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Abstract: Actual crop evapotranspiration (ETa) is measured or estimated using different methods,
and its accuracy is critical for water management under precision agriculture. The objective of this
study was to compare maize ETa estimated by the two-step approach using a locally developed
crop coefficient curve with satellite-retrieved evapotranspiration by six models incorporated in the
OpenET to identify the best evapotranspiration estimation alternatives to the two-step approach
for water management in northern New Mexico. Maize (Zea mays L.) was planted at the NMSU
Agricultural Science Center at Farmington from 2017 to 2022 and uniformly managed across years.
Water management in plants was based on maize’s actual evapotranspiration estimated as the product
of the reference evapotranspiration and the local crop coefficient, which is described as a third-order
polynomial function of the accumulated heat units by maize plants. For the same growing seasons,
maize ETa was retrieved from satellite, and was estimated by six models listed within the OpenET
from 2017 to 2022. The results show that maize daily ETa was consistently smaller when measured
by SIMS and PT-JPL during maize initial and actively growing stages, while ETc(kc), SIMS and
eeMETRIC showed similar maize daily ETa during maize full canopy development and mid-season,
and which overcome the evapotranspiration estimated by DisALEXI, PT-JPL, geeSEBAL, and SSBop.
ETc(kc) drastically dropped and became the lowest value among all ETa estimation models after the
first fall snow or the first killing frost. Regarding the seasonal average, all six models included in
OpenET showed smaller maize evapotranspiration. Maize seasonal evapotranspiration varied from
589.7 to 683.2 mm. eeMETRIC compares most similarly to the ETc(kc) model, followed by SIMS, with
percent errors of 2.58 and 7.74% on a daily basis and 2.43 and 7.88% on a seasonal basis, with the
lowest MBE and RMSE values, respectively, and could be used as an alternative for maize actual daily
evapotranspiration for water management in northern New Mexico. The results of this study could
be used by water managers and crop growers to improve water management in the Four Corners
region, using eeMETRIC for crop water use to improve water management and conservation under
sustainable agriculture.

Keywords: crop evapotranspiration; crop coefficients; remote sensing; OpenET; maize

1. Introduction

Producing a sufficient amount of food, fiber, and fuel under water-limiting conditions
has been a longstanding challenge, especially when coupled with the rapidly growing
population and climate change, and their negative impacts on water resources. Climate
change raises temperatures coupled with natural fluctuations in precipitation, resulting
in decreases in soil moisture content [1,2]. There are increases in air temperature and
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tremendous alterations in annual and crop growing season precipitation causing fre-
quent droughts, floods, and heat waves under the changing climate [3]. These changes
hardly impact crop production. The accurate estimation of crop water use is critical
mostly under semiarid and arid climatic conditions for improving farm water manage-
ment and crop water use efficiency [4,5]. The United States is impacted by decreasing
irrigation water availability in many regions, including the southwestern United States,
which mostly affects agriculture production fields due to the high-water demand in the
southwestern area.

Developing and evaluating accurate actual crop evapotranspiration (ETa) measure-
ment/estimate methods is important to providing real-time ETa for irrigation water man-
agement to farmers and water managers and allowing for the calculation of irrigation use
efficiency indices. Moreover, to develop criteria for in-season water management, long-
term estimates of water supply, demand, and use are important. Crop evapotranspiration
estimation and measurement have been improved using the two-step approach [6], lysime-
ters [7,8], the Eddy covariance system [9,10], the Bowen Energy Balance Ratio [10–13], sap
flow [14], and scintillometers [15–17]; however, the measurement is limited to a certain
spatial extent.

Remote sensing is an indirect approach to estimating Eta and has become increasingly
common. It has the potential to revolutionize the methodology of ETa estimation. It is
a function of mathematical equations that convert the measured satellite radiances into
an estimate of ETa [18]. Well-documented progress in evapotranspiration estimation has
been made through the last few decades by combining the use of satellite remote sensing
data from optical and thermal infrared sensors [19–22]. Remote sensing offers a better
capacity to estimate crop evapotranspiration over a large area or region [23–26]; however,
this method faces the challenge of the complexity of the required algorithms to account
for complex spatiotemporal variations, and the intensive computation of the complex
evapotranspiration models due to the large quantity and file sizes of satellite images and
associated weather variables [26]. Many remote sensing models are available to estimate
ETa, such as the Surface Energy Balance Index [27], the Simplified Surface Energy Balance
Index [28], the Surface Energy Balance System [29], the Surface Energy Balance Algorithm
for Land (SEBAL) [18] and OpenET [30]. While each one has its specifications, there are
common requirements of specialized instrumentation, knowledge, accuracy, accessibility,
and cost/time efficiency.

