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Abstract: This article offers a critical analysis of the evolution of encapsulation methods for herbicides
and natural products, with a main focus on organic formulations. It extols the possibilities presented
by these micro- and nanomaterials, such as their slow release, stability, bioavailability, water solubility,
and stability for classical and natural herbicides from their origins to the present.
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1. Introduction

“There is need for the development of safe and effective controlled release formulations
of pesticides. [ . . . ] formulations could make it possible to use smaller amounts of pesticides
and perhaps even improve performance efficiency [1].” These were the words of Richard
G. Sinclair, the author of the first research paper on the encapsulation of agrochemicals
in 1973. The paper was entitled ‘Polymers of Lactic and Glycolic Acids as Ecologically
Beneficial, Cost-Effective Encapsulating Materials’ and was based on the pillars established
by the Pennwalt Corporation in 1972, whose development of Penncap-M shook up the
agricultural field. This first agro-material was based on polyamide spheres in which
methyl parathion was encapsulated, and the spheres were spread by spraying an aqueous
suspension. This was a broad-spectrum pesticide that was mainly used to control insects,
such as caterpillars, beetles, and grasshoppers [2]. However, it was the starting point for the
encapsulation of agrochemicals, and these techniques were recently applied for herbicides.
The commercial pesticide Penncap-M® (O,O-dimethyl-O-p-nitrophenyl phosphorothioate)
is currently being recalled, as it is a health risk for humans and is banned from sale and
import in nearly all countries around the world [3,4].

Other renowned enterprises, such as 3M Corp and National Cash Register (currently
known as NCR Corporation), also began large-scale field trials in 1973. The systems
tested include ‘biodegradable plastic compositions’ and ‘proteinaceous films’ [2]. These
companies started a race to develop the safest, cheapest, and most profitable encapsulation
system, and this race continues today.

Scientific research on the encapsulation of agrochemicals has been influenced by
market demands, but this is always with some delay. The scientific community is focused on
advancing knowledge and humanity, and studies have been carried out to identify natural
products as alternatives to classical herbicides and to replace field-persistent encapsulation
structures with ecologically sound materials. In this respect, the number of studies focused
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on this topic has markedly increased over the last decade and, particularly, in the last four
years, i.e., 2018–2022 (Figure 1); this has maintained the high impact of this subject.

Figure 1. Evolution of research on the encapsulation of herbicides/bioherbicides according to
Scifinder® (Keywords: Encapsulation, Herbicide, Agrochemicals, Nanoecapsulation, Natural Prod-
ucts). (Triangle) First publication about atrazine contamination of drinking water in the USA (2001) [5].
(Circle) The use of Atrazine and Alachlor in the European Union is banned (2004) [6]. (Square) Plan
to ban glyphosate in most countries of the European Union within two years, and some states of
the USA start to evaluate the adverse effects (2016) [7]. (Top) Papers published per year. (Bottom)
Cumulative papers published per year.

The use of encapsulation has been very successful in terms of property modification,
the application of smaller amounts of herbicides, and enhancements in stability. These
modifications also result in higher water solubility, lower soil and environmental pollution,
and more targeted products. Since the 1970s, this approach has been applied to classical
herbicides. Such chemicals have very limited pollution control and little specificity in terms
of their mode of action. This undisciplined approach has led to a rapid increase in herbicide-
resistant weed species worldwide, which has led to higher herbicide application rates and
the use of other active principles with longer environmental persistence [8]. Furthermore,
Hulme stated that the number of herbicide-resistant weeds is probably underestimated
and that agronomic drivers suggest that, in many countries, the number of resistant weeds
will increase [9]. As a consequence, in recent decades, the use of natural alternatives
for weed control, crop protection, and increased production has been promoted. In this
respect, organic encapsulation has been successfully applied to these new natural and
nature-inspired options.

The benefits associated with bioherbicides/allelochemicals can be summarized as
follows: natural origin of the chemical compounds, low impact on the environment, new
modes of action against weeds, and public acceptance [10–12]. However, there are still
barriers that limit the use of these systems under natural conditions, and these include
their low water solubility, rapid biodegradation in the environment, and high cost of syn-
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thesis, among others [13]. Roberts et al. stated that, in order to be successfully integrated
within weed management systems, bioherbicides should have a suitable formulation, be
economically sustainable, cause a high mortality rate for target plants, and lead to very
limited or zero impact on the surrounding natural environment and human health [14].
Current examples include the encapsulation of phytotoxic sesquiterpene lactones in or-
ganic nanotubes that show activity against Phalaris arundinacea L., Lolium perenne L., and
Portulaca oleracea L. weeds or monoterpenes encapsulated in organoclays for the prevention
of volatilization [15,16]. The release rate is another important factor; in general, larger sizes
facilitate a gradual and prolonged release of the active substances, while smaller particles
allow a more homogeneous dispersion, increase the release rate, and facilitate the transport
and absorption of the substances. This results in a controlled release of the active substance.
For this reason, among others, different technologies that allow increasingly smaller encap-
sulation sizes have been developed. In general, one can speak of microencapsulation when
the particles are between 1 and 1000 µm and of nanoencapsulation when the particle size is
smaller, down to 10 nm [17,18].

