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Abstract: Accurately estimating aboveground dry biomass (ADB) is crucial. The ADB of rice has primarily
been estimated using vegetation indices with several discrete bands; nevertheless, these indices cannot
take advantage of continuous bands available with hyperspectral remote sensing. This study analyzed
the quantitative relationship between canopy hyperspectral characteristic parameters (HCPs) and the
ADB of rice. Twenty HCPs were used, including red edge area (SDr), blue edge area (SDb), and others.
The variable-screening methods involved stepwise regression (SR), a regression coefficient (RC), variable
importance in projection (vip), and random forest (RF). Stepwise and partial least squares regression
methods were employed with traditional linear regression as well as machine learning methods including
random forest (RF), a support vector machine (SVM), a BP artificial neural network (BPNN), and an
extreme learning machine. Whole- and screening-variable models were constructed to estimate rice
ADB at jointing, booting, heading, and maturing stages and across growth stages. Screening-variable
models include SVM models based on SR (SVM-sr), RF models based on vip (RF-vip), and others. The
results show that the HCPs had a significant correlation with ADB containing elements in the red edge
region, namely SDr, SDr/SDb, and (SDr − SDb)/(SDr + SDb) at each growth stage. In addition, the
screening performance of vip and SR was better than that of RC and RF, and fewer variables were
screened. Moreover, the HCPs of the red edge region were screened using different screening methods
at each growth stage. Among them, SDr/SDb and (SDr − SDb)/(SDr + SDb) appeared frequently,
indicating they are important. Furthermore, at each growth stage, ADB could be well-estimated using
diverse models with the RF modeling method based on vip screening variables found to be the best
modeling method for ADB estimation; the independent variables of the RF-vip model involved the
(SDr− SDb)/(SDr + SDb) at each growth stage.

Keywords: rice; aboveground dry biomass; hyperspectral characteristic parameter; machine
learning; model

1. Introduction

Rice, as one of the major food crops in the world, meets many of the food needs of
more than half of the human population [1,2], so the production of rice is essential to ensure
global food security. Monitoring rice growth is an important means used to improve rice
yield, which is the basis for making field-management decisions [2]. Aboveground biomass
is one of the main factors determining the economic yield of crops [3], and can reflect the
growth status of crops [4]. Therefore, monitoring aboveground biomass is an important
prerequisite for judging the growth status of rice. Traditional methods for monitoring the
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aboveground biomass of a crop are based on field sampling; despite having high accuracy,
field sampling is time-consuming, labor-intensive, time-sensitive, and destructive to the
sampling site [5]. Using non-contact sensing technology can avoid the shortcomings of
traditional methods and provide representative results [6]. For example, remote sensing
technology creates a real-time and non-destructive data collection and has been widely
used to obtain crop biomass information.

Vegetation indices calculated from remote sensing data have been used to estimate
the aboveground biomass of various crops [7]. Traditional vegetation indices based on
wide bands, such as the normalized difference vegetation index (NDVI), are susceptible to
interference from the soil background and atmospheric environment, while a saturation
effect occurs when the amount of biomass is high [8]. Although using a narrow-band
vegetation index calculated based on a broad-band vegetation index formula has improved
the performance of remote sensing when compared with a broad-band vegetation index by
screening the best band combination [9], only a few individual bands of hyperspectral data
have been used in past research. The best band combination of the same vegetation index
varies from region to region for the same physiological and biochemical parameters, result-
ing in a single vegetation index not being universally applicable in different regions [10,11].
Therefore, trying other kinds of spectral parameters to estimate aboveground biomass may
avoid the defects caused by using a vegetation index.

When compared with multispectral remote sensing, the technique of hyperspectral
remote sensing has the characteristic of high spectral resolution while having a continuous
band with a narrow band interval, so it can display the typical spectral characteristics
of ground objects [12]. The characteristic band regions of green vegetation are the blue
edge, green peak, yellow edge, and the red absorption valley of the visible light band
and the red edge from the low red reflectance to the high infrared reflectance [12]. Using
the parameters extracted from the characteristic band regions to obtain the crop growth
status can take full advantage of hyperspectral datasets when compared with the data
available in a vegetation index [13], and some studies have shown that the estimation
performance of the characteristic parameters is better than that of a vegetation index [14].
The red edge position in the red edge parameter, as one of the earliest characteristic
parameters derived from hyperspectral remote sensing [15], has been used to invert the
chlorophyll content of vegetation [16,17], the leaf area index [18], mineral nutrition [14,19],
and biomass [20,21] because of its insensitivity to the light and soil background [22].
Red edge amplitude, red edge area, blue edge, green peak, yellow edge, and red valley
parameters were subsequently developed and used in the inversion of vegetation growth
status [14,20,23–25]. Nonetheless, when compared with the use of a vegetation index, the
application of characteristic parameters derived from hyperspectral remote sensing is still
rare, especially in the estimation of crop biomass.