OpenET is a satellite-based tool for mapping evapotranspiration estimates from a web
platform at a field scale of 30 m on daily, monthly, and annual bases (www.openetdata.org,
accessed on 16 February 2022), and it has been developed by several scientists (30+)
from various US institutes [31]. A large dataset of ground-based evapotranspiration (i.e.,
194 stations in the US) was developed to provide a consistent reference to support the
evaluation of the OpenET satellite-based remote sensing evapotranspiration for a wide
range of applications related to irrigation water resources management at the field to
watershed scales [32]. An evaluation study was conducted to evaluate the National Water
Model’s Evapotranspiration (NWM) fluxes against OpenET products from 2016 to 2020 for
different months and seasons by Nassar et al. [33]. They found that for the entire watershed,
comparisons are much more consistent, but indicate that the NWM tends to underpredict
evapotranspiration fluxes, particularly from June to December.

New Mexico is one of the more arid states in the US, and is prone to drought and
warmer growing seasons [34]. Other studies, such as that by Prein et al. [35], reported that
the frequent weather type changes in the Southwest resulted in a significant precipitation
decrease. Smith and Katz [36] reported that the southwestern region has lost more than USD
100 billion since 2000 due to a series of droughts [37]. Consequently, studies have reported
a considerable increase in daily/seasonal actual evapotranspiration (ETa) demand due to a
combination of factors, including relatively low seasonal rainfall and high temperatures,
combined with high wind velocity [38,39]. ETa data are vital for the management of
water resources and maximizing crop water productivity, advancing water management
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strategies, and sustaining water supplies for agriculture in the Southwest. ETa is also
considered the second largest component of surface water after precipitation [40].

The northwest of New Mexico is characterized by a semiarid/arid climate with a
variable annual precipitation, which averaged 237.5 mm for the 1930–2017 period, while
precipitation in the crop growing season (May through September) averaged 144.1 mm for
the same period, which was concentrated during the July–September monsoon [41]. Pre-
irrigation is therefore required before or just after planting, and no crop is produced without
irrigation in northwest New Mexico. Under these limited water resource conditions, ir-
rigation application and management are key factors that could limit crop production in
the area. There is a need to accurately estimate crop water use, which should be matched
by irrigation in addition to the in-season precipitation. In northwest New Mexico, crop
production is one of the main activities of the numerous small stakeholder farmers, in addi-
tion to the Navajo Agricultural Products Industry (NAPI), one of the largest agricultural
businesses owned and operated by Native Americans in the United States. The NAPI is
operating about 36,421 fully developed hectares equipped with irrigation systems, with
a total target of 44,770 hectares. The NAPI grows a variety of crops, amongst which a
preponderant place is given to maize production.

Maize seasonal actual evapotranspiration varies across different agroclimatic zones,
and it is a function of hybrid types, relative maturity date, agronomic practices, and
environmental conditions. Djaman et al. [42] reported that seasonal maize ETa ranged
from 634.2 to 697.7 mm, averaging 665.3 mm across different ETa estimation methods, in a
study in northern New Mexico. Barnes [43] found a seasonal ETa of 684 mm in Farmington,
NM, whereas Djaman et al. [42] reported that total maize water requirements ranged from
758.4 to 848.3 mm in a study investigating the impacts of planting dates on the total water
requirements in northern New Mexico. Limited water use data exist across northwest New
Mexico for maize and other crops, and OpenET might provide a good opportunity for
crop growers, university researchers, and crop consultants to improve crop water use in
the area. While OpenET offers six different crop evapotranspiration estimates, there are
no studies addressing the measured crop evapotranspiration via the OpenET data set for
northwestern New Mexico. The objective of this study was to compare maize ETa estimated
by the two-step approach using locally developed crop coefficients to satellite-retrieved
evapotranspiration composed by six models included in the OpenET so as to identify the
model that compares most favorably to the two-step approach for water management in
northwest New Mexico.

2. Materials and Methods
2.1. Experimental Site Characteristics for the Study Area

The study was conducted at the Agricultural Experiment Station at Farmington,
located in northwestern New Mexico, USA. The geographical coordinates of the site are
latitude 36.69′ N, longitude 108.31′ W, and elevation 1720 m. Weather variables were
monitored at the station using an automated weather station. Minimum temperature
(Tmin), maximum temperature (Tmax), average temperature (Tmean), minimum relative
humidity (RHmin), maximum relative humidity (RHmax), average relative humidity
(RHmean), wind speed (U2), and solar radiation (Rs) were collected daily over well-
maintained grass by an automated weather station installed at the site by the New Mexico
Climate Center. The soil at this site is a fine sandy loam soil with some small patches of
Avalon sandy loam and Doak loam. Soil moisture at field capacity varies from 29.7 to 32.5%,
and the soil moisture content at wilting point is about 16%. The organic matter content of
the soil is less than 1% and the soil pH varies between 7.8 and 8.3.