The aim of this paper is to provide a perspective on how encapsulation systems have
evolved and discuss the experimental results that have been obtained in field studies. The
main focus is on the most relevant and promising organic encapsulation systems that have
been studied to develop safer, non-persistent, and ecological agrochemicals.

2. Perspectives and Analysis of Organic Encapsulation Systems Employed for
Weed Control
2.1. Cyclodextrins and Macrocycles

A large number of compounds encapsulated with cyclodextrins (CDs) have been
used in the field of medicinal chemistry, but the use of these systems for weed control
and crop enhancement is very limited. Szejtli was the first to report the safe application
of CDs to plants by analyzing the physiological effect of this macrocycle on seeds from
crops of interest [19]. He studied the phytotoxic effect of β-CD, and two years later, in
1985, he applied the encapsulation method to several herbicides (e.g., molinate, dichlobe-
nil, and benthiocarb, among others), pesticides, and fungicides [20]. Since then, several
studies have focused on the complexation of a range of CDs and herbicides, although
these have only concerned supramolecular properties, such as solubility or soil stability,
and biological applications have not been considered [21,22]. Lezcano et al. reported the
complexation of fungicides with these macrocycles—specifically, with the three natural
CDs (α, β, and γ) [23,24]. However, only complex production and characterization were
described, without reference to biological applications. Comparable results were pub-
lished by Benfeito et al., who used 2-hydroxypropyl-β-cyclodextrin to host Oxadiargyl
(5-tert-butyl-3-[2,4-dichloro-5-(prop-2-ynyloxy)phenyl]-1,3,4-oxadiazol-2(3H)-one) [25]. In-
terestingly, CDs were also tested as soil remediators, but these were not combined with
applications for crop protection or enhancement purposes [26,27].

The first experimental application of this formulation method was not reported until
2017. Cala et al. encapsulated three sesquiterpene lactones (Figure 2), and these showed
phytotoxic effects against parasitic plants (Orobanche cumana Wallr., Orobanche minor Sm.,
Orobanche ramosa L. (syn.: Phelipanche ramosa (L.) Pomel), Orobanche aegyptiaca Pers. (syn.:
Phelipanche aegyptiaca (Pers.) Pomeland) Striga hermonthica (Delile) Benth.) of the Fabaceae
and Asteraceae families, but also tomato, maize, and sugar cane. This study revealed that
β-CD encapsulation improved the water solubility of these allelochemicals and enhanced
their bioactivity when compared to that of free sesquiterpenes, and it also highlighted this
as a potential pre-emergence herbicide for food production [28]. Another sesquiterpene
lactone, Inuloxin A (Figure 2), was also tested against Orobanche ramosa L. (syn.: Phelipanche
ramosa (L.) Pomel) after complexation with β-CD [29].
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Figure 2. Sesquiterpene lactones encapsulated with cyclodextrins to fight parasitic plants.

In addition to those used against parasitic plants, formulations for combatting
Echinochloa crus-galli (L.) P.Beauv. are the second main focus for the agrochemical ap-
plication of cyclodextrin formulations in crop protection. Atrazine [30], butachlor [31],
cyanazine [32], and diuron [33] have been complexed with β-CD or its 2-hydroxypropyl
derivative. In all cases, the inhibition of different plant parameters was higher when com-
pared to that obtained with free herbicides. For example, plant height, root length, and fresh
weight were directly affected by encapsulation with CDs. HP-β-CD and γ-CD were recently
employed to encapsulate 2,2′-disulfanediyldianiline (DiS-NH2), an aminophenoxazinone
mimic, to target Portulaca oleracea L., Plantago lanceolata L., and Lolium rigidum Gaudin,
which are problematic weeds in rice, wheat, and barley cultures, respectively. The results
showed an enhancement of the water solubility and bioactivity for the γ-CD complex, with
inhibition values higher than 80% with respect to the control for germination, shoot length,
and root formation of P. lanceolata [34].

