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Abstract: The continuous input, slow decomposition, and retention of straw can impede tillage and
crop growth, and the decomposition process of the straw in soil is affected by its composition and the
method of application. Experimental Station of Jilin Agricultural University, Changchun City, Jilin
Province. The soil type was Argiudolls, the experimental field area was 30 m2, and the maize was
planted continuously for 12 years without returning the straw to the field. There were four treatments:
(1) control (CK), 10 g of straw was placed on the surface of a nylon mesh bag, and the nylon mesh bag
was separated from the soil by polyethylene film without contacting with the soil; (2) straw mulching
(CM), a nylon mesh bag with 10 g of straw was placed on the soil surface; (3) straw burying (CD), a
nylon mesh bag with 10 g of straw was buried at a depth of 40 cm from the soil surface; (4) straw
burying (CE), a nylon mesh bag with 40 cm of soil depth. Fifteen micro-zones were set up with a
micro-zone area of 1 m2 and each micro-zone consisted of four treatments randomly grouped in three
replicates per treatment. The on-site nylon bag burying trial started on 20 April 2021 and ended on
15 April 2022. Nylon bag and soil samples were collected on days 0, 30, 90, 180, 270, and 360. SOC, TN,
straw component decomposition, and water droplet-soil contact angle were determined. Our results
showed that the CE treatment increased soil organic carbon (SOC) and total nitrogen (TN) content
compared to the CM and CD treatments. Compared with CK, straw decomposition rates increased
by 13.3%, 30.8%, and 22.3% in the CM, CD, and CE treatments, respectively. Lignin decomposition
rates increased by 7.8%, 27.3%, and 16.2%; cellulose decomposition rates increased by 14.6%, 35.4%,
and 27.3%; and hemicellulose decomposition rates increased by 17.2%, 31.7% and 23.7% in the CD
treatment, respectively. Compared with CK, the contact angle of droplets in the CD treatment was
statistically significantly increased by 91.5% when the droplets remained on the soil surface for 5 s.
The rate of decrease of droplet contact angle with time was statistically significantly decreased by
11.8%, and the penetration rate of droplets on the soil surface was slower. Overall, the CD treatment
promoted straw decomposition and increased SWR compared to the CM and CE treatments. which
are important attributes to enhance soil quality and improve soil structural stability.

Keywords: straw return; straw decomposition; lignin; cellulose; soil water repellency

1. Introduction

Due to soil erosion, intensive land use, and the removal of straw, resulting in shallow
tillage, hard subsurface layers, and poor fertility, the quality and quantity of soil organic
carbon (SOC) in arable soils in the black soils of Northeast China have significantly de-
creased over the past few years [1]. In China, returning straw to the field is a common
practice as straw consists of nearly all of the carbon (C) absorbed from the soil [2].

The continuous application, slow decomposition, and retention of straw, however,
may impede tillage and crop growth and also nutrient effectiveness, soil temperature, water
infiltration and evaporation, and pest and disease populations [3,4]. According to studies,
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the contents of the straw and the method of application have an impact on the rate that
it breaks down in the soil [5–7]. By altering microbial colonization [8], co-metabolism [9],
or mineral catalysis [10], the straw interaction with soil promotes straw decomposition.
Thus, the depth and positioning of crop straw may affect the rate at which it decomposes.
Furthermore, the application of straw is critical to the division and mineralization of straw
as these are both key to the efficient use of straw [11]. To place crop straw in contact with
the soil at various depths, it can either be left on the ground as mulch or combined into
the soil by tilling, rototilling, or disk tilling [12]. The composition of agricultural straw is
mainly affected by its C content, N concentration, C/N ratio, and lignin content [13]. Based
on studies conducted by Gaind and Nain (2007), the crop straw’s lignin amount may be
considered a valid indicator of the rate at which the straw decomposes [14], and this value is
often associated with the inverse rate of decline [15,16]. The cellulose and hemicellulose of
straw are easily decomposed, while lignin is not easily decomposed [17–19]. The crystalline
nature of cellulose, the water repellency of lignin, and the protective layer of the lignin–
hemicellulose matrix on cellulose [20] combine to hinder microbial access to the inner
regions of the straw [21].