2.2. Crop Management

Maize was planted at the experiment site for the 2017–2022 period and managed under
full irrigation via a center pivot sprinkler irrigation system. The research station adopted a
specific crop rotation among six center pivots available at the station. After field disking
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and harrowing, the plot was pre-irrigated as there was no rainfall before planting and the
residual soil moisture is usually too low to allow seed germination. Maize was planted
on 15 May 2017; 25 May 2018; 17 May 2019; 13 May 2020; 19 May 2021; and 26 May 2022.
Nitrogen, phosphorus, and potassium fertilizer application rates were based on the NMSU
recommendations, and were 269, 232, 345, 323, 309, and 284 kg/ha for nitrogen, 60, 84,
56, 112, 59 and 40 kg/ha for P2O5, and 76, 92, 84, 101, 86, and 60 kg/ha for K2O during
the maize 2017, 2018, 2019, 2020, 2021, and 2022 growing seasons, respectively. The field
was fully irrigated through a central pivot irrigation system to avoid any impact of water
stress on crop growth, development, and grain yield. Irrigation scheduling was based on
evapotranspiration, and the depletion criterion of 40% to 45% total available water was
practiced, preventing the plants from experiencing any water stress, as the center pivot
requires one to two days to complete a full revolution. The crops were harvested usually
in November–December depending on the equipment and the personnel’s availability,
and the harvest dates are not considered in the present study. For the study period, crop
ETa estimation stopped on October 15 as irrigation water goes off and the killing frost
usually occurs at the beginning of October [44]. Maize plots were managed similarly across
years and the applied fertilizer rates were based on soil testing chemical properties at the
beginning of each growing season. Plots were kept weed-free by a combination of chemical
herbicide application (atrazine, glyphosate) and hand weeding if necessary.

2.3. Irrigation Management

Irrigation scheduling was based on crop actual evapotranspiration [42]. Maize’s actual
evapotranspiration was estimated according to the equation proposed by Jenson [6] and
Allen et al. [7].

ETa = Kc× ETo (1)

where ETa = daily actual evapotranspiration (mm), Kc = daily crop coefficient, ETo = grass
reference evapotranspiration (mm).

The daily grass reference ET was computed using the standardized ASCE form of the
Penman–Monteith (PM-ETo) Equation (2):

ETo =
0.408∆(Rn− G) + (γCn u2/(T + 273))(es− ea)

∆ + γ(1 + Cd u2)
(2)

where ETo is the reference evapotranspiration (mm day−1), ∆ is the slope of saturation
vapor pressure versus air temperature curve (kPa ◦C−1), Rn is the net radiation at the crop
surface (MJ m−2 d−1), G is the soil heat flux density at the soil surface (MJ m−2 d−1), T
is the mean daily air temperature at 2 m height (◦C), u2 is the mean daily wind speed at
2 m height (m s−1), es is the saturation vapor pressure at 2 m height (kPa), ea is the actual
vapor pressure at 2 m height (kPa), es − ea is the saturation vapor pressure deficit (kPa),
γ is the psychrometric constant (kPa ◦C−1), and Cn and Cd are constants with values of
900 ◦C mm s3 Mg−1 d−1 and 0.34 s m−1. The procedure developed by Allen et al. [7] was
used to compute the parameters ∆, Rn, G, es, and ea.

For the present study, a crop coefficient curve locally developed by Sammis et al. [45]
for the study site was used. Sammis et al. [45] grew maize in non-weighing lysimeters
across different locations in New Mexico and Penman–Monteith estimated the reference
evapotranspiration to determine maize crop coefficient as a function of the accumulated
thermal unit from planting to crop physiological maturity. To generate the Kc curve, maize
thermal units were estimated for each growing season, and the third-order polynomial
equation developed by Sammis et al. [45] was applied daily.

Kc = 0.12 + 0.00168× TU − 2.46× 10−7 × TU2 − 4.37× 10−10 × TU3 (3)

where Kc is the daily crop coefficient and TU is the thermal unit (◦C).
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The thermal unit is the accumulation of the growing degree days (GDD), which is
a cumulative temperature that contributes to plant growth and development during the
growing season, and is expressed as follows:

TU = ∑n
i=1

Tmax + Tmin
2

− Tbase (4)

where TU = thermal unit (◦C), Tmax = maximum air temperature (◦C), Tmin = minimum air
temperature (◦C), Tbase = base temperature threshold for maize (10 ◦C), and n = number of
days. The base temperature for calculating growing degree days is the minimum threshold
temperature at which plant growth starts. The maximum and minimum temperature
thresholds of 30 ◦C and 10 ◦C, respectively, were used. All temperature values exceeding
the threshold were reduced to 30 ◦C, and values below 10 ◦C were taken as 10 ◦C because
no growth occurs above or below the threshold (base) temperature values. If the average
daily temperature was below the base temperature, the TU value was assumed to be zero.