Interestingly, there is a significant gap in the information concerning the use of CDs in
field experiments and the more dominant in vitro tests. The results in the literature support
the application of these systems in field experiments, but there is a lack of further research
focused on this area. Furthermore, most research has focused on β-CD, and the other
natural CDs have been largely overlooked (Figure 3). β-CD is approved by the EFSA (Food
code: E459), and this fact has encouraged research on crops for human consumption [35].
However, β-CD has the lowest water solubility of the CD family. The inclusion in the
structure of 2-hydroxypropyl substituents improves solubility, and this explains why there
are some research papers on this macrocycle. Many authors seem to be attracted by
new nanostructures, and natural formulation methods are often overlooked, though we
should, in fact, seek to rediscover them. γ-CD, which allows the generation of higher-order
complexes (1:2) with respect to the guest, seems to be a particularly economically interesting
option due to the lower amount of cyclodextrin that is required.

Other macrocycles have recently been studied for weed control, but these are syn-
thetic materials. One example is cucurbit[n]urils (CBn), whose main structural motifs
are glycoluril units, and these can usually be obtained with 5–8 subunits. Most of the
studies on herbicide encapsulation concern physicochemical characterization, as in the
cases of ametryn [36], atrazine, and imazapyr [37,38], but their biological activity was not
described. Nevertheless, the encapsulation of natural phytotoxic aminophenoxazinones
and their sulfur mimics by complexation with CB7 has recently been reported, and these
displayed improved phytoactivity in the growth of wheat (Triticum aestivum L.) models
when compared with the free compounds [39].

The formulation process for using CDs as host materials is rather simple, and no
extra adjuvants or steps are needed, apart from mixing the correct concentrations once the
binding constant is known. They are also natural products, so this is a green approach for
formulations. Current biotechnological production makes their obtention cheap. Further-
more, the main units of CDs are glucose units, which have been demonstrated to enhance
the bioavailability of the drugs/herbicides encapsulated.
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Figure 3. Scheme of the procedure of encapsulation with cyclodextrins and herbicides. This example
includes the formation of PL01@βCD. Reprinted/adapted with permission from Ref. [36]. Copyright
2023, copyright owner Royal Society of Chemistry.

2.2. Clays

Clays have been extensively studied in an agronomic context, as they are porous
materials that are present in soil. There are several research papers on the adsorption of
herbicides onto soil clays and on how this reduces the efficacy of herbicides. In contrast,
the use of clays as carriers has not been widely investigated, but this has changed over the
last decade. The main advantage of this approach is the biocompatibility of the material
with the medium in which the crop and weeds grow. In most cases, this is a green approach
because the encapsulating or carrier material is already present as part of the soil.

The first applications of clays were reported in 1984, i.e., around ten years after the
first use of encapsulation in agrochemistry. Connick et al. employed a kaolin clay to
adsorb 2,6-dichlorobenzonitrile and studied its properties as a carrier to control common
purslane (Portulaca oleracea L.), broadleaf signalgrass (Brachiaria platyphylla (Munro ex C.Wright)
Nash), goosegrass (Eleusine indica Gaertn.), and large crabgrass (Digitaria sanguinalis (L.) Scop.)
in vitro [40]. These weeds occur in corn, cotton, soybean, rice, and wheat cultures, and they
cause yield losses of up to 20% [41–44]. Further research on clays for herbicide/weed con-
trol was not carried out until 1994, when Carr et al. developed an interesting method with
montmorillonite to support starch with encapsulated metolachlor and atrazine [45]. How-
ever, these formulations were not applied in the field or in vitro. Montmorillonite has also
been used to encapsulate chloridazon and metribuzin [46], glyphosate [47], paraquat [48,49],
and picloram [50], but these studies are limited to the characterization of the encapsulated
agrochemical compound in terms of release, stability, and water solubility. Generally, the
encapsulation method involves the preparation of the clay in the presence of the herbicide
to enhance the probabilities of capture in the clay pores, as observed in Figure 4.
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Figure 4. Encapsulation method of imazamox in a cationic nanoclay (Cloisite 10A). Partially repro-
duced from [51] with permission from Elsevier (license number: 5522980963504).

Mixtures of starch with different clays/organoclays, inspired by the work of Carr et al.,
have also been reported in recent years. These materials showed interesting properties. For
example, isoproturon encapsulated in sodium montmorillonite with carboxymethyl starch-
based micro-particles gave a reduction of around 90% in the herbicide released per irrigation
of the soil [52]. This enabled the long-term delivery of the herbicide and, thus, reduced
the pollution effect. In addition, a similar starch/montmorillonite nanocomposite with
encapsulated ametryne displayed an interesting photoprotective effect on the herbicide [53].
This prolonged the action time for weed control, thus avoiding an extra application of the
herbicide for days.