Structurally diverse plant residues are produced during the decomposition of straw,
and these recalcitrant materials accumulate and incorporate into the soil organic matter
(SOM) [10]. Soil water repellency (SWR) increases as water-repellent lignin accumulated
from the decomposition of fresh organic matter [22]. When water is present on the soil
surface, an effect named SWR occurs where the soil is not instantly wet. It affects the
soil’s hydrological balance, water evaporation, erosion, soil infiltration [23,24]. Based on
Doerr et al., SWR is a transitory attribute of soils that enhances its resistance to wetting and
infiltration [25]. It is also highly variable in both location and time. The SWR has an advan-
tageous role in preserving soil stability [26,27] and organic carbon sequestration [28] under
specific circumstances. Further, the SWR intensity and persistence impact soil moisture
content [29–31]. The SWR is produced by the accumulation of hydrophobic compounds
that originate from vegetation [32] or microorganisms [33], or by the decomposition of
fresh organic matter with low levels of decomposition and humification [22]. In the event
of weak attractive forces between molecules at the solid/liquid interfaces, SWR occurs
naturally when high-energy soil mineral surfaces are covered by thin films of low-energy
organic compounds, resulting in the growth of water-repellent films [34]. SOM is known to
be present as a thin coating over soil mineral particles or as particulate organic matter, both
of which may reduce soil wettability, and increase SWR [35].

The SOM appears to play an essential role in the occurrence of SWR [24]. In line
with Deurer et al., there is a correlation between the quantity of SWR and the content of
SOM [36]. The main source of SOM is plant residues, and the hydrophobic component of
SOM can be traced back to the original plant input [37,38]. The hydrophobic compounds in
SOM are derived directly from crop residues containing high levels of waxes, aromatic oils,
lipids, and lignin, and are usually more resistant to microbial degradation than hydrophilic
substances [25,39]. These aromatic and aliphatic carbons from lipids or lignin in SOM are
the most important chemical classes causing SWR effects on soil water status, infiltration
capacity [40], hydraulic conductivity, and water availability of plants [41] Moderate water
repellency is common in soils and its positive effects on soil structure and quality are
recognized [42]. To protect organic matter as a stabilizing mechanism, water repellency
makes soil aggregates more stable [43]. Given that the soil’s structural stability is improved,
an increase in soil water repellency indicates an improvement in soil quality [44]. As such,
it is important to properly assess water repellency, particularly in agricultural soils [45].
However, the possible link between plant residue fractions and SWR for different straw
return methods is not well known. Therefore, the objective of this study was to investigate
the effects of different straw return methods on soil organic carbon and total nitrogen
contents, straw lignin, cellulose, hemicellulose, and straw residues, as well as soil organic
carbon and total nitrogen contents and important straw fractions on SWR.
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In this study, we proposed two broader hypotheses: (1) Straw return is beneficial to
increase SOC and TN. Straw residue and its lignin, cellulose, and hemicellulose decomposi-
tion rates are higher under different straw return treatments. (2) The increase in SOC and
TN along with the increase in the decomposition rate of lignin, cellulose, and hemicellu-
lose in straw affect the CA of water droplets with soil and increase the SWR. To test our
hypothesis, this study investigated the direct effect of crop residual lignin, cellulose, and
hemicellulose on SWR and the extent of SWR under different straw-returning strategies,
using typical black soils (Argiudolls) and maize stover as reference. Understanding the
dynamics of the interaction between SOC, straw composition, and SWR under different
straw-returning practices is essential for managing and predicting soil organic matter and
soil quality. It also provides a theoretical basis for the effects of different straw-returning
methods on the straw decomposition process and soil physicochemical properties.

The SWR was explored using an assortment of methods, notably WDPT (water drop
penetration time), MED (ethanol droplet molarity), and CA (contact angle). According
to the study by Leelamanie et al., the two most common methods for characterizing
SWR are CA and WDPT, with the former related to the level of SWR and the latter to its
persistence [46].