Identification of an appropriate modeling method is another important step when
constructing aboveground biomass models [26]. From simple regression [27] to multiple
regression [28] to machine learning (ML) methods [29], various methods have been used
to estimate the aboveground biomass of crops. Among them, the amount of sensitive
information in the model is determined by the number of independent variables (NIV), so
the estimation performance of multiple linear regression and stepwise regression (SR) has
been proven to be better than simple regression [9,28]. Meanwhile, any multicollinearity
between independent variables may weaken the estimation performance of a model to
some extent [30,31]. Partial least squares regression (PLSR), which combines principal
component analysis, canonical correlation analysis, and multiple linear regression, can solve
the problem of multiple collinearities between independent variables to some extent [32,33].
That is, PLSR is a more practical linear regression analysis method [34,35]. In contrast,
regression methods based on ML, such as random forest [36], support vector machines [37],
and artificial neural networks [38], are not affected by linear regression assumptions and
can describe the nonlinear mapping relationship between independent and dependent
variables [39]. The modeling method with the best estimation performance is usually
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determined by the specific study area and type of remote sensing data employed [37,40].
It is not clear which method can produce the best estimation results, so it is necessary to
compare different modeling methods [26].

At present, some methods for estimating the aboveground biomass of rice using
hyperspectral remote sensing have been reported. Gnyp et al. [9] reported that using a soil-
adjusted vegetation index and an optimized narrow-band vegetation index (such as ratio
vegetation index and NDVI) can improve the estimation performance of the aboveground
dry biomass (ADB) of rice in each growth period, but they only use a univariate regres-
sion method to model without hyperspectral characteristic parameters (HCPs) involved.
Wang et al. [20] screened the HCPs that were significantly correlated with the aboveground
fresh biomass of rice and conducted univariate linear and nonlinear regression in the whole
growth stage, but this method did not involve the estimation of dry biomass, single growth
stage, and ML methods. Dong et al. [41] used an SR method to screen a vegetation index
and combined this with a support vector machine (SVM) to estimate the fresh biomass of
rice at all growth stages, but also did not involve the use of dry biomass, different growth
periods, and hyperspectral characteristic parameters. In conclusion, HCPs and ML methods
have rarely been used to estimate the ADB of rice in each growth stage.

Therefore, the aims of this study were to: (1) analyze the relationship between the
HCPs and ADB of rice; (2) compare the estimation performance of different ADB models
(machine learning models and traditional linear regression); (3) determine the best inversion
model for each growth stage; and (4) determine whether a general model for each growth
stage can be established.

2. Materials and Methods
2.1. Study Site

Field experiments were conducted in Jiuzhou Town (107◦46′44′′ E, 26◦59′17′′ N),
Huangping County, Guizhou Province, southwest China (Figure 1) from April to September
in 2020 and 2021. This site was situated in a subtropical monsoon climate zone with
an elevation of 701 m, an average annual temperature of 15.7 ◦C, an average annual
precipitation of 1200 mm, and a frost-free period of 296 days. The experiment site had
an average soil pH of 4.98 (1:2.5 soil/water), organic matter of 20.85 g kg−1, total N of
2.51 g kg−1, total K of 13.28 g kg−1, total P of 0.43 g kg−1, alkali-hydrolyzable N of
107.21 mg kg−1, exchangeable K of 69.48 mg kg−1, and Olsen-P of 3.13 mg kg−1.

2.2. Experimental Design

The three cultivars used were Qyou 6 (Chongqing Zhong Yi Seed Co., Ltd., Chongqing,
China), Yixiangyou 2115 (Sichuan Lv Dan Seed Co., Ltd., Chengdu, China), and
Huanghuazhan (Hunan Jin Se Nong Feng Co., Ltd., Changsha, China). The fertilizers
used were urea (containing 46.2% N) (Chongqing Jianfeng Chemical Co., Ltd., Chongqing,
China), triple superphosphate (containing 16% P2O5) (Guizhou Fuquan Phosphate Fertil-
izer Co., Ltd., Fuquan, China), and potassium chloride (containing 60% K2O) (CNAMPGC
Holding Co., Ltd., Beijing, China).

Experiments were conducted using a split-plot design with three replications. The
three cultivars were assigned to the main plots. Nitrogen application rates of 0, 75, 150, 225,
and 300 kg ha−1 were applied in individual subplots having a size of 25.84 m2 (6.8 m long,
3.8 m wide) to obtain a large range of ADBs. Urea was broadcasted as N fertilizer and was
split-applied as 35% basal, 20% at 7 days after transplanting, 30% at the panicle initiation
stage, and the remainder at the booting stage. For all treatments, 96 kg P2O5 ha−1 and
67.5 kg K2O ha−1 were applied as basal fertilizers before transplanting, and 67.5 kg K2O ha−1

was applied at the panicle initiation stage. Pre-germinated rice seeds of each cultivar were
sown in a seedbed on 21 April 2020 and 19 April 2021; seedlings were transplanted with a
density of 0.2 m by 0.3 m with one plant per hill on 27 May 2020 and 29 May 2021. Other
field-management practices such as irrigation and pesticide application were conducted in
accordance with high-yield cultivation management measures.
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2.3. Measurement Methods
2.3.1. Canopy Spectral Reflectance Measurement

Rice canopy reflectance was measured using a FieldSpec® 4 Standard-Res portable
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA). This type of
spectroradiometer can acquire reflectance data at wavelengths of 350–2500, with a 1.4 nm
sampling interval between 350 nm and 1000 nm and a 2 nm sampling interval between
1001 nm and 2500 nm. Hyperspectral data were subdivided into 1 nm bandwidths by using
the self-driven interpolation method of the ASD spectroradiometers.