2.4. Satellite-Derived Crop Actual Evapotranspiration

Maize daily actual evapotranspiration was retrieved from the OpenET (https://
openetdata.org/, accessed on 4 January 2023), [31]. The maize plot was selected each
year from 2017 to 2022 at the Agricultural Science Center at Farmington using the OpenET
website (Figure 1). The studied models within the OpenET are as follow: ALEXI/DisALEXI
is Atmosphere–Land Exchange Inverse/Disaggregation of the Atmosphere–Land Exchange
Inverse (ver. 0.0.27) [46,47], eeMETRIC is Mapping Evapotranspiration at High Resolution
with Internalized Calibration (ver. 0.20.15) [48–50], geeSEBAL is Surface Energy Balance Al-
gorithm for Land using Google Earth Engine (ver. 0.2.1) [18,51], PT-JPL is Priestley–Taylor
Jet Propulsion Laboratory (ver. 0.2.1) [52], SIMS is Satellite Irrigation Management Support
(ver. 0.0.20) [30,53], and SSEBop is Operational Simplified Surface Energy Balance (ver
0.1.5) [54,55]. In all openET models except ALEXI-DisALEXI, ETo data are used in the
estimation of daily actual evapotranspiration between Landsat satellite overpasses every
eight days. For each satellite overpass date, a fraction of grass reference evapotranspiration
(EToF) for each 30 m pixel is estimated as a ratio between the satellite-derived evapotranspi-
ration by the ETo. The EToF values are then linearly interpolated for days between satellite
overpasses. Next, the interpolated fraction is multiplied by the corresponding daily ETo
values resulting in daily actual evapotranspiration values for each pixel, which are then
combined into monthly and annual periods. On the other hand, ALEXI/DisALEXI relies
on the coarser-resolution ET information from the ALEXI model [46] with GOES satellite
information to produce the daily ET. The coarser-resolution evapotranspiration values are
disaggregated to 30 m using the DisALEXI algorithm [56]. Daily actual evapotranspiration
values given by all six models and the ensemble average were retrieved for the maize plot
from planting to 15 October every season for the period of 2017–2022.

2.5. Data and Statistical Analysis

Daily actual evapotranspiration data were plotted and compared against each other.
All six growing seasons’ data from the OpenET were combined and plotted against the
locally developed Kc curve ETa and the simple linear regression slope and coefficient of
determination were used to appreciate the quality of the fitness of the satellite-derived ETa
against the locally developed Kc curve ETa. The CoStat software was used for data analy-
sis [57]. The Kolmogorov–Smirnov test was performed to check the normal distribution of
the dataset time series and the Mann–Whitney U tests were used for means comparison.
The percent error (PE), mean bias error (MBE), and root mean squared error (RMSE) were
also used for model evaluation.

https://openetdata.org/
https://openetdata.org/
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3. Results and Discussion
3.1. Weather Conditions during the Study Period

The 2017–2022 period daily weather conditions are presented in Figures 2 and 3. The
maximum, minimum, and average temperatures increased from January to the maximum
values in mid-July and decreased thereafter to the minimum values at the end of December
of each year. Tmax varied from −9.3 to 38.0 ◦C; Tmin varied from −21.6 to 21.8 ◦C, and
Tmean varied from−14.9 ◦C to 29.4 ◦C (Figure 2a). The minima of Tmax, Tmin, and Tmean
occurred in late December, and the maxima occurred in July of each year. The annual Tmax,
Tmin, and Tmean averages were 20.2, 4.1, and 12.1 ◦C, respectively. The air maximum
relative humidity RHmax varied from 18.3% to 100%, the RHmin varied from 0% to 83.2%,
and the RHmean varied from 9.9% to 95.5% (Figure 2b); they averaged 71.6, 21.2, and
43.6%, respectively, for the 2017–2022 period. Daily precipitation varied from 0 to 19.1
mm and averaged 0.4 mm, and the annual total precipitation averaged 140.6 mm for the
2017–2022 period (Figure 2c). The daily average wind speed fluctuated considerably,
and varied from 0.5 to 7.6 m/s, averaging 2.2 m/s for the study period. The highest
wind speed values were observed in the spring of each year, as shown in Figure 3a. The
daily solar radiation varied from 2.1 to 32.3 MJ/m2 and averaged 18.8 MJ/m2 (Figure 3a).
Daily maize growing day temperatures varied from 0 to 19.5 ◦C, showing that maize
planting could start as early as early April (Figure 3b), and the annual total thermal unit for
maize varied from 1666.8 to 1933.5 ◦C, and averaged 1832.2 ◦C for the 2017–2022 period
(Figure 3b).
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3.2. Maize Daily Actual Evapotranspiration