Chitosan has been employed as a matrix to be dispersed on the surface of clays. For
example, the herbicide imazamox has been encapsulated in a chitosan matrix and adsorbed
on sodium-enriched montmorillonite. This system showed good in vitro phytotoxicity for
standard target species, such as cauliflower (Brassica oleracea var. botrytis L.) [54]. Similar
results were obtained with imazamox encapsulated in cloisite clay and a modified quater-
nary alkylammonium montmorillonite clay in combating the invasive plant Brassica nigra
W.D.J.Koch [51,55].

In terms of nanomaterials mixed with clays, additives other than starch have been
employed, and these include phosphatidylcholine vesicles. In this case, atrazine and
alachor were encapsulated in vesicles and supported on sodium montmorillonite. The
resulting materials were tested in vitro against green foxtail (Setaria viridis (L.) P.Beauv.)
germination [56]. This weed affects late-seeded wheat (Triticum aestivum L.), sugarbeet
(Beta vulgaris L.), and maize (Zea mays L.) [57]. An experiment was designed to determine
the content of the herbicide and its efficacy. The authors prepared a soil column and
added the nanocomposite, which was then eluted with water. Green foxtail seeds were
distributed at different heights in the column, and germination was evaluated to assess the
release of the herbicide. A similar technique was employed for atrazine and imidacloprid
encapsulated in chitosan and supported on bentonite clay [58], as well as for sulfosulfuron
encapsulated in montmorillonite to target green foxtail [59]. This approach provided in-
teresting data about the release profile from the clay. Other cases of mixed nanomaterials
have been published, and these include encapsulation of the herbicide in micelles with
subsequent adsorption on clays. Research on alkylpolyglucosides, ethoxylated amines [60],
and octadecyltrimethylammonium bromide micelles (ODTMs) [61–64] has been published,
with sepiolite and sodium montmorillonite acting as carriers. Pendimethalin was encap-
sulated with ODTMs and montmorillonite, and it was shown to be effective in reducing
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the root penetration of tomato (Solanum lycopersicum L.) into greenhouse drippers, thus
enhancing the yield of this fruit.

Natural bioherbicides based on allelochemicals have been encapsulated in clays.
S-Carvone, a monoterpene that is usually isolated from spearmint (Mentha spicata L.) or
caraway (Carum carvi L.), was encapsulated in an organobentonite clay modified with
dimethyl, benzyl, and hydrogenated alkyl tallow quaternary ammonium salts [15]. Its
bioactivity was tested in vitro on standard target species (specifically, Lactuca sativa L.)
in terms of general phytotoxicity, and it was found that the formulation improved the
inhibition of shoots and germination when compared to the free compound. Similar results
were obtained by Galán-Pérez et al. when encapsulating scopoletin in montmorillonite
clays with the same modifications as those outlined for the previous organobentonite. This
formulation also showed phytotoxic effects on Lactuca sativa L. germination and root length,
and the results were better than those for free scopoletin [65].

More biological studies have been carried out on clay encapsulation than on macro-
cycle complexation, and there is, therefore, more knowledge on these systems for both
classical herbicides and allelochemicals. However, despite the ecofriendly nature of this
approach, field experiments have not been widely employed. The most remarkable results
were reported by Galán-Jiménez et al. on the encapsulation of the herbicide mesotrione in
sepiolite clays. These materials were applied post-emergence on a maize (Zea mays L.) crop
to target broadleaf weeds between maize rows. The authors performed the experiment on
an area of 0.216 ha and observed better results in terms of maize yield when compared to
the positive control mesotrione/atrazine. The formulation was applied by directly spraying
on the weeds [66]. The potential applications of this encapsulation technique remain unex-
ploited when compared with currently available systems. Novel encapsulation methods
could be interesting, but the biocompatibility of clay particles with the soil is a key factor in
terms of a green approach, and these carriers have shown interesting properties for slow
release and in-depth soil applications.

2.3. Matrices from Starch to Hybrids

Starch matrices were among the most relevant systems for encapsulation in the early
research into this approach in agriculture. The modification of starch with xanthates or al-
kali chlorides generates microporous organic materials that are useful for the encapsulation
of herbicides. The earliest system was developed with butylate and diazinon as bioactive
compounds in the fight against foxtail (Hordeum murinum L.), which infests barley crops [67].
Other herbicides, such as EPTC [68,69] and trifluralin [70–72], were later encapsulated.
Starch is readily available and cheap, and methods for chemical modification are well
established. It is noteworthy that the application of this method leads to an enhancement
in the persistence of the herbicide as the volatility is decreased. The increased interest in
starch has allowed more in-depth characterization, and authors have studied how different
levels of amylose/amylopectin in starch improve herbicide release in soil [73,74]. Bioassays
were carried out, especially via field testing, with trials on encapsulated trifluralin against
Echinochloa crus-galli L., which infests soybean (Glycine max L.) [75], and against foxtail
(Hordeum murinum L.) [76]. In the latter case, different ions were evaluated, and it was
found that calcium and borate were the best combination for achieving slow release.