2. Materials and Methods
2.1. Study Site

The experiment was conducted at the Experimental Station of Jilin Agricultural Uni-
versity in Changchun, Jilin Province, Northeast China (43◦48′43.57′′ N, 125◦23′38.50′′ E).
The area has a humid climate with a mean annual temperature of 4.6 ◦C and a mean
annual precipitation of 600 to 700 mm. The soil type is a subclass of semi-wet-temperate,
semi-alluvial black soils, corresponding to the American systematic classification of clay-
deposited moist soft soils (Argiudolls). The experimental plot was 30 m2 in size, and maize
was grown continuously for 12 years without returning the straw to the field. The initial
organic carbon content was 11.2 g kg−1 and the total nitrogen content was 1.3 g kg−1 as
determined by the experiment.

2.2. Experimental Materials

The corn straw was collected from the experimental field of Jilin Agriculture University,
in September 2020. The basic properties of the straw were organic carbon 376.4 g kg−1,
total N 7.22 g kg−1, total P 7.7 g kg−1, total potassium 4.5 g kg−1, and C/N ratio of 61.8.

The nylon mesh bag (manufacturer: Ju feng Net, Hangzhou, Zhejiang Province, China)
had a pore size of 0.15 mm (10 cm × 10 cm), allowing water, soil microorganisms, and
randomized soil particles to enter.

2.3. Experimental Design

The field nylon bag burial trial was initiated on 20 April 2021. Four treatments were
set up: 1© control (CK), nylon mesh bags with 10 g of straw were placed on the surface
with polyethylene film between the nylon bags and the soil, with no contact with the soil,
with the aim to compare with other treatments; 2© straw mulching (CM), nylon mesh bags
with 10 g of straw were placed on the soil surface, with the aim to simulate straw mulching
in the field; 3© straw deep burial (CD), nylon mesh bags with 10 g of straw were buried
40 cm from the soil surface, with the aim to simulate the deep turning of straw in the field;
4© doubled straw deep burial (CE), nylon mesh bags with 30 g of straw in a nylon mesh

bag at 40 cm of soil depth, with the aim to simulate the deep turning of a doubled amount
of straw in the field. Fifteen micro-zones were set up with a micro-zone area of 1 m2 and
each micro-zone consisted of four treatments arranged in randomized groups with three
replications of each treatment.
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2.4. Sample Collection

Nylon bags and soil samples were collected at 0, 30, 90, 180, 270, and 360 days after
the start of the experiment in each of the three micro-zones for each treatment. Soil samples
were collected at a depth of 5 cm at the interface between the nylon mesh bags and the soil
to remove any visible organic debris and stones.

2.5. Physicochemical Analysis
2.5.1. Soil Carbon and Nitrogen Content

SOC was determined using the K2Cr2O7-H2SO4 oxidation method [47]. Soil TN
content was determined using the Kjeldahl method [48].

2.5.2. Determination of Straw Composition

Lignin: titration with ammonium ferrous sulphate solution; cellulose: titration with
ammonium ferrous sulphate solution; hemicellulose: determination by copper iodide [38].

2.5.3. SWR Determination

The contact angle (CA) of the treated soil sample with water was measured at room
temperature with a fully automatic contact angle meter (Optical Contact Angle Meter,
OCA20, Dataphysics, Filderstadt, Germany). Digital micrographs of horizontal views of
the water droplets were taken at 0, 1, 3, and 5 s. The CA was measured at five different
locations on each surface and the average obtained CA was the final static water CA.

2.6. Calculations and Statistical Analysis

Straw decomposition rate: straw was set at 0, 30, 90, 180, 270, and 360 days after the
experimental set-up, to exclude the effect of water content on strawweight, so after washing
the straw and air-drying and weighing it (weighing with an electronic balance with an
accuracy class of milligrams), a portion of the straw was weighed and dried at 105 ◦C
for 2 h until there was no change in weight and then the water content of the straw was
measured, and the dry weight of all the straw was calculated from the water content and
measured by subtracting the difference with the weight of the straw at 0 d Straw residue.