The maize daily actual evapotranspiration estimated by the seven models is presented
in Figure 4. The daily ETa varied from 0.4 to 8.9 mm in 2017, from 0.4 to 9.2 mm in 2018,
from 0.3 to 8.2 mm in 2019, from 0.3 to 8.9 mm in 2020, from 0.5 to 8.4 mm in 2021, and
from 0.6 to 8.6 mm in 2022, and averaged 4.1, 4.4, 4.2, 4.4, 4.2, and 4.1 mm/day during
the respective growing seasons. All seven models showed a similar trend in maize daily
evapotranspiration, which increased from planting to full development (July–August) and
decreased thereafter toward the crop physiological maturity stage with plant senescence.
Assuming that the maize actual evapotranspiration estimated by the locally developed Kc
is the accurate one, the geeSEBAL, DisALEXIS, eeMETRIC, and SSEBop models showed
larger maize daily evapotranspiration during the maize initial state, while the other models
showed smaller maize evapotranspiration (Figure 4). All models showed smaller maize
evapotranspiration during the mid-season, with the SIMS and eeMETRIC being the closest
to the ETc(kc), while all models showed larger maize daily evapotranspiration during the
late season (Figure 4). Considering the growing season, all OpenET models showed smaller
maize evapotranspiration for the 2017–2022 period with average PE values from −24.87
to −2.58% (Table 1), and also an MBE that varied from −1.05 to 0.11 mm/day (Table 2).
Seasonal RMSE varied from 1.25 to 1.70 mm/day (Table 3). Overall, eeMETRIC was the
most accurate model included in the OpenET, followed by SIMS (Tables 1–3), and could be



Agronomy 2023, 13, 1937 9 of 19

considered for maize ET retrieval in the absence of onsite measurement or the estimation
of maize daily evapotranspiration. The regression between the ETc(kc)-estimated ETa
and those of the six other ETa models in OpenET is presented in Figure 5. The regres-
sion slope varied from 0.7029 to 0.9004, and the coefficient of determination ranged from
0.9048 to 0.9279 (Figure 5). Combining all statistical parameters, eeMETRIC and SIMS com-
pare most favorably to the ETc(kc) for maize evapotranspiration estimation in northwest
New Mexico.

Table 1. Percent error (%) of modeled maize evapotranspiration (ET) for the 2017–2022 period.

Seasons Ensemble eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL

2017 −5.14 0.66 −4.14 −8.56 −17.58 −10.78 −3.23
2018 −40.06 −7.36 −20.89 −9.70 −25.39 −24.82 −16.20
2019 −15.95 −8.29 −7.04 −6.97 −23.82 −16.97 −13.51
2020 −4.62 9.69 0.30 −12.90 −38.28 −5.30 −4.81
2021 −16.97 −6.01 −21.93 −6.78 −26.03 −14.91 −14.39
2022 −11.74 −4.18 −24.36 −1.50 −18.14 −10.73 −13.05

Average −15.75 −2.58 −13.01 −7.74 −24.87 −13.92 −10.86
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Table 2. Mean bias error (mm/day) of modeled maize evapotranspiration (ET) for the 2017–2022 period.

Seasons Ensemble eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL

2017 −0.21 0.03 −0.17 −0.35 −0.72 −0.44 −0.13
2018 −1.74 −0.32 −0.91 −0.42 −1.11 −1.08 −0.70
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Table 3. Root mean squared error (mm/day) of modeled maize evapotranspiration (ET) for the
2017–2022 period.

Seasons Ensemble eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL

2017 1.00 0.80 1.35 0.95 1.27 1.46 1.39
2018 2.30 1.63 1.85 1.45 1.91 2.19 1.85
2019 0.94 0.73 0.58 0.69 1.43 1.21 1.51
2020 1.30 1.41 1.32 1.91 2.27 1.34 1.16
2021 1.58 1.53 1.74 1.32 1.78 1.76 1.65
2022 1.30 1.39 1.62 1.11 1.53 1.62 1.53