There were reports about the environmental risks of trifluarin [77,78], and research
over the following decade focused more on other classical herbicides, e.g., atrazine [79–83]
and alachlor [82,84–86]. Strategies other than adduct formation were studied, e.g., twin-
screw extrusion. However, the use of these techniques to produce starch for herbicide encap-
sulation generates slurries that, despite showing promise in vitro, were ruled out in subse-
quent research papers due to their problematic soil distribution in field experiments [87–90].
Ion adducts with starch were produced by Fleming et al. [91] and Reed et al. [92], who
obtained interesting results through the encapsulation of alachlor/metribuzin with a
starch–borate matrix and EPTC/butylate with a starch–iron (FeCl3) matrix, respectively.
In the former case, the encapsulated system led to an enhancement in soybean crop
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yield and protection against large crabgrass (Digitaria sanguinalis (L.) Scop.), foxtail mil-
let (Setaria italica (L.) P.Beauv.), and longspine sandbur (Cenchrus longispinus (Hack.) Fer-
nald). The application of starch–iron inhibited several weeds, such as johnsongrass
(Sorghum halepense Pers.), giant foxtail (Setaria faberi R.A.W.Herrm.), and redroot pigweed
(Amaranthus retroflexus L.), due to the enhanced release of the herbicides. However, this
approach could cause high iron accumulation in the soil. Green approaches should take
precedence over the efficacy of the formulation, and fortunately, this is the current trend.

In recent years, interest in starch as an encapsulation system for agrochemicals has
decreased due to increased research on new materials, such as nanoparticles, new polymers,
or biomaterials that offer different physicochemical properties. In terms of applications,
starch materials are still very interesting due to their low cost, biocompatibility, and low soil
pollution. However, this material does suffer from some drawbacks, such as low thermal
stability and strong retention of the encapsulated bioactive compound. Researchers have,
therefore, studied the hybridization of starch to enhance these properties. One such example
is the use of starch-coated clay (montmorillonite) to encapsulate ametryn [93] and a mixed
starch–alginate matrix to encapsulate 2,4-D [94,95]. However, the biological efficacy of
these hybrids was not studied.

The first application of allelochemicals encapsulated in starch is an interesting ex-
ample. This system was developed by Alipour et al. in 2019 and involved the encapsu-
lation of rosemary essential oil (Rosmarinus officinalis L.) to control weeds such as ama-
ranth (Amaranthus retroflexus L.), common purslane (Portulaca oleracea L.), and knapweed
(Acroptilon repens (L.) DC.) [96]. The oil was trapped in the starch matrix, and this allowed
its application as a solid. The same strategy was employed with savory (Satureja hortensis L.)
essential oils, albeit encapsulated in a different type of matrix, namely, an Arabic gum ma-
trix and apple pectin. This approach also led to high growth inhibition in the pre-emergence
mode for amaranth weed [97]. Further studies on matrices in agriculture for weed con-
trol were carried out last year. Carboxymethyl chitosan [58,98], carboxymethyl [99], or
ethyl-cellulose [100,101] and lignin [102,103] are the most interesting materials for her-
bicide and bioherbicide encapsulation on the basis of properties such as their release,
delivery, and stability. These matrices were used in conjunction with metolachlor, 2,4-D,
and atrazine, amongst others, but biological results were not obtained in vitro or in the
field to demonstrate their efficacy.

Other matrices are currently under investigation, as they are readily available from
natural sources and they show appropriate physicochemical properties a priori. Examples
include β-CD nanosponges, which are obtained by crosslinking cyclodextrins [104], and
biochars, which are stable carbon-rich materials formed through the pyrolysis of biomass
under oxygen-limited conditions [105]. These materials were used to encapsulate the
post-emergence herbicide nicosulfuron and natural coumarins, respectively. Only in the
case of biochar@coumarin was phytotoxicity evaluated in Lactuca sativa L. models.

Similarly to the encapsulation method for clay systems, current formulation systems
with matrices apply an in situ method to keep the bioactive component inside. The
polymeric grid or structure is self-assembled while the herbicide is dispersed in the media.
This increases the encapsulation efficiency and conveniently reduces the number of steps
in the formulation. Figure 5 shows an example of the methodology for the encapsulation of
agrochemicals with new polymers based on polyethylene glycol.
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Figure 5. (A) Synthesis of block copolymers through the self-assembly of reaction elements.
(B) Schematic of one-step synthesis of herbicide-loaded flexible nanogels. Reprinted (adapted) with
permission from [106]. Copyright 2021 American Chemical Society.