Statistical analysis: Data were processed using Microsoft Office Excel 2017 (Microsoft
Windows, Redmond, DC, USA) and analysis of variance (ANOVA) was performed using
SPSS software (IBM Statistics 21.0, New York, NY, USA) to evaluate the effect of different
straw return patterns on all measured soil parameters. The least significant difference test
of p < 0.05 was used to evaluate significant differences in the means of straw return patterns
and TUKEYs were adjusted at p < 0.05. Graphs were compiled using Origin 2021b software
(OriginLab Inc., Northampton, MA, USA).

3. Results
3.1. Soil Organic Carbon and Total Nitrogen Content

Figure 1 depicts the SOC and TN content of the soils under different treatments,
with a trend of decreasing, then increasing, and then decreasing organic carbon content
in CK, CM, and CD soils, and a significant increase in total nitrogen content with time.
From 0 to 30 (d), the SOC contents of CK, CM, CD, and CE treatments decreased by 0.7%,
0.4%, 0.3%, and 0.1%, respectively; from 30 to 270 (d), they increased by 1.2%, 1.4%, 1.6%,
and 1.6%, respectively, and then peaked. The SOC content at 360 (d) was statistically
significantly lower in the CM and CD treatments compared to 270 (d). The SOC content of
the different treatments at 360 (d) was CE > CD > CM > CK, with statistically significant
differences between CE and the other treatments. The greater the amount of straw applied
to the soil, the more C was obtained in the CE treatment, and the SOC content increased by
1.66% after 360 (d). The TN content of the soil in the CM, CD, and CE treatments increased
significantly with time (Figure 1) and peaked at 360 (d). The TN content of the CK treatment
did not change significantly from 0 to 360 (d). The TN content of each treatment at 360 (d)
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was CE > CD > CM > CK, with the CE treatment showing the most significant difference,
with a 32.3% increase in TN content compared to 0 (d).
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Figure 1. SOC and TN content of different treatments. The experimental treatments were control
(CK), straw mulching (CM), straw deep burial (CD), and straw doubling deep burial (CE). The blue
triangle represents the mean value of TN, and the purple area represents the standard deviation
of TN. The red circle represents the SOC average and the pink area represents the SOC standard
deviation. Capital letters indicate significant differences between SOC and TN for different treatments
(p < 0.05) and lowercase letters indicate significant differences between SOC and TN for different
times (p < 0.05).

3.2. Straw Composition

Figure 2 depicts the amount of straw lignin, cellulose, straw hemicellulose, and straw
residue under the different treatments, all of which decreased statistically significantly
with time. Compared to the control treatment, the lignin content of straw in the CM, CD,
and CE treatments decreased significantly with an increasing number of days (Figure 2a).
The lignin content of straw in the CM, CD, and CE treatments decreased by 6.8%, 11.3%,
and 12.7% from 0 to 90 (d); 1.6%, 4.5%, and 0.2% from 90 to 180 (d); and 6.3%, 21.6%, and
10.92% from 180 to 360 (d), respectively. The cellulose content of straw in the CM, CD, and
CE treatments followed a similar pattern to that of lignin content, decreasing significantly
with an increasing number of days (Figure 2b). The cellulose content of straw in the CM
treatment increased by 0.7% between 0 and 90 (d), while in the CD and CE treatments, it
decreased by 6.7% and 1.1%; between 90 and 180 (d), it decreased by 5.1%, 9.3%, and 16.1%;
and between 180 and 360 (d), it decreased by 11.4%, 26.5%, and 14.7%, respectively. The
cellulose content of the straw was lowest in all treatments at 360 (d) and the difference was
statistically significant.