Average 1.40 1.25 1.41 1.24 1.70 1.60 1.52

Maize evapotranspiration estimated by the SSEBop model was significantly similar to
the locally developed evapotranspiration for three years over six (Table 4). The findings do
not agree with those of Senay et al. [26], who found that crop evapotranspiration estimated
with the SSEBop model was stronger, with an R2 value of 0.82, an RMSE of 0.97 mm/day,
and average bias of 12%, with crop evapotranspiration measured with the Eddy covariance
system over croplands. Relatively good correspondence (R2 up to 0.88, RMSE as low as
0.5 mm/day) was found between SSEBop evapotranspiration estimates and gridded-flux
data and water balance evapotranspiration approaches in the southwest United States [58].
In another study, Senay et al. [59] found that SSEBop model-estimated crop water use, when
compared with the eddy-covariance flux towers dataset, showed strong correspondence,
with an R2 greater than 0.80 and RMSE values ranging from 0.2 to 0.63 mm/day across the
upper Rio Grande Basin for the 1986–2015 period. The results gave significantly different
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evapotranspiration estimates compared to the local kc evapotranspiration estimated for
4 years over 6 (Table 5). These results agree with those of de Oliveira et al. [60], who
found that evapotranspiration estimated using the SEBAL showed higher differences
in relation to the observed values. In contrast, Kaysert et al. [61] reported that daily
estimates of geeSEBAL yielded an average RMSD of 0.91 mm/day when compared to
eddy covariance system data, while Gonçalves et al. [62] indicated that geeSEBAL has
significant potential for use in the assessment of crop evapotranspiration for irrigation
monitoring and management in Brazil, even in areas with missing climate data. The
applicability of the SEBAL model for paddy field evapotranspiration estimation was
evaluated for the 2000–2017 period in Jiangxi Province (south of the Yangtze River), China,
and the results show that the SEBAL model estimated crop evapotranspiration accurately
on a daily scale, with R2 and RMSE values of 0.85 and 0.84 mm/day, respectively [63].
This study showed the applicability of the SEBAL model in paddy fields in subtropical
regions and provided a basis and reference for the rational allocation of water resources at
a regional scale [63].
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Table 4. Summary of the Kolmogorov–Smirnov test comparing the distribution of the daily evapo-
transpiration (ET) estimated by the seven ET models.

Years Parameters eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL ETc(kc)

2017

Count 154 154 154 154 154 154 154
Mean 4.102 3.906 3.726 3.359 3.636 3.943 4.075
Median 4.568 4.121 4.255 3.594 3.931 4.293 4.521
Standard Deviation 1.755 1.623 1.913 1.582 1.364 1.621 2.133
Skewness −0.460 −0.268 −0.200 −0.102 −0.485 −0.359 −0.166
Kurtosis −0.793 −0.662 −1.383 −1.154 −0.689 −0.799 −1.324
K-S test statistic (D) 0.116 0.100 0.130 0.107 0.096 0.127 0.121
p-value 0.029 0.083 0.010 0.054 0.108 0.013 0.020
Significance DNND DND DNND DND DND DNND DNND
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Table 4. Cont.

Years Parameters eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL ETc(kc)

2018

Count 147 147 147 147 147 147 147
Mean 4.031 3.443 3.930 3.247 3.272 3.647 4.352
Median 4.253 3.409 4.234 3.587 3.196 3.825 4.193
Standard Deviation 1.761 1.351 1.946 1.480 1.269 1.366 2.417
Skewness −0.094 0.087 −0.048 −0.433 0.243 −0.374 −0.092
Kurtosis −0.670 −0.497 −1.114 −0.886 −0.799 −0.629 −1.255
K-S test statistic (D) 0.056 0.051 0.098 0.109 0.094 0.063 0.123
p-value 0.717 0.828 0.113 0.055 0.140 0.591 0.022
Significance DND DND DND DND DND DND DNND

2019

Count 152 152 152 152 152 152 152
Mean 3.889 3.943 3.945 3.231 3.521 3.668 4.241
Median 3.730 4.211 3.926 3.027 3.659 3.912 4.215
Standard Deviation 1.867 2.038 2.186 1.458 1.626 1.371 2.171
Skewness 0.040 −0.173 0.036 0.125 −0.100 −0.481 −0.038
Kurtosis −0.618 −0.922 −1.248 −0.919 −0.914 −0.131 −1.095
K-S test statistic (D) 0.050 0.068 0.089 0.072 0.093 0.097 0.073
p-value 0.824 0.455 0.173 0.396 0.135 0.104 0.374
Significance DND DND DND DND DND DND DND

2020

Count 156 156 156 156 156 156 156
Mean 4.804 4.393 3.814 2.703 4.147 4.169 4.379
Median 4.795 4.457 4.114 2.806 3.976 4.200 4.743
Standard Deviation 1.933 1.716 2.654 1.496 1.602 1.698 2.480
Skewness −0.260 −0.078 −0.081 0.001 0.027 −0.183 −0.028
Kurtosis −0.646 −0.104 −1.399 −1.431 −0.917 −0.786 −1.289
K-S test statistic (D) 0.107 0.062 0.118 0.127 0.074 0.088 0.110
p-value 0.053 0.573 0.024 0.012 0.346 0.168 0.043
Significance DND DND DNND DNND DND DND DNND

