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Abstract: The accurate and rapid acquisition of fruit tree canopy parameters is fundamental for
achieving precision operations in orchard robotics, including accurate spraying and precise fertil-
ization. In response to the issue of inaccurate citrus tree canopy segmentation in complex orchard
backgrounds, this paper proposes an improved DeepLabv3+ model for fruit tree canopy segmenta-
tion, facilitating canopy parameter calculation. The model takes the RGB-D (Red, Green, Blue, Depth)
image segmented canopy foreground as input, introducing Dilated Spatial Convolution in Atrous
Spatial Pyramid Pooling to reduce computational load and integrating Convolutional Block Attention
Module and Coordinate Attention for enhanced edge feature extraction. MobileNetV3-Small is
utilized as the backbone network, making the model suitable for embedded platforms. A citrus tree
canopy image dataset was collected from two orchards in distinct regions. Data from Orchard A was
divided into training, validation, and test set A, while data from Orchard B was designated as test
set B, collectively employed for model training and testing. The model achieves a detection speed
of 32.69 FPS on Jetson Xavier NX, which is six times faster than the traditional DeepLabv3+. On
test set A, the mIoU is 95.62%, and on test set B, the mIoU is 92.29%, showing a 1.12% improvement
over the traditional DeepLabv3+. These results demonstrate the outstanding performance of the
improved DeepLabv3+ model in segmenting fruit tree canopies under different conditions, thus
enabling precise spraying by orchard spraying robots.

Keywords: improved DeepLabv3+; attention mechanism; citrus tree canopy; orchard spraying robot;
RGB-D detector

1. Introduction

Citrus is one of the most important agricultural trade commodities worldwide, and
China is among the countries with the largest citrus cultivation areas [1]. In citrus orchard
management, orchard plant protection is crucial for controlling pests and diseases and en-
suring fruit quality. However, traditional manual spraying methods still dominate orchard
plant protection, resulting in low efficiency and significant waste of pesticide solution and
posing a risk of pesticide poisoning for applicators. With the continuous development of
agricultural intelligence technology, orchard spraying robots have begun transitioning from
research and development to the experimental stage and will be deployed in large-scale
agricultural production processes [2]. Precision spraying is one of the core technologies
for orchard spraying robots, and accurate recognition and segmentation of the target are
prerequisites for achieving precision spraying [3]. Therefore, an algorithm capable of ac-
curately segmenting target tree canopies in an orchard environment is needed to support
efficient pesticide application by orchard spraying robots.
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With the development of sensor technology, fruit tree canopy detection methods have
become increasingly diverse, including various methods such as LiDAR, ultrasonics, and
multispectral imaging [4–8]. However, these methods generally have shortcomings, such
as high hardware costs, strict terrain requirements, and susceptibility to environmental
factors [9]. To address these issues, some researchers have attempted to use low-cost
image processing and machine vision methods for fruit tree canopy recognition and seg-
mentation, achieving certain results. For example, Xiao et al. [10] proposed a precision
orchard spraying technology that used color and depth information collected by KinectV1
(Microsoft Corporation, Redmond, WA, USA) sensors to extract the leaf wall area of fruit
trees. Experiments on peach trees, apricot trees, and grapevines demonstrated that this
technology could improve pesticide application efficiency and reduce environmental pollu-
tion. Gao et al. [11] used KinectV1 sensors to collect color and depth image information of
grapevines and employed threshold segmentation techniques to accurately extract leaf wall
information, calculating leaf wall density with minimal error. However, the performance of
these methods is influenced by many factors, such as crop type, weeds or other objects near
the canopy, and different lighting conditions. Moreover, the Light Coding technology used
by KinectV1 is also easily affected by strong light sources. Therefore, this study adopts the
KinectV2 (Microsoft Corporation, Redmond, WA, USA) with a Time-of-Flight (TOF) depth
sensor as the image acquisition device and investigates an effective algorithm suitable for
citrus orchard environments.

With the rapid development of deep learning theory and the continuous improvement
of computer performance, the release of large-scale training datasets such as ImageNet [12]
and VSPW [13] has enabled Convolutional Neural Networks (CNNs) to perform remark-
ably well in tasks such as object detection, image segmentation, and object classification [14].
In recent years, deep learning technology has been widely applied and studied in the
agricultural field [15–19]. Research has shown that deep learning methods have high
accuracy in the recognition and segmentation of tree canopies in fruit tree images [20–22].
Sun et al. [23] proposed an automatic detection method for flowers in fruit tree canopies,
utilizing a pre-trained semantic segmentation network and active contour model, achieving
a balanced F-score of 89.6% on an apple dataset. This method can be widely applied to
fruit tree cultivation, providing quick and accurate estimates of flowering degrees for fruit
growers. Anagnostis et al. [24] proposed an orchard tree segmentation method based on
an improved U-Net network model combined with remote sensing technology, achieving
an accuracy of 87% in performance tests and successfully segmenting fruit tree canopies.
Cao et al. [25] proposed a semantic segmentation model based on an improved Yolo v7 to
address the problem of segmenting tree images in simple and complex backgrounds. The
model introduced SENet to reduce the acquisition of erroneous features and proposed a
weighted loss function to solve the problem of class imbalance in complex backgrounds.
In the final performance evaluation, the model achieved a mean intersection over union
of 91.17% and 90.23% in simple and complex backgrounds, respectively. Shi et al. [26]
introduced a lightweight model, SEMD, based on DeepLabv3+. This model enhances
feature extraction capability by introducing the attention mechanism of the SENet module.
It achieves a mean intersection over union (mIoU) of 91.78% and 86.90% for semantic
segmentation of tree images of different varieties and categories under simple and complex
backgrounds, respectively. Moreover, the detection speed of this model reaches 160 ms.