Measurements were obtained from 10 a.m. to 3 p.m. (Beijing time) on clear days. The
reflectance was obtained with a 25◦ field of view at a height of approximately 0.75 m above
the crop canopy, resulting in a sample area of 0.09 m2 with a 0.33 m diameter at the canopy
surface. Calibration measurements were performed with a reference panel at least every
10–15 min to eliminate the effects of environmental changes. The reflectance was measured
at the growth stages of jointing (JS), booting (BS), heading (HS), and maturing (MS).
Ten sample counts were collected for each scanning position of the rice canopy. Within one
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subplot, five scanning positions were selected randomly, and the reflectance was averaged
to represent each subplot.

2.3.2. Plant Sampling and Measurements

In addition to the reflectance measurements, four hills of the scanned subplots with an
average number of tillers per subplot were cut at the ground surface. All plant samples
were rinsed with water, and the roots were removed. The samples were then separated into
stalk sheaths, leaves, and panicles. The dry weights of these plant organs were determined
by oven-drying at 80 ◦C to constant weight after deactivating the enzymes at 105 ◦C for
30 min in the oven. Next, the total ADB (Mg ha−1) was calculated. A total of 360 samples
of ADB were collected from the JS to the MS.

2.4. Data Analysis
2.4.1. Data Preprocessing of Hyperspectral Data

The reflectance spectra were analyzed using ViewSpecPro software Version 6.2.0
(Analytical Spectral Devices Inc.) to obtain averaged raw spectral reflectance, which
was then smoothed using the Savitzky–Golay digital filter available in Matlab R2018a
with a frame size of 15 data points (second-degree polynomial); then, the first derivative
was calculated.

2.4.2. Extraction of HCPs

Hyperspectral characteristic parameters refer to the spectral parameters that are based
on spectral position characteristics, namely blue edge, yellow edge, red edge, green peak,
and red valley. The definition of HCPs is shown in Table 1. Meanwhile, we selected
two classic vegetation indices (VIs), normalized-difference red edge index (Nre) [42] and
red-edge chlorophyll index (Rec) [43], to compare with HCPs. HCPs and VIs are hereinafter
collectively referred to as parameters.

Table 1. The definition of HCPs.

HCP
Identifier

HCP
Symbol Name Definition

1 Db Blue edge amplitude Maximum value of the first-derivative spectral reflectance in blue edge
(490~530 nm)

2 λb Blue edge position Corresponding wavelength of the maximum value of the first-derivative
spectral reflectance in the blue edge (490~530 nm)

3 SDb Blue edge area Sum of first-derivative spectral reflectance in blue edge (490~530 nm)

4 Dy Yellow edge amplitude Maximum value of first-derivative spectral reflectance in the yellow edge
(560~640 nm)

5 λy Yellow edge position Corresponding wavelength of the maximum value of the first-derivative
spectral reflectance in the yellow edge (560~640 nm)

6 SDy Yellow edge area Sum of first differential spectra in the yellow edge (560~640 nm)

7 Dr Red edge amplitude Maximum value of the first-derivative spectral reflectance in the red edge
(680~760 nm)

8 λr Red edge position Corresponding wavelength of the maximum value of the first-derivative
spectral reflectance in the red edge (680~760 nm)

9 SDr Red edge area Sum of first-derivative spectral reflectance in red edge (680~760 nm)
10 ρg Green peak reflectance Maximum raw spectral reflectance within the green peak (510~560 nm)

11 λg Green peak position Wavelength corresponding to the maximum raw spectral reflectance in the
green peak (510~560 nm)

12 SDg Green peak area Sum of the raw spectral reflectance in the green peak (510~560 nm)
13 ρr Red valley reflectance Minimum raw spectral reflectance in red valley (650~690 nm)

14 λo Red valley position Wavelength corresponding to minimum raw spectral reflectance in red
valley (650~690 nm)

15 Rrb SDr/SDb Ratio of red edge area to blue edge area
16 Rry SDr/SDy Ratio of red edge area to yellow edge area
17 Nrb (SDr − SDb)/(SDr + SDb) Normalized value of red edge area and blue edge area
18 Nry (SDr − Sdy)/(SDr + Sdy) Normalized value of red edge area and yellow edge area
19 Rgr ρg/ρr Ratio of green peak reflectance to red valley reflectance
20 Ngr (ρg − ρr)/(ρg + ρr) Normalized value of green peak reflectance and red valley reflectance
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2.4.3. Sample Division

The 2 years of data employed here were consolidated into one data set and divided
into training and test sets with a ratio of 2:1. More specifically, the sample data set was first
arranged in ascending order according to the measured value of ADB of rice. The first and
last sorted samples were assigned to the training set. For the intermediate samples, the
first of every three samples was assigned to the test set while the next two samples were
assigned to the training set.