2021

Count 150 150 150 150 150 150 150
Mean 3.914 3.251 3.882 3.080 3.544 3.565 4.164
Median 4.065 3.361 4.177 3.152 3.639 3.628 4.451
Standard Deviation 1.662 1.249 1.904 1.474 1.047 1.234 2.304
Skewness 0.130 −0.318 −0.090 −0.177 0.187 0.040 −0.094
Kurtosis −0.851 −0.492 −1.262 −1.092 −0.336 −0.831 −1.315
K-S test statistic (D) 0.104 0.057 0.116 0.075 0.049 0.059 0.101
p-value 0.075 0.685 0.032 0.356 0.849 0.653 0.089
Significance DND DND DNND DND DND DND DND

2022

Count 143 143 143 143 143 143 143
Mean 3.951 3.119 4.062 3.376 3.681 3.585 4.123
Median 4.077 3.112 4.231 3.433 3.533 3.523 4.385
Standard Deviation 1.333 1.242 1.998 1.584 1.045 1.463 2.077
Skewness 0.009 0.515 0.146 −0.136 0.596 0.708 −0.097
Kurtosis −1.023 −0.266 −1.010 −0.876 −0.174 0.152 −1.097
K-S test statistic (D) 0.091 0.097 0.094 0.078 0.074 0.103 0.101
p-value 0.177 0.124 0.149 0.332 0.393 0.087 0.101
Significance DND DND DND DND DND DND DND

DND = data normally distributed; DNND = data not normally distributed.

The percent errors of the six models are within the range of ±10–25% suggested
by Melton et al. [31]. Therefore, all six models accurately estimated maize daily evapo-
transpiration at the study site and could be independently used for water management
in maize in northern New Mexico. However, eeMETRIC and SIMET should be consid-
ered first for water management and water conservation in maize grown at the study
site. The better performance of eeMETRIC is reported in other studies. Kilic et al. [64]
reported that crop evapotranspiration estimates by eeMETRIC are similar to the eddy
covariance measurement data from more than 100 Ameriflux and USDA research sites in
the USA, with a ratio of eeMETRIC-estimated evapotranspiration against measurements
that averages 1.03 for agricultural land uses. Ortega-Salazar et al. [65] reported that the
error within the METRIC compared to the Eddy covariance-measured data was 4 and 6%.
Jaafar et al. [66] demonstrated that the TSEB-PT achieved the lowest performance for sites
in warm summer humid continental and hot semi-arid climates, as compared to the Eddy
covariance time series data. The worse performance of the PT-JPL model might be due
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to the difference between the universal values of the P-T coefficient, which is likely to
decrease in arid environments with natural vegetation and increase in areas with advection
similar to that in northern New Mexico [67,68]. In addition, it could be due to the soil
evaporation components’ formulation, which significantly deviated from the measured
values in comparison to crop transpiration [69]. Furthermore, PT-JPL integrates some
physically based functions that serve a wide range of hydro-meteorological conditions
that are not specific to agroecosystems [70]. The good performance of the SIMS model
might be due to its basic features, as it is a reflectance-based model implementing parts
of the FAO-56 dual crop coefficient model [7] and combining remotely sensed vegetation
parameters and spatially resolved crop type information [71], and it has been shown to
be useful in producing accurate evapotranspiration estimates for irrigated agriculture in
the Western United States [31,53]. Srivastava et al. [72] evaluated the moderate resolution
imaging spectroradiometer (MODIS) satellite-based remote-sensing techniques, and the
water-budget approach built into the semidistributed variable infiltration capacity land-
surface model, against the two-step approach in the Kangsabati River Basin in eastern
India. They found that the water balance method compared most favorably to the two-step
approach, while the MODIS-estimated evapotranspiration values were smaller, with a
periodic shift that might be attributed to cloud cover and leaf shadowing effects.

Table 5. Summary of the Mann–Whitney U Test comparing the mean of the ET(kc) to the other
six ET models.

Years Parameters eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL

2017
The z-score 0.3589 1.2573 1.8433 3.5376 2.4678 1.1549
p-value 0.3594 0.1038 0.0329 0.0002 0.0068 0.1251
Significance n.s. n.s. s. s. s n.s.

2018
The z-score 1.26775 3.3697 1.58195 3.93771 3.88009 2.67682
p-value 0.10204 0.00038 0.05705 0.00004 0.00005 0.00368
Significance n.s. s. n.s. s. s. s.