As shown in Figure 2c, the hemicellulose content of straw in the CM, CD, and CE
treatments all decreased significantly after 90 (d) compared to the control treatment as the
number of days increased. The cellulose content of straw in the CM, CD, and CE treatments
decreased by 6.81%, 14.2%, and 11.0% from 0 to 90 (d); 9.1%, 2.3%, and 13.0% from 90 to
180 (d); and 6.5%, 22.2%, and 5.6% from 180 to 360 (d), respectively. The cellulose content
of the straw was lowest in each treatment at 360 (d) and the difference was statistically
significant. As the number of days increased, the amount of straw residue decreased in all
treatments (Figure 2d). Compared to 0 (d), the CM, CD, and CE treatments decreased by
30.1%, 45.9%, and 37.1%, respectively, at 360 (d), with the CD treatment showing the most
statistically significant decrease.
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Figure 2. Lignin (a), straw cellulose (b), straw hemicellulose (c), and straw (d) residues in straw.
The experimental treatments were control (CK), straw mulching (CM), straw deep burial (CD), and
straw doubling deep burial (CE). Capital letters indicate significant differences between lignin, straw
cellulose, straw hemicellulose, and straw residues in straw for different treatments (p < 0.05) and
lowercase letters indicate significant differences between lignin, straw cellulose, straw hemicellulose,
and straw residues in straw for different times (p < 0.05).

The lignin, cellulose, hemicellulose, and straw decomposition rates of straw were
statistically significantly higher with increasing days for each treatment compared to
the control treatment (Figure 3). At 360 (d), the lignin, cellulose, hemicellulose, and
straw decomposition rates increased by 7.8%, 27.3%, and 16.2% for the CM, CD, and CE
treatments; 14.6%, 35.4%, and 27.3% for the cellulose; 17.2%, 31.7% and 23.7% for the
hemicellulose; and 13.3%, 30.8%, and 30.8% for the straw, respectively, compared to the
control treatment. The decomposition rates of straw increased by 13.3%, 30.8%, and 22.3%,
respectively. The decomposition rates of lignin, cellulose, hemicellulose, and straw were
most statistically significantly increased by CD treatment.

3.3. Soil Water Repellency

Figure 4 depicts the shape of un-hydrophobic water droplets at times of 0 s, 1 s, 3 s,
and 5 s on the soil surface of each treatment. When the duration reached 5 s, the CA of each
treatment was >0◦, indicating a slight hydrophobicity. The CA of each treated soil with
water droplets decreased over time. Figure 4 demonstrates that the CA of each treatment
was CK > CE > CM > CD at 1 s, 3 s, and 5 s. The order of each treatment’s rate of CA decline,
CK > CE > CM > CD, showed that the control treatment’s water droplets reached the soil
surface more quickly and were more wettable. In comparison with the control treatment,
the CA of water droplets in the CD treatment was larger and decreased significantly at 5 s.
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The water droplets penetrated more slowly on the soil surface in the CD treatment, which
significantly increased the SWR.
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Figure 4. Changes in CA over time and the rate of CA decline for water droplets on the soil surface
for each treatment. The experimental treatments were control (CK), straw mulching (CM), straw deep
burial (CD), and doubled straw deep burial (CE). Bubble size indicates CA, bubble color indicates
the rate of CA decline, numbers indicate mean CA (n = 3), and lowercase letters indicate significant
differences in CA between treatments (p < 0.05).
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3.4. Analysis of the Relationship between Different Straw Addition Methods and SWR

Redundancy analysis (RDA) was conducted on the CA changes of water droplets on
the soil surface at 0, 1, 3, and 5 s for each treatment. The key environmental parameters
included soil carbon and nitrogen content, straw lignin, cellulose, hemicellulose, and straw
residue. According to the findings, RDA1 and RDA2 each accounted for 85.7 and 7.7%
of the CA changes, respectively, and the six environmental factors collectively explained
93.4% of the CA changes (Figure 5). In terms of soil water rejection, the RDA plots dis-
criminated between the various straw additions, indicating that each addition technique
had a different impact on soil carbon and nitrogen content as well as residues of lignin,
cellulose, hemicellulose, and straw as well as CA. Straw residues and soil carbon and
nitrogen content were substantially connected with CA at 1, 3, and 5 s along the RDA1 axis,
whereas straw lignin, cellulose, and hemicellulose residues were strongly correlated with
CA at 1, 3, and 5 s (Figure 5).
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According to correlation analysis, SOC and TN were considerably and positively
connected with CA (Figure 6), but the content of lignin, cellulose, and hemicellulose in
straw was significantly and adversely correlated with CA. This association suggests that
the degradation of lignin, cellulose, and hemicellulose in the straw increased SOC and TN,
which in turn raised the CA of water droplets in the soil and improved the soil’s water
repellency. To preserve soil stability and have an impact on organic carbon sequestration,
the CD treatment had a significantly greater CA and improved SWR.
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4. Discussion
4.1. Straw Addition Methods Affect Soil Carbon and Nitrogen Content