In summary, the application of tree crown segmentation in real-time precision spraying
in orchards currently faces two challenges: detection speed and accuracy. In terms of speed,
it requires a lightweight model that can be deployed on embedded platforms and meet the
requirements of real-time detection. However, in terms of accuracy, lightweight models do
not achieve precise segmentation of tree crowns in complex orchard backgrounds from RGB
images, thus failing to achieve satisfactory performance. In contrast, RGB-D images offer
greater advantages. They not only retain the information from RGB images but also contain
depth data. By performing threshold segmentation on the depth values, complex orchard
backgrounds can be eliminated, thereby improving the adaptability of lightweight models
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in this environment. Therefore, this paper proposes a lightweight network segmentation
model based on the DeepLabv3+ [27] model, using RGB-D (Red, Green, Blue, Depth)
images as input data for citrus tree crown area segmentation to provide technical support
for precise pesticide application by orchard spraying robots. The main contributions of this
paper are as follows:

1. We collected and prepared a set of RGB-D images of the citrus canopy from two
citrus orchards, A and B, in different periods and regions. In Orchard A, we collected
540 groups of images and divided them into training set, validation set, and test set A.
Meanwhile, in Orchard B, we collected 100 groups of images as test set B. The data
collection and preparation process are described in detail in Section 2. The improved
DeepLabv3+ achieved mIoU of 95.62% and 92.29% on test sets A and B, respectively,
demonstrating its sufficient generalization performance.

2. This paper improved the model’s segmentation accuracy in complex backgrounds
by using depth information to remove redundant orchard background from RGB-D
images. In test set A, the mIoU of using RGB-D images increased by 4.67% compared
to using only RGB images.

3. Through the introduction of the Depthwise Separable Convolution (DSC) [28] method,
the Convolutional Block Attention Module (CBAM) [29], and the Coordinate Atten-
tion (CA) [30] mechanism module, we improved the Atrous Spatial Pyramid Pooling
(ASPP) [31] module of DeepLabv3+. This not only reduces the computational com-
plexity of the model but also enhances the segmentation accuracy of the network
model for citrus tree crowns. In test set A, compared to the original DeepLabv3+
model, the improved DeepLabv3+ model achieved a 2.43% increase in mIoU.

4. We replaced the backbone network of DeepLabv3+ with MobileNetV3-Small [32],
which significantly accelerated the detection speed of the network model. Further-
more, this model has a parameter count of only 3.11 M, which makes it well-suited
for applications on embedded platforms. The improved model achieved a detection
speed of 32.69 FPS for citrus tree canopy segmentation tasks on the Jetson Xavier
NX device, effectively meeting the segmentation requirements for real-time precision
spraying in orchards.

2. Materials and Methods
2.1. Image Acquisition

The citrus image acquisition system, consisting of the KinectV2 sensor and Jetson
Xavier NX device, was employed in this study. The data collection and creation process is
illustrated in Figure 1. The KinectV2 sensor served as the image acquisition sensor for citrus
trees, while the Jetson Xavier NX device was utilized for program execution and image
storage. The entire data collection process was executed in the Python 3.7.14 environment.
To ensure that each image captured the complete canopy of the target fruit tree and also
met the spraying range of the spraying robot, the KinectV2 sensor was installed on a stand
at a height of 1.30 m above the ground. It was positioned 2.3 m away from the center of the
tree row, with the lens parallel to the target fruit tree for image acquisition. The height and
distance remained constant throughout the image acquisition process. The KinectV2 sensor
can acquire RGB images (at a resolution of 1920 × 1080), depth images (at a resolution of
512 × 424; effective depth range of 0.5–5 m), and point cloud data using the RGB and TOF
depth sensors.

In this study, image data was collected from a citrus orchard (referred to as Orchard
A) at the Citrus Science Research Institute in Ganzhou, China (Lat: 25◦46′46.1136′′ N,
Long: 114◦51′38.7540′′ E) from 23 August to 26 August 2022. The acquisition times were
from 7:00 am to 10:30 am and 4:00 pm to 6:00 pm local time. The images were captured
under varying light intensities (normal light, stronger light, and weaker light) due to
changes in sunlight and cloud cover, thereby enhancing the sample diversity of the image
data. The citrus tree varieties were Ganzhou navel oranges, including 3-year-old hedge-
style, 3-year-old dwarf-style, and 5-year-old conventional high-density planting-style
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citrus trees. A total of 540 color images and 540 depth images were collected using the
KinectV2 sensor. All images were captured at 540 distinct positions to ensure that the target
citrus trees in each image were different. As shown in Figure 2, the images are arranged
from left to right, representing trellis-style, dwarf-style, and high-density planted images,
respectively. From top to bottom, the images depict normal lighting, strong lighting,
and weak lighting conditions. Furthermore, to enhance the evaluation of the model’s
generalization performance, supplementary test images of the conventional high-density
planted citrus trees were collected at the DaJu Fruit Industry Pingtan Plantation (referred
to as Orchard B) in Huizhou, Guangdong, China (Lat: 23◦2′27.528′′ N, Long: 114◦36′42.3′′

E) from 20–21 March 2023. Compared with Orchard A, Orchard B is located in a coastal
region with different temperature and humidity. It was in the flowering period during
collection and had more dense canopy branches and leaves. The citrus variety was also
different, which was the 4-year-old Hongjiang orange. Therefore, choosing Orchard B as a
supplementary test set can effectively test the model’s ability to extract and recognize citrus
canopy features under different environmental conditions. Moreover, the data collection
process in Orchard B was consistent with that in Orchard A, with a total of 100 color images
and 100 depth images captured, as shown in Figure 3.
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This paper acquired separate color and depth image data through the KinectV2 sensor;
however, due to the different resolutions of the two, the images needed to be aligned
before creating the training dataset. Therefore, the MapDepthFrameToColorSpace function
from the KinectV2 software development kit (version number: 2.0.1409) was used, and
color images were adjusted to match depth images so that each pixel in the depth image
corresponds to an RGB value. This process returns an array of colored point clouds,
resulting in the final RGB-D image. Since the working area of the orchard spray robot is the
nearest part of the tree canopy, the background and distant citrus trees in the collected citrus
images are not within the target area range. Thus, it was necessary to threshold-segment
the depth data of the RGB-D images and exclude image information outside the target area
range according to Equation (1), retaining image information within 3 m for creating the
citrus tree foreground segmentation image dataset. Subsequently, we manually annotated
the citrus foreground images using the open-source annotation tool LabelMe (version
number: 5.1.1) [33] to establish a standard semantic annotation dataset. The citrus canopy
in the image is marked as red as the target area, and the rest is marked as black as the
background. The generated label images correspond one-to-one with the original images
and are saved in the VOC format, providing a reliable data foundation for further research.