2.5. The Construction Methods of an ADB Model

Multivariate ADB models for each growth stage and across growth stages were con-
structed, including models based on twenty hyperspectral characteristic parameters and
models based on screening variables.

2.5.1. Variable Screening

In spectral data, many spectral data may be redundant and provide only interfering
information. Variable screening can reduce the number of noisy variables, abate the
complexity of the model, and help to build a stable ADB estimation model. The variable-
screening methods used in this study include linear and nonlinear methods, in which
regression coefficient (RC), variable importance in projection (vip), and stepwise regression
(SR) involve linear methods; random forest (RF) is a nonlinear method.

The RC method eliminates variables using a stepwise process. Initially, a PLSR model
based on twenty HCPs was constructed. Subsequently, the hyperspectral characteristic
parameters were sorted according to the absolute value of the regression coefficients
obtained from the PLSR model. Each time, the HCP with the lowest value was eliminated,
and the best combination of independent variables was the independent variable with the
largest training determination coefficient during the reverse elimination process [44].

In addition, vip is a variable selection method based on the use of a threshold. The
vip score of the independent variable is a summary of the projection contribution of each
independent variable in PLSR. Variables with a vip score greater than 1 were included in
the model [45].

Meanwhile, SR is a method of independent variable selection that combines forward
selection and backward elimination, starting with no variables. At each step, the p value of
the F test was used to determine if a new variable should be selected or eliminated as an
existing variable [46].

Lastly, RF is a machine learning algorithm. The backward feature elimination method
was used to eliminate relatively less important variables among all variables, and the most
important variables were retained after multiple iterations. When the training root mean
square error was minimized, the most accurately estimated variable combination could be
obtained [47].

2.5.2. Regression Methods

(1) Traditional linear methods

Stepwise regression (SR) is a method for fitting regression models, and its process is
described in Section 2.5.1.

Partial least squares (PLS) is a commonly and widely used multivariate linear quanti-
tative analysis method [32] which projects the original variable to a new dimension with
the greatest change and uses the dependent variable to regress the latent variable [48]. The
data were normalized before modeling, and the optimal number of latent variables was
determined with cross-validation.

(2) Machine learning methods

Random forest (RF) is an integrated learning method [49]. First, random variables are
selected from the training data set to form random samples, and each tree is constructed
using a deterministic algorithm. Then, variable discriminant conditions are randomly
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selected on each node and regressed with out-of-bag errors [50]. Finally, the results of each
decision tree or regression tree are integrated to generate predictive values. This study
used the Matlab “Windows-Precompiled-RF_mexstandalone-v0.02” toolbox interface for
RF regression.

An SVM is a general ML algorithm invented by Cortes and Vapnik [51]. In this study,
the libsvm 3.25 toolbox [52] was used to optimize the penalty parameter C and the kernel
function parameter g through grid search and cross-validation with the radial basis function
as the kernel function.

A back propagation artificial neural network (BPNN) is a multi-layer network first
proposed by Werbos [53]. In this method, the initial weights and thresholds are randomly
determined, and the network error and structure are optimized by the gradient descent of
the BP network. The structure of a BP neural network consists of input, output, and hidden
layers. The most important parameter in a neural network regression model is the number
of hidden layer neurons, which is determined via a process of trial and error [54].

An extreme learning machine (ELM) is a feedforward neural network based on a single
hidden layer [55]. The input weights and hidden layer deviations of an ELM are randomly
assigned, and the sigmoid function is used as the activation function. The number of
hidden nodes is determined by trial and error.

2.6. The Evaluation of the Hyperspectral Model

The determination coefficient (R2) and root mean square error (RMSE) were used to
evaluate the model fitting performance and estimation performance. Akaike information
criterion (AIC) and Bayesian information criterion (BIC) [56] were used to evaluate the
simplicity and accuracy of the model. The calculation formula is as follows:

R2= 1− ∑
(
yi − ŷi)

2

∑(yi − y)2 SSE =∑(yi − ŷi)
2 RMSE =

√
∑(yi − ŷi)

2

n

BIC =nln(SSE/n) + ln(n)× K AIC =nln(SSE/ n) + 2K

where yi, ŷi, and y are the measured, predicted, and average of measured data, respectively;
n is the number of samples; SSE represents the residual sum of squares; and K is the number
of variables in the model.

3. Results and Analysis
3.1. Variations in Rice ADB

The rice ADB increased from 1.63 to 24.07 Mg ha−1 throughout the rice growth stage
(Table 2). At each stage, the mean and standard deviation of the training set and the test
set were consistent. The training and test sets exhibited a similar statistical distribution
of AGB, avoiding potentially biased estimations in model construction and testing. The
data variability at the JS and all stages (AS) was large (31.25% and 56.16%, respectively),
while the data variability at the BS, HS, and MS (14.28%, 14.85%, and 16.23%, respectively)
was low.

3.2. The Relationship between HCPs and ADB

Based on the training sets of different growth stages, the linear correlation and curve
correlation analysis between each parameter and ADB were carried out. Correlation
analysis showed that the best relationship between each parameter and ADB was nonlinear
at different growth stages (Figure 2).



