricted
by factors related to stomatal regulation [70].

ROS play a significant role in the metabolic pathways of plant drought tolerance. When
plants experience drought stress, they often generate elevated levels of ROS, including
increased production rates of O2

− and higher H2O2 content. To counteract the detrimental
effects of ROS, plants synthesize antioxidants that help scavenge these reactive molecules.
At the onset of drought stress, H2O2 production intensifies, leading to the synthesis of
CAT, which helps neutralize H2O2 and mitigate its negative impact on cells. SOD catalyzes
the conversion of superoxide into molecular oxygen and H2O2, which is subsequently
converted into water and oxygen within the cytosol and chloroplasts, safeguarding cells
against the toxic effects of ROS [71]. The results of Alscher et al. revealed that SOD and POD
counter act against the ROS by enhancing their activity under drought conditions. This
helps alleviate the harmful effects of ROS and enhances the defense system by increasing
antioxidant enzyme activity [72]. In our study, SOD, POD, and CAT activities in I-JH
significantly increased more when exposed to drought as compared to others varieties in
the remaining four groups. It is due to the tolerance of pakchoi varieties in each group to
drought stress. Therefore, antioxidant enzymes are commonly utilized as physiological
indicators to identify plant stress tolerance. In response to water deficit, both the content
of MDA and the generation rate of O2

− increased. However, the magnitude of increase
observed in drought-tolerant types was considerably smaller compared to sensitive types.
Comparative analysis of various drought-tolerant soybean varieties revealed that the
drought-tolerant varieties exhibited higher antioxidant enzyme activity of SOD, CAT,
and POD compared to the sensitive varieties under different durations and intensities of
drought treatment [48,73].

Hence, when assessing and analyzing water deficit tolerance, it is essential to consider
comprehensive set of indicators that includes, morphology, physiology, and biochemical
parameters. This will increase the efficiency of identifying and screening of pakchoi reduced
the phenotyping cost and time. However, the molecular mechanism of drought-tolerance in
pakchoi and the breeding of targeted high drought- tolerant varieties need further research.

5. Conclusions

This study evaluated 16 drought-related indices, including morphology, physiol-
ogy, and biochemical indicators of 50 pakchoi varieties grown in normal-irrigated and
water-deficient conditions. PCA, membership function value analysis, multiple regres-
sion analysis, D-value, and cluster analysis were performed to effectively evaluate the
drought-tolerance of the pakchoi varieties. A total of six indicators associated with pak-
choi drought-tolerance, such as BFW, ARD, RV, RA, SS, and SP, were evaluated, and a
digital model for pakchoi drought tolerance evaluation was established. Furthermore, five
drought-tolerant pakchoi varieties were chosen from each group by cluster ranking based
on the D-value: I-JH, II-DX, III-SY, IV-XGH, and V-ZY. In the meantime, to validate the
tolerance level of each variety by stomatal conductance, chlorophyll, ROS, antioxidant
enzymes will aid in the rapid evaluation of drought tolerance. The findings presented
here will facilitate the rapid evaluation of drought tolerance and enable the screening of
drought-tolerant pakchoi materials more effectively.
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