Matrices, particularly starch, are still of great interest for field applications in weed
control. The possibility of combining matrices with new biomaterials that are under devel-
opment could improve properties and applications, especially in the case of allelochemicals.
However, many more biological studies on the new matrices are required and are a prereq-
uisite for future applications.

2.4. Micro- and Nanoparticles

The relevance of organic micro- and nanoparticles can be seen in Figure 6. These types
of particle are the major contributors in the representation of the most widely employed
methods for encapsulation. These contributions have undergone exponential growth in
the last 15 years, and this is much more than any other formulation method for weed
control. This increase is due to improvements in characterization techniques, such as
electron microscopy, and the boost in polymer engineering.

Figure 6. (Left) Most commonly studied herbicides for encapsulation. (Right) Most widely used
systems for encapsulating agrochemicals.

The first use of microparticles for weed control involved the encapsulation of chlor-
propham to target several grass weeds that infect tomatoes, safflowers, and onions [107].
It is interesting to note that this encapsulation was inspired by the volatilization issues
associated with this herbicide. Therefore, the intention of the authors was to improve the
persistence of the bioactive compound, as in the case of the early starch encapsulation
approach. This idea contrasts with the current approach of nano- and microparticle encap-
sulation of various kinds of herbicides. However, Petersen and Shea exploited this idea
for slow release and established the modern concepts of encapsulated herbicides for crop
protection. Polyurea polymers were used to encapsulate alachlor, and the efficacy was
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demonstrated on Triticum aestivum L., which was protected for a longer time than with free
alachlor [108].

Researchers subsequently employed different organic polymers, such as polylactic
acid [109–111], polyvinyl alcohol [112], chitosan [112–115], poly(hydroxyvalerate) [116,117],
and ethyl cellulose [118–122], for encapsulation in weed control. Norfluorazon, alachlor,
and 2,4-D are the most widely studied herbicides, but it is worth highlighting the study by
Chang et al., which is one of the first field studies on the bioactivity of organic nanopar-
ticles/microparticles without an encapsulated bioactive compound [109]. These authors
showed that the carriers alone can also stimulate the growth and yield of soybeans. This
finding established the interesting pillars of new encapsulation models that address the
dual effect of the phytotoxicity of the core and the synergistic properties of the shell.

The work by Quiñones et al. is worth highlighting, as it is the first report on allelo-
chemical encapsulation with this system [114]. Brassinosteroids, which are usually isolated
from Brassica napus L., were encapsulated in chitosan microparticles. The resulting mate-
rials were characterized, but they were not biologically tested. A similar approach was
employed by Cho et al. [123] with the encapsulation of a vitamin B1 derivate in lecithin
nanoparticles. However, the biological evaluation only showed good results against fungal
infection prevention on white radish (Raphanus sativus L.), and relevant activities against
weeds were not observed.

In the last ten years, nanoparticle encapsulation in agrochemistry has been
improved by using new polymers that had already been tested for biological purposes.
Poly(ε-caprolactone) [124–129] or alginate polymers [130–132] have attracted attention,
and, for example, they have been applied against invasive plants such as Brassica spp. It is
curious, however, that the increase in the number of publications about the encapsulation
of herbicides with these structures does not necessarily correlate with a higher number
of in vitro or field experiments [125,132–134]. Several papers were only concerned with
the characterization or physicochemical properties, and any enhancement in weed control
activity was only assumed. However, this trend changed dramatically around 2018 with
the new requirements for publications, and most of the papers published later contain
data from biological evaluations. As a consequence, more papers have been published
on the encapsulation of new commercially available herbicides. Polymers have been ex-
plored in greater detail, and they have been tested on a variety of weeds and invasive
plants. For example, poly(methylmethacrylate) has been employed to encapsulate haloxy-
fop and Gallant® in the fight against duckweed (Lemna minor L.) and greater duckweed
(Spirodela polyrhiza (L.) Schleid.), both of which are invasive aquatic plants that particularly
affect crops that have a high water demand [135–138]. The published papers describe
the better efficacy of the herbicide in the encapsulated version and a reduction in water
pollution. Several interesting mechanistic studies have been described in which the de-
livery processes in plant cells were examined to understand the mode of transport. One
such example is atrazine encapsulated by poly(ε-caprolactone) nanoparticles, which were
tested for the control of Brassica juncea (L.) Czern., which infests spring grain crops. The
authors discovered that the formulation allowed penetration into the leaf tissue, with the
formulation reaching the mesophyll through the stomata. This encapsulation improved the
efficacy of the herbicide more than ten-fold, and side effects due to the capsule were not
observed. In the same context, Falsini et al. explored the delivery mechanism of gibberellic
acid encapsulated in lignin nanoparticles. This represents the first application of natural
polymers for encapsulating a natural product, and the authors showed how the lignin
nanoparticles entered the root of the seedling through cortical cells to enhance the growth
of tomatoes (Solanum lycopersicum L.) and arugula (Eruca vesicaria (L.) Cav.) [139].