Id(x, y) =
{

D1(x, y), i f D1(x, y) > 3000
0, i f D1(x, y) ≤ 3000

(1)

D1(x, y) represents the pixel values {x ∈(1, W)} and {y ∈(1, H)} in the depth image; W
represents the pixel value corresponding to the image width; H represents the pixel value
corresponding to the image height.

In this study, the dataset from Orchard A, consisting of 540 sets of images (each set
containing one RGB image, one RGB-D image, and one label image corresponding to each
other), was randomly divided into training, validation, and test sets A in an 8:1:1 ratio. The
dataset from Orchard B, comprising 100 sets of images, was reserved as test set B to evaluate
the generalization performance of the proposed model. In terms of data augmentation,
considering the situations that the spraying robot may encounter in practical application,
such as differences in the forward and backward movement directions, slight shaking of
the acquisition system during motion, and variations in the brightness of the captured
images, we applied methods such as image flipping, slight rotation (randomly rotating 5◦

to 10◦ left or right), and brightness transformation to augment the training and validation
sets. This was done to expand the dataset, improve generalization ability, and enhance
the robustness of the model. After augmentation, the training set consisted of 1728 image
sets. The validation set, test set A, and test set B were not subjected to augmentation and
comprised 54 sets, 54 sets, and 100 sets of images, respectively. Examples of the dataset
are shown in Figure 4. From left to right are the original image, foreground segmentation
image, and manually annotated image, where black represents the background and red
represents the citrus canopy in the manually annotated image.
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2.2. Fruit Tree Canopy Segmentation Model
2.2.1. DeepLabv3+ Network Model

DeepLabv3+ [27] is a deep neural network from the DeepLab series specifically de-
signed for image segmentation. It builds upon the improvements made in DeepLabv3 [34]
to enhance segmentation accuracy and efficiency. DeepLabv3 improves the Atrous Spatial
Pyramid Pooling (ASPP) module by incorporating convolutional kernels, multiple dilation
rates, and multiple receptive fields, addressing the multi-scale challenge in image seg-
mentation. Building upon this, the DeepLabv3+ model introduces global average pooling
into the ASPP module to capture global semantic information. Additionally, inspired by
the encoder–decoder structure, a simple decoder module is introduced to compress the
lower-level feature maps. Furthermore, the feature maps processed by the ASPP module
undergo upsampling to restore their original resolution. Through a series of operations
such as 3 × 3 convolution and upsampling, the spatial information is gradually recovered,
enabling finer boundary detection for semantic segmentation at the pixel level.

2.2.2. Introduction of Depth-Separable Convolution

The main function of convolutional layers is feature extraction. In DeepLabv3+, the
ASPP module [31] combines dilated convolutions and spatial pyramid pooling to enable
the CNN to capture multi-scale feature information. However, traditional convolutional
layers that incorporate dilated convolutions still suffer from high computational complexity
and excessive parameter count. To address this issue, this study introduces the method of
depthwise separable convolution (DSC) [28]. The method consists of two parts: depthwise
convolution and pointwise convolution. Depthwise convolution independently applies
a 3 × 3 kernel to each input channel, realizing depth separation, as shown in Figure 5a.
Pointwise convolution employs a 1 × 1 kernel to mix channel features, as illustrated in
Figure 5b. DSC reduces the number of parameters, lowers computation, and improves the
balance in spatial and depth directions, making it suitable for lightweight models. Therefore,
we replace the convolutional networks in each branch with dilated convolutions in the
ASPP module with depthwise separable convolution networks to reduce the computational
complexity of dilated convolutions and enhance the detection efficiency of the model.

2.2.3. Introducing Attention Mechanism

Due to the limited richness of information scale in the ASPP module of DeepLabv3+,
which only utilizes convolutional blocks with dilation rates of 6, 12, and 18, the extraction
of semantic information for edge features is insufficient. Attention mechanisms play a
crucial role in enhancing the capability of network models to extract semantic information
and have been proven effective in image segmentation methods [35,36].
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Woo et al. [29] proposed the Convolutional Block Attention Module (CBAM) mecha-
nism, which fully utilizes channel attention and spatial attention to adjust the weights of
feature maps, thereby highlighting important features and suppressing redundant ones.
The operational process of the CBAM mechanism is illustrated in Figure 6. Firstly, the
channel attention module performs average pooling and max pooling on the input feature
map, resulting in two C-dimensional vectors that are fed into a multi-layer perceptron
(MLP) with a hidden layer. This process generates two 1 × 1 × C channel attention maps.
Finally, the two maps are added together and passed through an activation function to
obtain the final channel attention map. Secondly, the spatial attention module performs
average pooling and max pooling on the feature map processed by the channel attention
module, resulting in two H ×W matrices. These matrices are then concatenated along the
channel dimension, resulting in a 2 × H ×W feature map. The feature map subsequently
undergoes convolutional layers and an activation function to obtain the final spatial atten-
tion map. Finally, the two attention maps are multiplied by the input feature map to achieve
adaptive feature refinement. Therefore, the introduction of the CBAM mechanism enhances
the network’s ability to extract and focus on edge features, thus playing a positive role in
fruit tree canopy segmentation tasks and improving the accuracy of semantic segmentation.
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Hou et al. [30] proposed the Coordinate Attention (CA) mechanism, which embeds
positional information into channel attention to enable the network to capture information
from larger regions while avoiding a significant increase in computational costs. The
operational process diagram of the CA module is shown in Figure 7. Firstly, the input
features undergo global average pooling in the horizontal and vertical directions, followed
by channel compression using a 1 × 1 convolutional layer, batch normalization, and
non-linear activation. The features are then split into horizontal and vertical sub-vectors.
Subsequently, each sub-vector is processed with a 1× 1 convolution and sigmoid activation
to obtain the attention maps for the horizontal and vertical directions. Finally, these
two attention maps are multiplied with the input feature tensor to obtain the output
feature tensor of the CA module. Therefore, the introduction of the CA module enhances
the network’s focus on the shape and contour of the target, leading to more accurate
segmentation of the target boundaries.
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Both the CBAM and CA modules aid in better capturing semantic feature information.
In this study, we incorporate CBAM into the ASPP module, specifically in the branch with
dilated convolutions, to enhance the performance of the network. Additionally, a CA
module is added after the ASPP module to aid in the segmentation of tree canopies. The
improved ASPP module structure is illustrated in Figure 8.
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2.2.4. Backbone Feature Extraction Network

The traditional DeepLabv3+ model achieves high accuracy in semantic segmentation.
Its backbone network, Xception [28], is a structure based on DSC that performs well in
semantic segmentation tasks. However, Xception has a large number of network layers and
a high number of parameters, which increases the complexity of the model, making it more
difficult to train and decreasing the segmentation performance of the network.