Agronomy 2023, 13, 1940 8 of 21

Table 2. Descriptive statistics of ADB for train and test sets at different growth stages.

Stage Data Set n Min Max Mean SD CV

JS
All 90 1.63 5.85 3.20 1.00 31.25

Train 60 1.63 5.85 3.21 1.01 31.48
Test 30 1.72 5.43 3.20 1.00 31.33

BS
All 90 4.41 9.00 6.66 0.95 14.28

Train 60 4.41 9.00 6.67 0.95 14.30
Test 30 4.68 8.92 6.66 0.97 14.49

HS
All 90 6.56 12.41 9.06 1.35 14.85

Train 60 6.56 12.41 9.06 1.34 14.78
Test 30 6.69 12.31 9.07 1.38 15.26

MS
All 90 9.91 24.07 15.77 2.56 16.23

Train 60 9.91 24.07 15.77 2.61 16.57
Test 30 11.28 21.47 15.78 2.50 15.82

AS
All 360 1.63 24.07 8.68 4.87 56.16

Train 240 1.63 24.07 8.68 4.88 56.24
Test 120 1.72 21.47 8.67 4.88 56.22

n, number of observations; Min, minimum value; Max, maximum value; Mean, mean value; SD, standard
deviation; CV, coefficient of variation. Min, Max, Mean, and SD in Mg ha−1; CV in %.

The explained degree (ED) of parameters on the ADB varied with the growth stages,
and the overall ED was not high. From the JS to AS, the explained ranges were
0.4–50.1% (Figure 2a), 1.7–20.4% (Figure 2b), 2.6–16.9% (Figure 2c), 0.4–53.2% (Figure 2d),
and 7.0–67.7% (Figure 2e), respectively. The HCPs with the highest ED for ADB at each
growth stage were Rrb, λo, ρr, Nrb, and λg, respectively. The HCPs with a high ED for ADB
at each growth stage were SDr, Rrb, and Nrb. In addition, the R2 of Nrb at each growth
stage reached an extremely significant level (p < 0.01), which was better than the Nre and
Rec on the whole.

The ED of HCPs for the ADB varied among the various parameters. In general, except
for Db, Dy, SDy, SDr, λo, Rry, and Nry, the ED of other HCPs to biomass was better in the
AS than in every other growth period. Among the amplitude parameters (Db, Dy, and Dr),
Dr had the highest ED across growth stages. The ED of the position parameters (λb, λy,
and λr) of the first derivative to the ADB was consistent in each growth stage. In the area
parameters (SDb, SDy, SDr, and SDg), SDr had the highest ED for each growth stage except
for the AS. The ED of reflectance parameters (ρg and ρr) for the ADB was higher in ρr at
each growth stage. The ED of position parameters (λg and λo) of the original spectra for
ADB was different at each growth stage. In the ratio and normalized parameters, the EDs of
normalized parameters at each growth stage were similar to or better than those of the ratio
parameters. The ratio and normalized parameters of SDb and SDr at each growth stage
were better than those of SDb and SDr; whether the ratios and normalized parameters of
SDy and SDr and ρg and ρr were better than themselves varied with the growth stage.

3.3. Screening of HCPs
3.3.1. Variable Screening Based on the RC

The RC-based variable screening results are shown in Table 3, where the variable
names are sorted from large to small according to the absolute value of the RC. The top
variables varied with the growth stage. The same variables were screened at different
growth stages, namely SDr, Dr, Rrb, ρr, Nrb, Nry, and λo.
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Figure 2. Relationship between parameters and ADB at different growth stages. (a)—jointing stage;
(b)—booting stage; (c)—heading stage; (d)—maturing stage; (e)—all stages. The same below. E, P, Q
denote exponential, power, and quadratic fit. * and ** indicate a significant correlation at p < 0.05 and
p < 0.01 level, respectively.

Table 3. Variable screening results based on RC.

Growth Stage Number of Variables Variable Names

JS 20 SDr Dr Rrb ρr Dy ρg Nrb Rry SDy SDg Db Nry λg SDb Rgr λo λb λy λr Ngr
BS 11 ρg Db SDg ρr Nry Nrb SDr Dr Dy Rrb λo
HS 17 SDy ρg Dy SDg SDr Dr Db Ngr Nry Rry Rgr Nrb Rrb ρr λg λo λr
MS 15 Rrb Nrb Nry SDr λo Dr λb λy λr Db λg SDb ρr Rgr Rry
AS 20 SDg ρg Db SDb SDr Dr SDy Ngr ρr Rrb Rgr Dy λg Nrb Nry λo λb λy λr Rry
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3.3.2. Variable Screening Based on vip

The importance of variables based on the vip and the results of the variable screening
are shown in Table 4 and Figure 3, respectively. The selected variables were ranked from
large to small according to the vip.

Table 4. Variable screening results based on vip.