The SOC is a major determinant of soil ecosystem quality and includes a complex
mixture of organic matter derived from zooplankton, root turnover, and microbial de-
composition, which are important sources of plant nutrition and play a key role in the
global carbon cycle and climate warming [49,50]. The return of straw is seen as an essential
phase in raising the soil carbon pool since straw can act as a substrate for microorganisms,
accelerating the mineralization of soil organic carbon and the degradation of plant waste
products. This step generates active carbon components and enhances the soil carbon
cycle [51].

Our study corroborated previous results [52–54], showing that soil C and N content
increased when straw went back to the field. Along with raising soil carbon, N, P, and K
stages, straw organic matter mineralization releases nutrients for crop growth [55–57]. In
our study, the lengthy burial of straw and the deep burial of doubled straw led to more
organic carbon build-up after 360 (d) than at 0 (d). There was a sizable difference (Figure 1),
with doubled straw deep burial being more efficient for carbon sequestration than straw
mulching. The deep burial of straw encourages mineralization of the straw by bringing
it into closer contact with microbes in the soil [50,58]. Straw mulching reduces soil–straw
contact and soil temperature in comparison to deep straw burial, which in turn limits
the activity of soil microorganisms [59]. Deep straw burial disturbs the subsurface layer
of the soil, stimulating microbial activity and resulting in an increased rate of microbial
metabolism [60]. This causes more organic matter to form in the soil than with straw
mulching [61]. Contrarily, when the straw is mulched, it remains on the soil surface in a
semi-dry state, and as a result, more carbon and nitrogen are lost in gaseous form during
the decomposition of the straw than if the straw were buried [62]. To release more C and
N into the soil, deep straw burial is, therefore, better for straw decomposition than straw
mulching [63].

The increase in SOC and TN is coupled under straw mulching conditions [64]. The
balance between C and N inputs and outputs may affect shifts in SOC and TN content [65].
According to this study’s findings [66], the organic N in straw breaks down into effective N
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by soil microorganisms and can be transferred to soil microbial biomass. This is demon-
strated by the significant impact that straw in contact with the soil had on TN content after
360 days of straw mulching, straw deep burial, and straw doubling deep burial treatments
(Figure 1). Straw may enhance the TN content of agroecosystems since it is a significant
source of soil N [67]. According to Fan et al., some soil microbes may convert straw N
while transforming straw C, changing the soil’s N levels. Our results are in agreement with
those of a previous study [68].