For orchard spraying robots, real-time acquisition of crown information and pesticide
decision-making require high segmentation efficiency of the network model. Therefore,
in order to be deployed on embedded systems, we replace the Xception network with
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a lightweight MobileNetV3-Small [32] network with DSC. MobileNetV3 is an efficient
convolutional neural network for mobile devices released by Google in 2019. It uses the
Squeeze-And-Excite module with a channel attention mechanism to reduce the number
of parameters and adopts residual connections and depth separable structure to improve
the performance of the network. MobileNetV3-Small is one of the lightweight versions
of the MobilNetV3 network structure, with fewer parameters, making it more suitable
for mobile vision applications. The network structure of the MobileNetV3-Small model is
shown in Table 1.

Table 1. The network structure of the MobileNetV3-Small model.

Input Operator Exp Size Out SE NL S

2242 × 3 Conv2d, 3 × 3 - 16 - HS 2
1122 × 16 Bneck, 3 × 3 16 16

√
RE 2

562 × 16 Bneck, 3 × 3 72 24 - RE 2
282 × 24 Bneck, 3 × 3 88 24 - RE 1
282 × 24 Bneck, 5 × 5 96 40

√
HS 2

142 × 40 Bneck, 5 × 5 240 40
√

HS 1
142 × 40 Bneck, 5 × 5 240 40

√
HS 1

142 × 40 Bneck, 5 × 5 120 48
√

HS 1
142 × 48 Bneck, 5 × 5 144 48

√
HS 1

142 × 48 Bneck, 5 × 5 288 96
√

HS 2
72 × 96 Bneck, 5 × 5 576 96

√
HS 1

72 × 96 Bneck, 3 × 3 576 96
√

HS 1
72 × 96 Conv2d, 1 × 1 - 576

√
HS 1

72 × 576 Pool, 7 × 7 - - - - 1
12 × 576 Conv2d 1 × 1, NBN - 1024 - HS 1

12 × 1024 Conv2d 1 × 1, NBN - 1000 - - 1
Note: “Input” denotes the size of the feature map input to each feature layer of MobileNetV3-Small; “Operator”
denotes the layer structure through which each feature map will cross; “Exp size” denotes the number of channels
after the inverse residual structure in the bottleneck stage; “Out” denotes the number of channels in the feature
map after passing through the bottleneck; “SE” denotes whether the SE attention mechanism is introduced at this
layer; “NL” denotes the type of activation function used, which can be either HS (h-swish) or RE (ReLU); NBN
denotes no batch normalization; “S” denotes the step size used for each layer structure.

2.2.5. Improved Lightweight Design of DeepLabv3+

In this paper, we use MobileNetV3-Small as the backbone network for our proposed
model, combined with the improved ASPP module. This network structure greatly reduces
the number of parameters while ensuring segmentation accuracy and improves the seg-
mentation efficiency of the model. The improved DeepLabv3+ network model structure is
shown in Figure 9.

2.3. Transfer Learning

Transfer learning [37] is a method that applies knowledge and skills learned from one
or multiple source tasks to a new target task. Its essence lies in identifying similarities
between existing knowledge and new knowledge and leveraging this similarity to enhance
learning efficiency and performance. Due to the lack of a large-scale publicly available
dataset specifically for fruit tree canopy images and the risk of overfitting when training
on small datasets, this study employs a transfer learning-based training approach. The
MobileNetV3-Small backbone network model is pre-trained on the ImageNet dataset,
allowing the transfer of substantial knowledge learned by MobileNetV3-Small to the
dataset used in this study. This facilitates improved extraction of features from citrus tree
canopy images.
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2.4. Experimental Parameters Setup

In this paper, we used two different image datasets, namely, the original RGB images
and the RGB-D images processed using the method described in Section 2.1, as the train-
ing, validation, and testing datasets for the neural network. Specifically, the training set,
validation set, test set A, and test set B consisted of 1728, 54, 54, and 100 sets of images,
respectively. The neural network training was conducted on a computer with an Intel(R)
Xeon(R) CPU and Tesla T4-16GB GPU, running the Ubuntu 18.04.6 LTS operating system.
The Pytorch 1.12.1 deep learning platform was chosen, and the neural network model in
this paper was implemented using Python 3.7.14. To ensure real-time detection on the
spray robot, experimental tests regarding the detection speed were conducted on the upper
computer (Jetson Xavier NX) of the robot.

In this study, a transfer learning approach was employed to pre-train the MobileNetV3-
Small backbone network on the ImageNet dataset. While keeping the pre-trained weights
unchanged, adjustments were made to the parameters of the ASPP module in the DeepLabv3+
model to adapt to the citrus tree canopy image dataset. During the network training phase,
we selected Adam as the optimizer and used the “Cross Entropy Loss Function” as the loss
function of the model. Additionally, the input image size was uniformly adjusted to 512 × 512.
The initial learning rate was set to 0.001, the minimum learning rate to 0.0001, the weight
decay coefficient to 0.0001, and the batch size to 16. The experiment was conducted through
50 epochs of iterative training.