Growth Stage Number of Variables Variable Names

JS 8 Rrb Nrb λg Dr SDr ρr Dy λo
BS 4 λo λg Nrb Nry
HS 9 Rry ρr Nrb Rgr Dy Ngr λo Rrb SDy
MS 7 Rrb Nrb SDr Nry SDy Ngr Rgr
AS 9 λg Rrb Nrb ρr SDg λb λy λr ρg
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The number of variables screened based on the vip was small. The (SDr− SDb)/(SDr + SDb)
was screened at each growth stage, and it was ranked first at each growth stage.

3.3.3. Variable Screening Based on SR

The SR-based variable screening results are shown in Table 5. Although the variables
screened at different growth stages were different, Rrb was screened at the JS, MS, and AS,
the same as λo, which was screened at the BS, and ρr, which was screened at the HS, which
was related to the red edge region.
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Table 5. Variable screening results based on the SR.

Growth Stage Number of Variables Variable Names

JS 5 Dy SDy ρr Rrb Rry
BS 1 λo
HS 1 ρr
MS 2 SDb Rrb
AS 10 Db SDb Dr SDr ρg λg SDg Rrb Rgr (ρg − ρr)/(ρg + ρr)

3.3.4. Variable Screening Based on RF

The results of variable screening based on RF are shown in Table 6, where the selected
variables are ranked from large to small according to their RF Importance score. Similar to
the results of the linear-screening method, the results of variable screening based on RF
varied in the growth period, but the same variables were screened at each growth period,
specifically Rrb, Nrb, ρr, ρg, SDr, Ngr, SDg, Rgr, Dy, λo, and Nry. Among them, the Rrb
and Nrb were at the top of the order of variable importance in each growth period with
very high importance.

Table 6. Variable screening results based on the RF.

Growth Stage Number of Variables Variable Names

JS 17 Rrb Nrb ρr Dr λg ρg SDr SDb Ngr SDg Rgr Dy Db Rry λo Nry λr
BS 19 Rry Nrb Rrb Dy Nry SDy Dr SDb Db ρr Ngr SDr ρg λo Rgr SDg λg λr λb
HS 16 ρr Rrb Nrb Ngr Nry Rgr SDy Db Rry SDb ρg Dy SDr Dr SDg λo
MS 18 Rrb Nrb SDr SDy Nry ρr λg Rgr Dr Ngr ρg Dy λo SDg Rry SDb Db λr
AS 15 Nrb Rrb λg ρr Rgr Ngr λo Dy SDy Nry ρg SDg λy λb SDr

3.4. Construction and Application of the ADB Model Based on Parameters
3.4.1. The Performance Evaluation Results of the ADB Model on the Training Set

The performance evaluation results of the ADB model on the training set at different
growth stages are shown in Figures 4 and 5.

The performance of the AS models based on HCPs was the best with R2 values of
0.77–0.97 (Figure 4e). The performance of the model at the JS (0.59–0.88) (Figure 4a) and
MS (R2 0.53–0.89) (Figure 4d) was second, while the performances of the models at the BS
and HS were not high where the R2 was 0.16–0.85 (Figure 4b) and 0.17–0.84 (Figure 4c),
respectively. The model with the best performance at each growth stage was the model
constructed with the RF method. For example, the RF–RF model R2 at the JS was as high
as 0.88.

In terms of models based on VIs, the R2 at JS, BS, HS, MS, and AS was 0.48–0.84
(Figure 5a), 0.11–0.68 (Figure 5b), 0.12–0.68 (Figure 5c), 0.50–0.85 (Figure 5d), and 0.60–0.92
(Figure 5e), respectively, which was inferior to the models based on HCPs. In addition, the
RMSEs at JS, BS, HS, MS, and AS were 0.40–0.72 (Figure 5a), 0.54–0.89 (Figure 5b), 0.75–1.25
(Figure 5c), 1.02–1.83 (Figure 5d), and 1.37–3.07 (Figure 5e), respectively, which exceeded
the RMSEs (0.34–0.64, 0.37–0.87, 0.54–1.21, 0.86–1.77, and 0.88–2.33 at JS, BS, HS, MS, and
AS, respectively) of models based on HCPs.
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Figure 4. The training set performance evaluation results of ADB model based on HCPs. P, R, S, B,
and E are abbreviations for PLS, RF, SVM, BPNN, and ELM, respectively. NIV, number of independent
variables. P represents the PLS model of twenty variables, P-rc represents the PLS model of screening
variables based on RC, R represents the RF model of full variables, R-rc represents the RF model of
screening variables based on RC, etc. The same below.
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3.4.2. The Performance Evaluation Results of the ADB Model on the Test Set

The performance evaluation results of the ADB model on the test set at different
growth stages are shown in Figures 6 and 7. Overall, the performance of the AS and JS
models based on HCPs was the best, with R2 values of 0.80–0.88 (Figure 6e) and 0.49–0.76
(Figure 6a), respectively. The performance of the model at the MS (R2 0.30–0.47) (Figure 6d)
was second, while the performances of the models at the BS and HS were not high where
the R2 was 0.01–0.36 (Figure 6b) and 0.05–0.49 (Figure 6c), respectively.
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Figure 7. The test set performance evaluation results of ADB model based on VIs.