4.2. Different Straw Addition Methods Affect the Decomposition of Straw and Its Components

Crop straw decomposition is the primary avenue for SOM accumulation and main-
tenance in agroecosystems [69,70]. The two most significant components of straw are
lignin and cellulose [63,71]. Due to their intricate structure and chemical resistance, plant
components like lignin are regarded as key contributors to SOM [72]. Through the co-
metabolic breakdown of fast-acting carbohydrates during the early stages of straw addition,
lignin may meet a high demand for the substrate from activated malnourished microorgan-
isms [73,74]. This is feasible despite the reality that lignin has a chemically impermeable
structure. At 360 (d) into our investigation, the lignin content dropped for the CM, CD, and
CE treatments, respectively, by 13.8%, 29.7%, and 23.8%, with the CD treatment display-
ing the greatest decrease (Figure 2a). Straw’s lignin concentration falls by 19–60% from
13 weeks to 2 years of laboratory incubation, in studies showing how characteristics of the
soil and tillage methods affect it [75]. Straw was found to degrade lignin by 48–87% after
being returned to the field using the apoplastic bag technique in field trials [76]. These
results support our study. When the soil habitat shifts from low to high carbon, straw
lignin can be selectively preserved [77,78]. Given the same pattern as SOC, the rate of
lignin breakdown in our study increased, then decreased, and then ascended again. This is
because low-carbon soils with straw can break down lignin faster than high-carbon soils
can [78]. Straw retains the ability of microbial metabolism to break down organic carbon
and enhances the retention of new lignin in the soil [53]. In addition, some studies have
found a quick lignin turnover in agricultural soils [79]. Based on specific studies, lignin
turnover in arable soils may be faster than SOC turnover [80]. It was established that the
degree of plant tissue loss corresponds with the lignin content of straw [81,82]. Our results
show that, given the same dosage of straw, the lignin concentration of the straw has an
inverse relationship with the rate at which the straw decomposes.

According to Perez et al., straw is a complex lignocellulosic biomass composed of a
lignin-shielded hemicellulose network and highly structured cellulose microfibrils [21]. We
found that cellulose disintegrated greatly quicker than lignin did (Figure 2a,b), confirming
the idea that lignin is more robust to breakdown than cellulose [83,84]. A limiting element
in the breakdown of maize stover is the efficiency with which lignin and hemicellulose
degrade [85]. In contrast, lignin exerts less of an effect on the decomposition of maize stover
than cellulose degradation [86]. In our results, lignin and cellulose degradation followed
the same trend in time dynamics because the bacterial groups that break down cellulose
and lignin largely overlap, e.g., the cellulose-degrading slow-growing Rhizobium and
Burkholderia also break down lignin [83], and because microorganisms with a dual function
of decomposing cellulose and lignin have also been found in forest soils (Wilhelm et al.).
Microorganisms have been discovered to have the dual function of degrading cellulose
and lignin in forest soils [87]. We found that the depth of the straw addition had a bearing
on the rate of cellulose degradation, with higher rates in CD vs. CE treatments where the
straw was buried in the subsurface soil fiber layer compared to CM treatments. Studies of
straw returns at various depths indicate that the uppermost layer of soil decomposes straw
at a faster rate because cellulolytic bacteria might be more prevalent in this layer [88]. After
being submerged at a depth of 5 cm for 30 (d), conventional straw exhibited a cellulose
break-down rate of 26.4%. The microbial activity was better sustained as the depth of
the straw returned to the soil rose, which encouraged the destruction of cellulose and
lignin in the straw, disturbed the connections between straw components, and sped up
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the decomposition of the straw [89]. The research revealed that on the 30th (d) of the
experiment, the surface structure of the straw significantly changed, with a large number of
microorganisms attaching to the outer surface of the straw, encouraging the dissolution of
the wax layer, and creating some pores after the degradation of a large amount of granular
material. The internal structure of the straw was also significantly altered, being less
dense than before and with some of the internal tissues having separated into fragments,
disrupting its n-type structure [89].

In comparison to cellulose and lignin, hemicellulose is an amorphous polymer with a
low degree of polymerization and is more readily hydrolyzed [90]. However, according to
our findings, the rate of hemicellulose decomposition increased in the late stages of straw
decomposition, after a certain level of lignin degradation (Figure 3c), because hemicellulose-
degrading bacteria were unable to quickly establish themselves as the dominant genus for
maize stover degradation following the application of straw to the soil [91]. By inhibiting
degradation enzymes from coming into contact with cellulose or hemicellulose, lignin can
slow down the breakdown of hemicellulose [85]. Hemicellulose is rapidly reduced into
monosaccharides and glyoxylates after coming into contact with microbes when lignin is
partially or fully destroyed [92].