The trend in the application of allelochemicals has subsequently increased, but the
isolation and synthesis of natural products still limit industrial approaches. For this reason,
natural extracts are more commonly encapsulated with organic nanoparticles than with
pure compounds. For example, Synowiec et al. employed maltodextrin nanoparticles
to encapsulate caraway (Carum carvi L.) essential oil and obtained good results against
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Echinochloa crus-galli (L.) P.Beauv. and Galinsoga parviflora Cav. Weeds, which infect rice
and potato crops [140]. Taban et al. also encapsulated essential oil for agrochemical
application, but this was sourced from savory (Satureja hortensis L.) and encapsulated with
Arabic gum nanoparticles. This agro-nanomaterial showed high specificity in the control of
Amaranthus retroflexus L. in post-emergence treatment without harming tomato crops [141].
This new strategy facilitates the desired green approach in agriculture for the replacement
of classical herbicides, and in vitro and field experiments are currently supporting fully
organic bioherbicides from the core (allelochemical) to the shell (formulation).

2.5. Metal–Organic Systems

In the past, metal–organic systems for encapsulation were inspired by the use of
metalloids such as boron in starch–borate systems for butylate and S-ethyl dipropylth-
iocarbamate [142,143]. Currently, organometallic approaches have also been applied in
formulations, especially in recent years since the discovery of metal–organic frameworks
(MOFs). These materials are synthesized with zinc [144–146], iron [147–149], or gadolin-
ium [150] as metal cores, and they display interesting properties in terms of their stability,
delivery, and pH-responsiveness. Wang et al. tested 2,4-D encapsulated in Fe-MOFs in vitro
against Cichorium intybus L. and found improved growth inhibition in comparison with that
of the free herbicide. Similar phytotoxicity results were obtained with Zn-MOFs in which
disulfide herbicides were encapsulated in tests against Lolium rigidum Gaudin, Echinochloa
crus-galli (L.) P.Beauv., and Amaranthus blitum L. (syn.: Amaranthus viridis All.). These
weeds mainly affect rice, corn, and potato crops, and the aforementioned formulation
method led to a reduction in the root formation of the weeds that was twice as good as
that of commercial herbicides and 5–10 times better than that of the non-encapsulated
compound (Figure 7).

Figure 7. Scheme of encapsulation with o-disulfides and 2,4-D in metal–organic frameworks based
on Fe and Zn, respectively [144,146]. Those agromaterials displayed phytotoxicity against weeds and
protective effects on the crops.

Copper and silver are the metals that are most widely employed to generate encap-
sulation systems after those employed for MOFs. Copper can be found in agrochemical
applications in stabilizers with biological polymers such as alginate [151] and incorporated
into other nanoparticles to enhance their properties [152] or to enhance delivery to the
surface of 2D graphene materials [153]. In a copper alginate carrier, this system was em-
ployed to encapsulate sodium selenate, which improved cherry radish (Raphanus sativus L.)
yield and showed inhibitory effects on the fungus Fusarium oxysporum Schltdl [151]. Silver
nanoparticles have been used to support paraquat encapsulated in chitosan polymer, and
this nanomaterial was tested against the invasive plant Eichhornia crassipes (Mart.) Solms
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with enhanced results. The authors also tested its phytotoxicity in crops of interest, such as
black gram (Vigna mungo (L.) Hepper), but inhibitory effects were not observed [154].

Different organometallic nanomaterials, such as metallacrowns [155], sandwich nanohy-
brid complexes [156], and organosilica vesicles [157], have been considered for weed control
or other agrochemical purposes. In reality, the use of metal cores increases the cost of for-
mulations and increases the environmental risk of soil and water pollution. Researchers
have clarified the potential use of these systems and obtained good results even when using
trace metals that are essential for plant development in the nanomaterial design. However,
the lack of field experiments with these formulation methods is the best explanation for the
limited use of this approach.