For the models based on VIs, the R2 at JS, BS, HS, MS, and AS was 0.06–0.60 (Figure 7a),
0.12–0.22 (Figure 7b), 0.01–0.13 (Figure 7c), 0.18–0.49 (Figure 7d), and 0.61–0.72 (Figure 7e),
respectively, which was inferior to the models based on HCPs as a whole. Furthermore,
the RMSEs at JS, BS, HS, MS, and AS were 0.63–127.57 (Figure 7a), 0.87–0.92 (Figure 7b),
1.31–3.65 (Figure 7c), 1.83–4.68 (Figure 7d), and 2.74–3.17 (Figure 7e), respectively, which
exceeded the RMSEs (0.48–0.95, 0.77–2.51, 1.02–1.79, 1.86–2.90, and 1.78–2.20 at JS, BS, HS,
MS, and AS, respectively) of models based on HCPs in general.
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The performance of the linear models based on HCPs was the best at the JS and
AS; R2 was 0.49–0.70 and 0.80–0.87, respectively (Figure 6). The performance of the MS
(R2 0.40–0.45) was second, while the performance of the BS and HS was not high, with
R2 values of 0.19–0.29 and 0.07–0.19, respectively. The SR model was slightly better than
the PLS model at the JS, BS, HS, and MS, while the opposite was true at the AS. Except for
the AS, the PLS-rc model was slightly lower than the PLS-sr model.

For machine learning models based on HCPs, the overall performance decreased
from the AS, JS, MS, HS, to BS (Figure 6). The performance of various machine learning
models at the AS and JS was better than that at the BS, HS, and MS. The best machine
learning method at the JS was the support vector machine with an R2 above 0.70, followed
by random forest with an R2 above 0.60. The models performed well at the BS and HS,
except for the BPNN, BPNN-vip, and BPNN-rf models at the BS and the RF-sr, SVM-sr,
BPNN, BPNN-vip, and BPNN-sr models at the HS. The R2 of the machine learning model
was between 0.30–0.47 and 0.81–0.88 at the MS and AS, respectively.

3.4.3. The Determination of the Appropriate Model Based on HCPs

To further compare the pros and cons between machine learning models and tradi-
tional linear models, we used Taylor diagrams to determine the most appropriate model.

Figure 8 shows the results of a statistical comparison of an estimation of the perfor-
mance of ADB models at each growth stage. In the Taylor diagram, the closer the model
is to the observation point, the better the estimation performance is. It can be seen that
other models performed better than BPNN-sr, BPNN-rf, BPNN-rc, BPNN, ELM, ELM-rc,
ELM-vip, and PLS-vip at the JS (Figure 8a). The models with relatively better performance
at the BS were SR, PLS-sr, RF-sr, RF-vip, and ELM-sr (Figure 8b). The models with rela-
tively better performance at the HS were RF, RF-rc, RF-vip, and RF-rf (Figure 8c). Other
models had better performance at the MS than ELM-RF, ELM-SR, ELM, ELM-VIP, BPNN,
BPNN-RF, and BPNN-VIP (Figure 8d). The performance of the model at the AS was the
best (Figure 8e).
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Based on the analysis results of the Taylor diagram, the best ADB estimation model for
each growth stage was determined according to the training set R2, NIV, and the AIC/BIC
method (Figures 4–7). The determination principle of the best ADB estimation model had
a larger training set R2, a smaller number of model-independent variables, and a lower
AIC/BIC value.

The results showed that the estimation performance of the SVM-sr model at the JS
was the best (R2 0.76), but the fitting performance was poor (R2 0.64). The RF-vip model
had the highest fitting performance (R2 0.87) when the NIV was small, and its estimation
performance was also very good (R2 0.63); the NIV was small (eight), while the AIC and
BIC values were also low, at −12.41 and 0.20, respectively.

The RF-vip model at the BS had the best estimation performance (R2 0.33) while
ensuring a high fitting performance (R2 0.64). At the same time, the NIV was small, and
the AIC and BIC values (−4.64, 2.36) were also low.

The RF-vip model at the HS had a high fitting performance (R2 0.81), good estimation
performance (R2 0.41), and low AIC and BIC values (23.96, 37.97), while the NIV (nine)
was small.

The estimation performance of the SVM-sr model in the MS (R2 0.43) was better, but
the fitting performance (R2 0.53) was not high, and the NIV (two) was too small. Although
the NIV of the RF-vip (seven) was slightly higher than that of the SVM-sr, the fitting
performance (R2 0.86) was very high, while the estimation performance (R2 0.40) was
relatively high, and the AIC and BIC values (56.04, 67.25) were also lower.

At the AS, the NIV of the BPNN-sr and RF-vip models was relatively low (10 and
9, respectively). The RF-vip model had the highest fitting performance (R2 0.96), and the
estimation performance was relatively good (R2 0.83). The AIC and BIC values (193.05,
220.93) were also lower.

Based on the above analysis, the best model for each growth period is the RF model
based on vip screening variables.

4. Discussion
4.1. Relationship between Hyperspectral Characteristic Parameters and ADB

The present study showed that at the JS, BS, HS, and MS, the HCPs with the highest
ED of ADB were Rrb, λo, ρr, and Nrb, respectively, which were all related to the red edge
region, which was similar to the previous views [18,20]. The reason may be mainly a result
of the insensitivity of the red edge region to soil background and atmospheric effects [18].