4.3. Different Straw Addition Methods Affect SWR

The SWR is an important phenomenon affecting soil moisture and water resources,
usually because some soil particles are covered by non-polar organic matter that is water-
repellent [25,93]. They mainly consist of humic substances, a complex of organic com-
pounds with hydrophobic or hydrophilic properties [94], formed as a result of changes
in organic debris in the soil [95,96]. Water repellency is closely related to the nature of
SOM [97], and the greater the SOM content, the greater the water repellency of the soil [45].
SOM has been commonly used to assess SWR in previous studies [97]. In the current study,
deep straw burial increased SOM content, with water droplets having a larger CA and a
significantly lower rate of CA decline at 5 s compared to the control treatment, and water
droplets penetrating more slowly on the soil surface in the deep straw burial treatment,
statistically significantly increasing SWR (Figure 4). According to Leue et al. [98], the
content and quality of SOM are connected to the rate at which water droplets penetrate the
soil. The soil’s SOM content increased when leaves, cow dung, sheep dung, or olive mill
residue were included [42,99].

Studies have revealed that agricultural management strategies, such as straw return,
have an impact on both the hydrophobic and hydrophilic parts of the SOM in addition to the
SWR [100]. The hydrophobic fraction of organic matter, which is thought to come from plant
leaf wax, decomposing organic matter, root secretions, and their biodegradation products,
or from fungal or microbial activity, is related to soil water repellency, the hydrophobic skin
of organic compounds on the surface of soil particles [25,35]. According to Olorunfemi and
Fasinmirin [101], hydrophobic chemicals produced by the microbial degradation of plant
residues aid in the development of water-repellent SOM in soil, and degraded organic
matter and waxes on plant epidermis may also have a similar effect. Alkanes [102], fatty
acids and their esters [103], phytol, phytane, and sterols [35], amides, aldehydes, ketones,
and more complex heterocyclic structures [104] are just a few examples of the substances
that cause soil hydrophobicity. Lignin is mostly held together by aromatic and aliphatic
carbons rather than hydrolyzable chemical bonds, and aliphatic hydrocarbons are thought
to be the primary chemical class responsible for SWR [102,105,106]. Capriel et al. discovered
that the amount of aliphatic C-H units affected SWR in a study of SOM water repellency
in German arable land [107]; McKissock et al. discovered a correlation between aliphatic
C-H and water repellency in Australian soils [108]. This was demonstrated by residue
on SWR, with higher aliphatic component contents in applied organic matter increasing
SWR [42]. This supports our findings that the addition of different straws affected how
the straw decomposed (Figure 3) and caused variations in the lignin and cellulose content
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of the straw, with the CD treatment showing the most significant decrease in lignin and
cellulose content and a significant increase in SWR.

5. Conclusions

The straw multiplication deep burial treatment was more effective than the straw
mulching and straw deep burial treatments at increasing the amount of SOC and TN
during the 360 (d) trial period. The disintegration rate of straw and its constituent parts was
much higher than in the other treatments, and the straw residue and its lignin, cellulose,
and hemicellulose content were statistically significantly lower in the straw deep burial
treatment than in the other treatments. When the water droplets were on the soil surface
for 1, 3, and 5 s, the CA between the water droplets and the soil was considerably greater in
the straw-deep burying treatment than in the other treatments. In contrast with the other
treatments, the pace at which the CA decreased as time went on was noticeably slower,
and the water droplets permeated the soil surface more slowly. According to redundancy
and Pearson correlation analyses, the amount of organic carbon and TN in the soil as well
as the rate at which lignin, cellulose, and hemicellulose in straw decompose all affected
the CA of water droplets with the soil, increasing the SWR. This is critical to improve soil
structural stability and soil quality.

In summary, straw returning to the field increases SOC and TN, accelerates the decom-
position of lignin, cellulose, and hemicellulose in straw, and improves SWR. In particular,
the application effect of straw buried deep is better. It provides a scientific basis for accel-
erating straw decomposition and improving soil quality. It is necessary to further study
the influence of SWR on the stability of the soil structure after straw returning, such as the
influence on the particle size distribution and stability of soil aggregates.
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