2019
The z-score 1.41653 1.12553 1.18034 4.20523 2.84807 2.32348
p-value 0.0778 0.12924 0.119 0.00001 0.00219 0.01017
Significance n.s. n.s. n.s. s. s. s.

2020
The z-score −1.434 0.0295 2.09044 6.17845 0.79513 0.75748
p-value 0.07636 0.48803 0.01831 0.00001 0.21186 0.22363
Significance n.s. n.s. s. s. n.s. n.s.

2021
The z-score 1.08153 3.6812 1.15075 4.39468 2.50716 2.5045
p-value 0.14007 0.00012 0.12507 0.00001 0.00604 0.00621
Significance n.s. s. n.s. s. s. s.

2022
The z-score 0.9652 4.3141 0.2259 3.3789 2.3351 2.4109
p-value 0.1660 0.0000 0.4091 0.0004 0.0096 0.0080
Significance n.s. s. n.s. s. s. s.

n.s. = non significant; s. = signifiant.

3.3. Maize Seasonal Actual Evapotranspiration

Maize seasonal evapotranspiration varied from 589.7 to 683.2 mm and averaged
634.9 mm for the 2017–2022 period (Table 6). The highest seasonal evapotranspiration
was obtained in 2020 and the lowest seasonal evapotranspiration was obtained in 2022.
OpenET models eeMETRIC, SSEBop, SIMS, PT-JPL, DisALEXI, and geeSEBAL showed
smaller maize seasonal evapotranspiration values, by 2.4, 12.7, 7.9, 25.1, 13.9 and 10.8%,
respectively. eeMETRIC compares most similarly to the ETc(kc) model, followed by SIMS.
These two could be used as alternative sources of maize evapotranspiration for appropriate
management in the study area. Maize evapotranspiration for the same research site varied
from 634.2 to 697.7 mm, and averaged 665.3 mm, for the 2011–2017 period [42]. Basso and
Ritchie [73] reported maize seasonal evapotranspiration values of 640 mm under an arid
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climate in Arizona. In Nebraska, the fully irrigated maize seasonal evapotranspiration was
620 and 634 mm in 2009 and 2010, respectively [74]. Similar results were obtained by Trout
and DeJonge [75] under a semiarid climate in Colorado. In contrast, much higher maize
seasonal evapotranspiration (up to 685 mm) in New Mexico has been reported [76], as well
as 818 mm [77,78] and 973 mm [79,80] in Texas. While different magnitudes of maize evap-
otranspiration were reported, the differences might have been due to climatic conditions,
the specific evapotranspiration estimation methods, maize hybrids, management practices
and other factors.

Table 6. Maize seasonal evapotranspiration (ET) (mm/day) given by the seven models for the
2017–2022 period.

Seasons Ensemble eeMETRIC SSEBop SIMS PT-JPL DisALEXI geeSEBAL ETc(kc)

2017 595.3 631.7 601.6 573.8 517.2 559.9 607.3 627.6
2018 383.5 592.6 506.1 577.7 477.3 481.0 536.1 639.7
2019 541.8 591.2 599.3 599.7 491.1 535.2 557.6 644.6
2020 651.6 749.4 685.3 595.0 421.7 646.9 650.3 683.2
2021 518.7 587.1 487.7 582.3 462.1 531.5 534.8 624.7
2022 520.4 565.0 446.0 580.8 482.7 526.4 512.7 589.7

Average 535.2 619.5 554.3 584.9 475.3 546.8 566.5 634.9

4. Conclusions

The six-year data analysis revealed that SIMS and PT-JPL consistently showed lower
maize daily evapotranspiration during maize initial and actively growing stages, while
ETc(Kc), SIMS, and eeMETRIC showed similar maize daily evapotranspiration during
maize full development and reproductive phases. DisALEXI, PT-JPL, geeSEBAL, and
SSBop showed the lowest values of maize daily evapotranspiration in the full development
and reproductive phases. ETc(kc) drastically dropped, and showed the lowest value among
all model estimates, after the first snowfall or the first killing frost. Maize seasonal evap-
otranspiration varied from 589.7 to 683.2 mm. The eeMETRIC compares most similarly
to the ETc(kc) model, followed by SIMS, with percent errors of 2.6 and 7.7% on the daily
basis and 2.4 and 7.9% on the seasonal basis, respectively. Both models have the lowest
MBE and RMSE values and could be used as an alternative for maize actual daily evap-
otranspiration for water management in northern New Mexico. For the future direction
of our research, direct crop evapotranspiration measurement equipment such as the eddy
covariance system could be used for measuring actual crop evapotranspiration for multiple
cops and calibrating the six models in OpenET for the study area.
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