In addition, the present study showed that the ED of SDr to ADB was higher than
that of SDb and SDy, which was consistent with the results of previous studies [20]. The
main reason was that the red edge was formed by the strong absorption of chlorophyll
near 680 nm and the strong scattering of leaf structure (biomass and leaf area index) near
760 nm [57], so SDr contained both pigment information and biomass information [58]. The
SDb and SDy are mainly controlled by pigment and may contain more pigment information
and less biomass information than SDr, so the ED of SDb and SDy to ADB was lower than
that of SDr.

Bannari et al. [59] pointed out that a vegetation index obtained using different single-
band combinations improves the ED of the dependent variable relative to that of a single-
band. In the present study, the same phenomenon was also found in that the ratio and
normalized values of the characteristic parameters SDr and SDb were higher than their own
EDs of ADB. The main reason is that the combination of different variables can eliminate
the interference of environmental noise to a certain extent [60].

4.2. HCP Screening for ADB Estimation

Regarding the screening of spectral data, our predecessors used more linear methods,
such as Pearson correlation [61] and stepwise regression [9,62]. The variables selected
by these two methods had a good linear relationship with the outcomes, while the best
relationship between the spectral data and the outcomes was not necessarily a linear
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relationship, which limited the ability of spectral data to explain the dependent variable to
a certain extent. Therefore, the present study used a variety of variable-screening methods
to screen hyperspectral characteristic parameters.

This study showed that the same variable-screening method contained the hyperspec-
tral characteristic parameters of the red edge region in the screening results at different
growth stages. For example, the vip-screening method screened the Nrb at each growth
stage, and the most frequent hyperspectral characteristic parameters in the screening results
were Rrb and Nrb, which were similar to the results of previous studies [20]. This finding
indicates that the ratio and normalized value of SDr and SDb played an important role in
the estimation of the ADB of rice. This was the reason why the ratio and the normalized
value of SDr and SDb had a high ED for the aboveground dry biomass of rice at each
growth stage.

4.3. Evaluation of the ADB Estimation Model

Previous studies have shown that using the selected variables to construct the model
can improve the estimation performance, simplicity, and practicability of the original
model [63,64]. The present study also drew similar results. For example, compared with
the SVM model, the SVM-sr model at the JS reduced the NIV. At the same time, the model
fitting and estimation performances were improved, as was the simplicity of the model.
This occurred mainly because redundant information contains noise signals, and reducing
redundant information can improve the performance of the model.

The results of this study showed that the RF, SVM, BPNN, and ELM machine learn-
ing methods combined with appropriate variable-screening methods could improve the
performance of the model when compared with traditional linear regression models. This
is similar to previous research results [65], indicating that a good nonlinear relationship
exists between ADB and HCPs. Among them, the RF model performed best and had the
best fitting performance at every growth stage, which is similar to some previous research
results [63]. This occurred because a random forest has a good ability to correct data [49].

The results of the present study showed that the best model for these three growth
stages was still RF-vip, rather than a linear model, when the estimation performance of the
model at the BS, HS, and MS was lower than that at the JS, indicating that an RF model can
reduce the saturation effect caused by closure in the middle and late stages of rice growth,
which is consistent with the previous views of Yang et al. [36]. At the same time, not all
machine learning models performed well. For example, the SVM-sr fitting and estimation
performance at the BS were poor, with an R2 of 0.16 and 0.20, respectively. This is why we
compared different ML modeling methods.

Thus far, few people have studied the use of HCPs to construct ADB models at
different growth stages [20]. The present study showed that the best ADB model for each
growth stage of rice is the RF model based on vip screening variables, indicating that
based on the HCPs, a unified model with simplicity and high accuracy can be obtained
by using the vip variable screening and random forest modeling methods, which stands
in contrast to the findings of the research of Gnyp et al. [9]. Their research showed that
the fixed-band vegetation index, the optimized narrow-band vegetation index, and the
six-band best multi-narrowband reflectance can be used to construct an ADB model of each
growth period; however, a unified ADB model suitable for each growth period could not
be obtained.

5. Conclusions

Based on 20 HCPs and different variable-screening methods, the present study con-
structed linear regression and machine learning models for rice ADB and evaluated the
model accuracy, precision, and simplicity with the following results.

(1) At each growth stage, the hyperspectral characteristic parameters that were signifi-
cantly related to ADB contained elements in the red edge region, including SDr, Rrb,
and Nrb.
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(2) The Rrb and Nrb appeared frequently in the variable screening results, indicating that
they played an important role in the estimation of rice ADB.

(3) The RF modeling method based on vip screening variables was found to be the best
modeling method for estimating ADB in rice. The independent variables of the RF-vip
model involved Nrb at each growth stage.

However, the estimation performance of the ADB model based on the HCPs in the
middle and late growth stages in this paper was not as good as that in the early growth
stage. Further research needs to find sensitive spectral parameters in the middle and late
growth stages of rice and improve the estimation performance of the ADB model during
the whole growth period.
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