2.5. Canopy Segment Network Performance Evaluation

In this paper, the model recognition performance evaluation uses pixel accuracy (Acc),
recall (Re), precision (Pr), mean Intersection over Union (mIoU), and balanced F-score (F1)
as evaluation metrics for experimental results. Additionally, to test the model’s detection
speed, it was deployed on the Jetson Xavier NX (NVIDIA, Santa Clara, CA, USA). The
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detection speed was measured in frames per second (FPS). The specific calculation formulas
for each evaluation metric are as follows:

Acc = ∑ TP + ∑ TN
∑ TP + ∑ TN + ∑ FN + ∑ FP

× 100% (2)

Re =
∑ TP

∑ TP + ∑ FN
× 100% (3)

Pr =
∑ TP

∑ TP + ∑ FP
× 100% (4)

mIoU =
1

k + 1
×∑ ∑ TP

∑ TP + ∑ FN + ∑ FP
× 100% (5)

F1 =
2× Pr × Re

Pr + Re
× 100% (6)

where TP represents the number of pixels correctly segmented as citrus canopy regions; TN
represents the number of pixels correctly labeled as other unrelated regions; FP represents
the number of pixels mistakenly labeled as citrus canopy regions; FN represents the
number of pixels of citrus canopy that are mistakenly labeled as other unrelated regions;
k + 1 represents the number of image categories (including background), where k = 1 in
this paper.

3. Results
3.1. Contrast with Transfer Learning

In this study, a comparative experiment was conducted between the improved DeepLabv3+
model utilizing MobileNetV3-Small as the backbone network with and without transfer learning.
The training was performed using the RGB-D dataset, and the mIoU curve of the model training
is shown in Figure 10. The performance evaluation of the models was conducted on test set A
and test set B, and the results are presented in Table 2.
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Table 2. The effect of applying transfer learning on the segmentation results of two different datasets.

DataSet Transfer Learning Acc
(%)

Re
(%)

Pr
(%)

mIoU
(%)

F1
(%)

Test A
No 97.01 95.87 96.79 94.18 96.33
Yes 97.79 97.98 97.06 95.62 97.52

Test B
No 91.68 88.98 93.47 84.60 91.17
Yes 95.99 98.81 93.28 92.29 95.97

Note: The model used in the table is the modified DeepLabv3+ and the backbone network is MobileNetV3-Small.
Test A and Test B represent test set A and test set B, respectively.
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It can be seen from Figure 10 that without employing transfer learning, the initial
value of mIoU is remarkably low, and its growth rate is relatively slow until the 15th
epoch. Subsequently, between the 40th epoch, mIoU undergoes a phase of rapid growth
and eventually stabilizes. On the other hand, it can be seen from Figure 10 that the
MobileNetV3-Small network with transfer learning demonstrates relatively good feature
extraction capability right from the initial stages due to the transfer of a substantial amount
of knowledge from the ImageNet dataset to the dataset used in this study. It exhibits rapid
growth even within the first 10 epochs and stabilizes after the 20th epoch. The results
from test set A in Table 2 indicate that the model with transfer learning outperforms the
model without transfer learning, showing improvements of 0.78% in pixel accuracy, 2.11%
in recall, 0.27% in precision, 1.44% in mIoU, and 1.19% in F1 score. Moreover, the evaluation
results on test set B reveal a 7.69% increase in mIoU for the model with transfer learning
compared to the model without transfer learning. The experimental results demonstrate
that transfer learning effectively addresses the issue of slow model convergence caused by
small sample datasets, enhances the generalization performance of the model, and slightly
improves the segmentation accuracy.

3.2. Comparative Analysis of RGB and RGB-D Detectors Based on Improved DeepLabv3+

In this study, we trained the improved DeepLabv3+ canopy segmentation model using
RGB and RGB-D datasets separately to compare the detection performance of RGB and
RGB-D detectors. The performance evaluation results of the trained model on test set
A are presented in Table 3. For the RGB and RGB-D detectors based on the improved
DeepLabv3+, we calculated pixel accuracy, recall, precision, mIoU, F1, and detection speed.
On the DeepLabv3+ canopy detectors for fruit trees, better detection performance was
achieved using RGB-D compared to RGB. The RGB-D detector exhibited improvements of
approximately 2.67%, 0.63%, 5.19%, 4.67%, and 2.99% in pixel accuracy, recall, precision,
mIoU, and F1, respectively, compared to the RGB detector. The detection speeds of the RGB
and RGB-D detectors on embedded devices were approximately 32.58 FPS and 32.69 FPS,
respectively, with negligible differences in detection speed. Therefore, both RGB and
RGB-D detectors are suitable for real-time detection applications in precision spraying
in orchards.

Table 3. Experimental results of RGB and RGB-D detectors based on an improved DeepLabv3+ model.

Type of
Detector

Acc
(%)

Re
(%)

Pr
(%)

mIoU
(%)

F1
(%)

Speed
(FPS)

RGB 95.12 97.35 91.87 90.95 94.53 32.58
RGB-D 97.79 97.98 97.06 95.62 97.52 32.69

Note: The model used in the table is the modified DeepLabv3+, the backbone network is MobileNetV3-Small, and
the test set A is used for the performance evaluation. The RGB detector uses the model trained from the RGB
dataset, and the RGB-D detector uses the model trained from the RGB-D dataset.

We used RGB and RGB-D detectors for target detection and analyzed some examples.
As shown in Figure 11, the red mask portion represents the segmentation results for
the target area. The figure displays, from top to bottom, the segmentation of the target
area using the improved DeepLabv3+ feature extractor under normal, low, and strong
illumination conditions. Both RGB and RGB-D achieved good segmentation accuracy.
However, when detecting in more complex background environments, the RGB-D detector
had better segmentation accuracy than the RGB detector. This is because the RGB-D
detector eliminated background environments before performing the segmentation task,
making it less susceptible to interference from complex backgrounds compared to the RGB
detector. As a result, under normal and low illumination conditions, the RGB detector
is more likely to misidentify background parts as target areas, such as a wheel in the
background of the images in the first row of Figure 11b,c, and a person and a portion of
the back row of citrus tree canopies in the background of the images in the second row of
Figure 11b,c. Under strong illumination conditions, although depth data may be affected



Agronomy 2023, 13, 2059 13 of 20

by interference, the segmentation results of the RGB-D detector are still superior to those of
the RGB detector (e.g., the third row of Figure 11b,c). This indicates that the RGB-D detector
can be used under different lighting conditions, and it consistently demonstrates better
detection performance compared to the RGB detector. Therefore, considering detection
accuracy and time performance, we will further analyze and study the RGB-D detector
based on DeepLabv3+.
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the segmentation results of the RGB detector and the RGB-D detector are significantly different in the
corresponding example result images, and the corresponding parts in the manual annotation images
are also circled for comparison.