2.6. New Trends

New encapsulation methods in medicinal chemistry have been exploited to develop
new formulations in agriculture in recent years, especially in the last decade. Applications
in agrochemistry require low-cost and large-scale production not only for bioactive com-
pounds, but also for carriers. However, it is important to note that a good formulation
method can decrease the concentration of the herbicide/bioherbicide required in the field.
Enhancements in water solubility, stability, or targeting could decrease the amount required
for weed control by 10–50 times according to current research papers [11].

One of the main encapsulation techniques reported in the scientific literature involves
the use of nanotubes. The first use of nanotubes for agrochemical purposes was in 2014
with the application of carbon nanotubes containing a polycitric acid surface shell. This
matrix was adsorbed onto the surface of the nanotubes, followed by encapsulation of zineb
and mancozeb, two pesticides that act against the fungus Alternaria alternate (Fr.) Keissl.
(Fr.), which infects most cereal plants [158]. However, some level of toxicity has been
associated with carbon nanotubes, and this approach does not seem to represent a green
method [159]. It was not until 2019 that the first application of nanotubes in phytotoxicity
studies was reported. In this case, nanotubes were formed with lithocholic acid, a natural
product that is produced by the human body, and these nanotubes were employed to
encapsulate disulfide herbicides [160] and natural sesquiterpene lactones (Figure 8) [16].
The authors demonstrated an enhancement in water solubility and in vitro efficacy against
Phalaris arundinacea L., Lolium perenne L., and Portulaca oleracea L. The bioactivity was higher
than for the free compounds and the positive control (Logran®) at higher concentrations
(1000–300 µM) of the allelochemicals (aguerin B, cynaropicrin, and grosheimin). More
specifically, the activity was mainly observed in the root formation of the weeds, and
this system was more active against dicotyledons [16]. The data obtained—as well as the
method itself—are of great interest for future field applications, particularly in the case of
the natural sesquiterpene lactones due to their encapsulation with nanotubes generated
by natural products. This would represent a green approach to weed control and food
enhancement. In terms of natural/biological encapsulation systems, other interesting
methods have been reported, and these include polymers generated by coumarin moieties
for the encapsulation of 2,4-D [161]. This method was tested in vitro in Cucurbita maxima
Duchesne models, and a boost in the activity was observed in comparison with the non-
encapsulated herbicide. In addition to the idea of ‘natural product carriers’, apple pectin
and Arabic gum have been employed [162]. There are other interesting ideas, such as the use
of plant virus nanoparticles to deliver herbicides. Chariou et al. employed the icosahedral
cowpea mosaic virus and the physalis mosaic virus to encapsulate nematocidal abamectin
inside a virus capsule [163]. The results showed better soil mobility when compared to
other encapsulation methods (e.g., silica nanoparticles) and a higher loading capacity.
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Figure 8. Nanotubes generated with lithocholic acid, a natural bile acid, to encapsulate Cynara
cardunculus sesquiterpene lactones. Adapted with permission from [16,160]. Copyright 2019 and
2022, American Chemical Society.

In the last few years, allelopathy has gained some momentum, and natural products
(allelochemicals) are seen as valid options for weed control. However, as outlined above,
a good formulation without structural modification is important for retaining the role of
a ‘natural herbicide’. Some of the new methods presented here are promising in terms of
formulation, but real applications in the field are still underexplored. It is our belief that the
possibilities offered by organic encapsulation systems will meet with success, especially
those employing other natural components as carriers for their formulation.

3. Conclusions

The most relevant advances in the encapsulation and formulation of herbicides and
allelochemicals for weed control have been presented. Several methods have been success-
fully applied since this method was established in 1973. Some of these approaches have
been extensively studied, e.g., that using starch, but they are now less widely studied due
to new advances in nanotechnology and polymers. These advances have allowed the emer-
gence of nanoparticle encapsulation, as well as the use of new materials, such as nanotubes
and metal–organic hybrids. However, there is a lack of biological studies on these materials,
and they must be analyzed in vitro and in the field before their large-scale application.
Most of the knowledge on the encapsulating materials presented here has been applied to
classical herbicides, with enhanced results being obtained for their physicochemical and
biological properties. Nevertheless, in the future, it is expected that this technique will be
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applied to natural products/allelochemicals to achieve green approaches in agriculture.
In the last five years, advances have been made in this respect, but challenges remain in
terms of formulation and before industrial applications are developed. The authors suggest
that the methods presented here indicate that applications using organic nanoparticles are
very promising due to their biodegradability, ecological materials, slow-release properties,
and greater potential for surface functionalization. In general, nanoparticles have three
dimensions at the nanoscale, which offers more options for bioavailability compared to
microstructures or 2D nanomaterials. Recognition, assimilation, and transport by and
through plant cells are easier for 3D nanomaterials.
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