3.3. Ablation Experiment

In this section, we conducted ablation experiments on the DeepLabv3+ model to
demonstrate the effectiveness of our proposed improvements. We trained the model
using an RGB-D dataset and compared different enhancement methods for the backbone
network and ASPP module in the DeepLabv3+ model. The DeepLabv3+ model with
ResNet50 as the backbone network is denoted as ResNet50. The DeepLabv3+ model with
MobileNetV3-Small as the backbone network is denoted as MobileNetV3. The DeepLabv3+
model with the DSC network replacing the convolutional network in the ASPP module
is denoted as MobileNetV3-DSC. MobileNetV3-DSC-SAM and MobileNetV3-DSC-CA
represent MobileNetV3-DSC with the SAM module and CA module added, respectively.
MobileNetV3-DSC-SAM-CA represents MobileNetV3-DSC with both the SAM module
and CA module added. The performance evaluation results of the ablation models on the
RGB-D test set A are presented in Table 4.
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Table 4. A comparison of the results of ablation experiments.

Methods DSC SAM CA Acc
(%)

Re
(%)

Pr
(%)

mIoU
(%)

F1
(%)

Speed
(FPS)

Parameters
(M)

ResNet50 97.64 97.59 96.58 95.27 97.08 5.31 40.34
MobileNetV3 95.61 97.04 94.75 93.19 95.88 26.06 6.24

MobileNetV3-DSC
√

96.40 96.67 95.73 93.74 96.20 34.98 3.05
MobileNetV3-DSC-SAM

√ √
97.48 97.27 96.49 94.99 96.88 33.35 3.11

MobileNetV3-DSC-CA
√ √

97.42 96.56 97.06 94.87 96.81 31.75 3.05
MobileNetV3-DSC-SAM-CA

√ √ √
97.79 97.98 97.06 95.62 97.52 32.69 3.11

Note: “
√

” indicates that the marked module is used in the experiment, and no “
√

” indicates that this module is
not added.

It can be seen from Table 4 that when the DeepLabv3+ model, using ResNet50 as its
backbone network, is employed for citrus canopy segmentation, it achieves pixel accuracy,
recall, precision, mIoU, F1, and detection speed of 97.64%, 97.59%, 96.58%, 95.27%, 97.08%,
and 5.31 FPS, respectively, on test set A. The model demonstrates high segmentation per-
formance. However, due to its large parameter count of 40.34 M, it is not suitable for
embedded platform systems. By replacing the backbone network of DeepLabv3+ with
the lightweight MobileNetV3-Small model, the parameter count can be reduced to 6.24 M,
making it suitable for embedded platform usage. Nevertheless, the decrease in computa-
tional parameters leads to a reduction in detection accuracy, with pixel accuracy and mIoU
of the model reaching only 95.61% and 93.19%, respectively. The proposed MobileNetV3-
DSC-SAM-CA model in this study achieves pixel accuracy, mIoU, and detection speed of
97.79%, 95.62%, and 32.69 FPS, respectively, on the test dataset. Compared to MobileNetV3,
the MobileNetV3-DSC-SAM-CA model achieves an improvement of 2.18% and 2.43% in
pixel accuracy and mIoU, respectively, without compromising the model’s detection speed.
Compared to ResNet50, the MobileNetV3-DSC-SAM-CA model achieves a six times in-
crease in detection speed while reducing the model’s parameter count by 92.3% to only
3.11 M. Experimental results demonstrate that the DSC network effectively reduces the
model’s computational load. Additionally, incorporating appropriate attention modules in
the ASPP module enhances the model’s ability to extract semantic information. Therefore,
the performance of the MobileNetV3-DSC model is superior to that of the MobileNetV3
model. Furthermore, the MobileNetV3-DSC-SAM-CA model, with the inclusion of the at-
tention module, effectively enhances the model’s capability to extract semantic information
while maintaining a lightweight parameter count, slightly outperforming the segmentation
performance of the ResNet50 model.

3.4. Comparative Results and Analysis of Different Models

In this paper, we employed commonly used machine learning methods such as Image
features + SVM [38], as well as state-of-the-art deep learning-based image segmentation
algorithms, including U-Net, PSPNet, DeepLabv3+, and the proposed network in this
paper. These models were trained on an RGB-D dataset, with all deep learning-based
models using the same training parameters and employing transfer learning for model
training. The trained models were evaluated for their performance on test set A and
test set B. Additionally, we generated segmented result images by applying threshold
segmentation to the foreground images obtained from the two test sets. These segmented
result images serve as reference comparison images for the image segmentation algorithms.
The segmentation results for all models are presented in Table 5 and Figure 12.
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Table 5. Comparison of performance of different models.

Segmentation
Methods Backbone Acc

(%)
Re
(%)

Pr
(%)

mIoU
(%)

F1
(%)

Speed
(FPS)

Parameters
(M)

Test A

Threshold
segmentation — 78.69 98.98 70.65 69.87 82.45 — —

Image features + SVM — 75.17 54.12 75.81 44.75 63.15 — —
PSPNet ResNet50 94.25 94.94 90.94 88.78 92.90 8.81 46.71

Unet
VGG16 97.74 96.21 97.95 95.36 97.07 2.63 24.89

ResNet50 97.88 96.94 97.56 95.55 97.25 6.06 43.93
DeepLabv3+ ResNet50 97.64 97.59 96.58 95.27 97.08 5.31 40.34

Proposed network MobileNetV3-Small 97.79 97.98 97.06 95.62 97.52 32.69 3.11

Test B

Threshold
segmentation — 80.08 99.40 71.10 71.16 82.90 — —

Image features + SVM — 75.24 67.49 73.74 51.80 70.48 — —
PSPNet ResNet50 93.12 94.64 87.75 86.11 91.06 8.94 46.71

Unet
VGG16 94.19 98.67 91.95 90.82 95.19 2.58 24.89

ResNet50 95.48 98.78 92.39 91.35 95.48 5.98 43.93
DeepLabv3+ ResNet50 94.73 95.71 93.57 91.17 94.63 5.28 40.34

Proposed network MobileNetV3-Small 95.99 98.81 93.28 92.29 95.97 32.52 3.11

Note: Test A and Test B represent test set A and test set B, respectively.
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(g) Unet_ResNet50; (h) DeepLabv3+; (i) Proposed network; (j) Manually labeled images.
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Based on the results, threshold segmentation of the RGB-D depth values effectively
eliminates complex background information while preserving the relatively complete
canopy information of fruit trees. The pixel accuracy on test set A reaches 78.69%. However,
the precision and mIoU values are only 70.65% and 69.87%, respectively, indicating that
the foreground images still contain some non-canopy information. On test set B, the
pixel accuracy and mIoU values reach 80.08% and 71.16%, respectively, showing that the
effectiveness of the threshold segmentation of depth values is consistent across different
test sets. Among the compared segmentation algorithms, Image features + SVM, as a
common machine learning method, performs poorly on both test set A and test set B, with
mIoU values of 44.75% and 51.80%, respectively. This is because the color, texture, and
shape features of fruit tree canopies are complex, and the capability of this algorithm to
extract image features is limited. Based on the image (Figure 12d), it can be observed that
some darker canopy areas are labeled as non-canopy regions, while the ground is labeled
as canopy regions, resulting in certain errors. Therefore, this algorithm does not meet
the requirements.

The deep learning-based image segmentation algorithm performs well, and the PSP-
Net model exhibits good performance on segmentation tasks, but its use of global pooling
in the final layer results in a loss of detailed information that impacts its ability to handle
edge segmentation. On test set A, PSPNet achieves pixel accuracy, recall, precision, mIoU,
F1, and detection speed of 94.25%, 94.94%, 90.94%, 88.78%, 92.90%, and 8.81 FPS, respec-
tively. On test set B, the mIoU is 86.11%. As shown in Figure 12e, it can be seen that the
segmentation results obtained using PSPNet lack fine recognition of the edge details of all
citrus tree canopies in both test sets. The precision and mIoU of the segmentation are lower
compared to other segmentation models. Furthermore, due to this model’s complexity and
large number of parameters, it requires more computational resources, making it unsuitable
for real-time canopy detection tasks in citrus orchards. The Unet-VGG16 model employs
upsampled layer-by-layer and convolution operations for decoding and introduces skip
connections between the encoder and decoder, connecting the feature maps extracted
from the encoding part with the feature maps obtained from the upsampling layer. Then,
the feature maps are decoded through two convolution layers, preserving more detailed
information. Therefore, Unet-VGG16 performs better in handling details than the PSPNet.
The pixel accuracy, recall, precision, mIoU, F1, and detection speed of Unet-VGG16 on the
test set A are 97.74%, 96.21%, 97.95%, 95.36%, 97.07%, and 2.63 FPS, respectively, with the
model having 24.89 M parameters. On test set B, it achieves an mIoU of 90.82% and an F1 of
95.19%. As shown in Figure 12f, it can be observed that the segmentation accuracy of this
model is sufficiently fine on test set A. However, on test set B, some weeds are misclassified
as canopy regions. Moreover, due to its complex structure with multiple convolution
layers and parameters, its detection speed is relatively slow, meaning it cannot meet the
real-time detection requirements for precision spraying in citrus orchards. Compared to
the Unet model with VGG16, the Unet-ResNet50 model introduces residual connections to
alleviate the vanishing gradient problem, maintaining segmentation performance while
improving the segmentation rate. As shown in Figure 12g, in test set B, the model is able
to label the majority of weed portions as non-canopy regions. The pixel accuracy, recall,
precision, mIoU, F1, and detection speed of Unet-ResNet50 on the test set A are 97.88%,
96.94%, 97.56%, 95.55%, 97.25%, and 6.06 FPS, respectively. Furthermore, on test set B, it
achieves an mIoU of 91.35% and a balanced F1 score of 95.48%. The model has 43.93 M
parameters. The DeepLabv3+ model uses an ASPP module on top of the encoder–decoder
structure to capture multi-scale contextual information and improve segmentation accuracy.
The Xception backbone network used by this model exhibits good performance on complex
segmentation tasks. However, for simple segmentation tasks with limited training data,
overfitting can easily occur. The ResNet50 network model uses residual connections to
improve the depth and generalization ability of the network when dealing with deep
networks, effectively avoiding overfitting. Therefore, in this study, the DeepLabv3+ model
used for comparative experiments adopts the ResNet50, which is more suitable for tree
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canopy segmentation tasks, as the backbone network. On test set A, the model achieved
pixel accuracy, recall, precision, mIoU, F1, and detection speed of 97.64%, 97.59%, 96.58%,
95.27%, 97.08%, and 5.31 FPS, respectively. However, on test set B, the model’s mIoU and
F1 are 91.17% and 94.63%, respectively. The model has a parameter count of 40.34 M. As
shown in Figure 12h, it can be observed that the model misclassifies a small portion of tree
canopies as non-canopy regions on test set B, resulting in a recall rate of only 95.71%.

The proposed improved DeepLabv3+ model optimizes the ASPP module based on
the image features of tree crowns in segmentation tasks. The improved ASPP module
maintains the same image feature extraction capability while consuming fewer compu-
tational resources. Additionally, MobileNetV3-Small is used as the backbone network,
which, compared to other network models, maintains high accuracy while having a smaller
parameter count and faster detection speed, making it more suitable for segmentation tasks
on mobile platforms. Under the proposed approach, this model demonstrates excellent
segmentation accuracy, surpassing other network models in terms of recall, mIoU, and F1
scores. As shown in Figure 12i, it can be observed that the model accurately segments
canopy regions in both test sets. On test set A, the model achieves pixel accuracy, recall,
precision, mIoU, and F1 of 97.79%, 97.98%, 97.06%, 95.62%, and 97.52%, respectively. Com-
pared to the threshold segmentation baseline, significant improvements are observed in
recognition performance, particularly in precision and mIoU, which increase by 26.41%
and 25.75%, respectively. On test set B, the model achieves precision, mIoU, and F1 of
93.28%, 92.29%, and 95.97%, respectively, surpassing the threshold segmentation baseline
by 22.18%, 21.13%, and 13.06%, respectively. Hence, it demonstrates the feasibility of using
threshold segmentation as an image data preprocessing method and employing suitable
semantic segmentation algorithms to segment fruit tree canopy regions. Furthermore, this
network achieves significant improvements in detection speed on embedded devices, reach-
ing 32.69 FPS, which is more than four times faster than other models. With a parameter
count of only 3.11 M, this model has a substantially smaller parameter size compared to
other models.

4. Discussion

In this paper, we combined color and depth information and proposed a citrus canopy
segmentation model based on an improved DeepLabv3+ model, which was trained and
tested on two datasets collected from orchards in different regions. The Orchard A dataset
contained 540 groups of images, which were divided into the training set, validation set,
and test set A, and data augmentation was performed on the training set to improve the
generalization and robustness of the model. The Orchard B dataset contained 100 groups of
images, which were used as test set B to verify the generalization performance of the model.

RGB-D images, which contain both color and depth information, have been proven to
effectively reduce the interference of image background in semantic segmentation. In this
study, a method of fusing depth information with RGB images was used to pre-exclude
background information from citrus tree images, improving the segmentation accuracy
of the model. Compared to semantic segmentation network models trained on RGB
images alone, the proposed method is more accurate in segmenting target tree crowns and
demonstrates better robustness under varying lighting conditions.

In semantic segmentation tasks, the ASPP serves as a crucial component of the en-
coder, primarily responsible for extracting multi-scale feature information through multiple
parallel dilated convolutions. These features play a significant role in determining the
location and boundaries of segmented targets, endowing the model with a stronger per-
ception of targets of various sizes and shapes and improving segmentation accuracy. In
the DeepLabv3+ network, the ASPP module mainly extracts high-level features from the
images. Therefore, when applying the model on embedded platforms, it is possible to
optimize the structure of the ASPP module by replacing convolutional networks with
the DSC network, effectively reducing the model’s computational burden and alleviating
the workload of semantic segmentation tasks [39]. Additionally, an attention mechanism
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module is introduced, enabling the model to simultaneously focus on channel, spatial,
and positional information, thus enhancing the accuracy of semantic segmentation and
improving the stability of the model’s performance [35,40]. The primary function of the
backbone network in the encoder is to extract image features layer by layer through mul-
tiple convolutional and pooling layers. Generally, the deeper the backbone network, the
more abstract the extracted image features, which play a crucial role in segmenting complex
image information. Consequently, when image information is not complex and higher
detection speed is required, using a lightweight convolutional neural network as the back-
bone structure is feasible. In this study, DeepLabv3+ was chosen as the base model, and the
model’s computational efficiency, generalization capability, and feature extraction ability
were improved by adding the attention mechanism module in the ASPP module and intro-
ducing the DSC method. Additionally, MobilNetV3-Small was employed as the backbone
network, reducing the model’s parameter and computational load and further enhancing
the model’s detection speed. The experimental results show that the improved DeepLabv3+
model achieves pixel accuracy and mIoU of 97.79% and 95.62%, respectively, on test set
A, and pixel accuracy and mIoU of 95.66% and 92.29%, respectively, on test set B, and the
detection speed reaches 32.69 FPS on Jetson Xavier NX. These results indicate that the
model has strong generalization ability and high detection speed.

The proposed approach in this study focuses on optimizing and simplifying the
model to achieve high-speed operation on embedded devices (such as Jetson Xavier NX,
Jetson Orin Nano, and Raspberry Pi) without relying on remote servers. This approach
ensures algorithm accuracy while meeting the real-time detection requirements in orchard
environments. Therefore, the algorithm can be deployed in orchard spraying robots to
perform precise spraying according to the canopy information of the target fruit trees. This
can not only improve the savings rate of pesticides but also reduce environmental pollution
caused by the liquid in non-target areas.

The lightweight model presented in this paper has the primary advantage of rapid op-
eration. However, it also has some limitations. Despite achieving high-level segmentation
performance, there are still a few instances in test set B where weeds are incorrectly labeled
as canopy areas. This is because most of the images in the training set were covered with
weed cloth, resulting in limited feature information about weeds. In contrast, test set B
contains orchards without weed cloth, leading to more weed features that serve as interfer-
ence. Furthermore, the model is trained only on canopy depth and color information and
can only output fruit tree canopies. It is unable to differentiate fruits within the canopy or
detect the health status and yield of the trees. In future research, we will consider training
the model using data from different orchards to enhance its generalization capability. We
will also explore secondary classification of canopy information and fusion of spectral data
to better detect the health status of fruit tree canopies and segment canopy areas affected
by different pests and diseases.

5. Conclusions

This study utilized a data acquisition system primarily based on the KinectV2 sensor
to capture images of citrus trees in orchards. An improved DeepLabv3+ model is pro-
posed for citrus tree canopy segmentation. The model effectively segments the canopy
regions in the images, achieving mIoU of 95.62% and 92.29% on test set A and test set B,
respectively. Furthermore, the detection speed on embedded devices reaches 32.69 FPS.
Compared to traditional machine learning methods (image features + SVM), the deep
semantic segmentation approach yields higher recognition accuracy. Compared to other
advanced semantic segmentation models, the improved DeepLabv3+ model in this study
significantly improves detection speed while maintaining segmentation performance and
model generalization. The results indicate that the prediction accuracy and speed of this
model reached a high level, making it suitable for precision spraying in orchards. This
lightweight model can operate independently on embedded systems. Additionally, the
canopy segmentation results of this model preserve the depth data from RGB-D images,
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enabling real-time calculation of canopy area, volume, and other information, which can
serve as references for the precise operation of orchard spraying robots. However, the
current model still has limitations in that it cannot classify crown regions according to the
health status of the fruit trees. In the future, we will focus on developing more practical and
valuable models that can recognize and segment crown regions of different health statuses.
These models will provide more accurate canopy information for precision operations,
including spraying, fertilization, and yield measurement performed by orchard robots.
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