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Abstract: The maize field environment is complex. Weeds and maize have similar colors and
may overlap, and lighting and weather conditions vary. Thus, many methods for the automated
differentiation of maize and weeds achieve poor segmentation or cannot be used in real time. In
this paper, a weed recognition model based on improved Swin-Unet is proposed. The model first
performs semantic segmentation of maize seedlings and uses the resulting mask to identify weeds.
U-Net acts as the semantic segmentation framework, and a Swin transformer module is introduced
to improve performance. DropBlock regularization, which randomly hides some blocks in crop
feature maps, is applied to enhance the generalization ability of the model. Finally, weed areas are
identified and segmented with the aid of an improved morphological processing algorithm. The
DeepLabv3+, PSANet, Mask R-CNN, original Swin-Unet, and proposed models are trained on a
dataset of maize seedling images. The proposed Swin-Unet model outperforms the others, achieving
a mean intersection over union of 92.75%, mean pixel accuracy of 95.57%, and inference speed of
15.1 FPS. Our model could be used for accurate, real-time segmentation of crops and weeds and as a
reference for the development of intelligent agricultural equipment.

Keywords: crop; target recognition; target segmentation; semantic segmentation; weed recognition

1. Introduction

Weeds can greatly affect the yield and quality of crops [1]. Weeds not only compete
with crops for nutrients and delay seedling development, but they also attract pests and
diseases; hence, weeding is a necessary task in the field management of seedling crops [2,3].
At present, chemical weed control, which is easy and efficient, is typically used in maize
fields [4], but the irregular use of herbicides damages soil, crops, and human health [5–7].
In recent years, precision agriculture methods have been proposed, leading numerous
scholars to investigate automatic and accurate weed identification systems, such as those
based on machine vision and images [8,9].

Conventional machine vision methods detect features such as the color, shape, tex-
ture, and spatial geometry of a target; the recognition and classification of the target are
performed with methods including feature fusion, wavelet transforms, and support vector
machines (SVMs) [10–12]. Although these recognition methods are simple to implement,
they may be ineffective for some crops with different sizes and growth conditions, and
they cannot analyze nonstructural environmental factors, such as dead grass and rocks.
Hence, recognition models that rely on target-specific features have poor robustness and
low accuracy.

With the recent development of deep learning methods, convolutional neural net-
works (CNNs) have been widely and successfully applied for machine vision tasks [13].
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Jiang et al. [14] established graph CNNs for the classification and identification of multiple
crops and their associated weeds. Zhou et al. [15] used Moderate Resolution Imaging
Spectroradiometer (commonly abbreviated as MODIS) satellite data to construct a CNN
model for the complex task of predicting winter wheat yields. Peng et al. [16] trained a
deep CNN on a weed dataset and used stochastic gradient descent (SGD) to optimize the
model; the resulting VGG16-SGD network had the highest recognition accuracy of the
tested methods, with an average F1 score of 0.977. Meng et al. [17] improved a single-shot
multibox detector (SSD) by constructing a lightweight antecedent base network, and also
fused the information from different feature layers to improve the model’s recognition
accuracy while reducing its number of parameters. Wang et al. [18] proposed a maize field
weed identification method based on Swin transformer. They improved the backbone of
the model and adjusted network parameters to generate four model variants. By com-
bining a morphological processing algorithm, they achieved accurate identification and
segmentation of crops and weeds.

These studies have revealed that, in contrast to conventional image processing meth-
ods, deep learning models need not rely on specific features for weed recognition; moreover,
they have higher accuracy. However, deep learning methods have various problems. For
example, CNNs often extract irrelevant features from pixels depicting dead grass, rocks,
and other background objects. Moreover, feature layers may have no interaction mecha-
nism, rendering the extraction of board contextual information challenging for a model.
These factors limit the recognition accuracy and inference speed of CNN models.

This paper presents a recognition method based on an enhanced Swin-Unet network.
During object recognition, this model extracts more targeted information, reducing the
interference of redundant information on inference speed. The proposed model in this
paper captures more global visual information through its self-attention mechanism during
feature extraction. It also enables interaction between the extracted features. In addition,
the method used in this paper only requires annotations for crop targets, greatly reducing
the difficulty of obtaining samples.

2. Data Processing
2.1. Data Acquisition

In this study, images of maize seedlings at the three-to-five-leaf stage were collected
from actual plots that had not been weeded. The images were captured in a maize test field
in Zibo, Shandong Province, China, using an iPhone XS with a maximum resolution of
1920 × 1080 pixels. The images were acquired parallel to the ground at a height of 60 cm.
To ensure that the dataset was generalizable, images were captured at three times of day—
morning (07:00–09:00), late morning (10:00–12:00), and evening (16:00–18:00)—to reflect
the varied lighting of an actual crop field. To minimize image redundancy and maximize
model stability, the images were screened; 1000 images depicting complex situations, such
as target overlap and various lighting and growth environments, were selected.

The resolution of the collected images was first adjusted to 512 × 512 pixels. The
labelme (v5.2.1) software was then used to manually label the maize seedlings in the images
with the polygon labeling method by selecting and connecting a dense group of points on
a target outline in an image to form a closed polygon bounding the seedlings (Figure 1b).
The pixels within the closed polygon were labeled as maize, and the remaining pixels
were labeled as background, as shown in Figure 1c. Only the maize seedlings needed
to be manually labeled before image processing, limiting the labor required for sample
acquisition and labeling.

The labeled images were used to produce a dataset in the PASCAL Visual Object
Classes 2007 format and divided into training, test, and validation sets at a 7:2:1 ratio. The
model was trained on the training set, while the test set was used to evaluate the general-
ization ability of the model after training, and the validation was used for hyperparameter
tuning during training.
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Figure 1. Image labeling process. (a) Original image, (b) annotated image, (c) generated label.

2.2. Data Enhancement

The collected dataset had few images and therefore was likely to produce an overfitted
model. Hence, data augmentation was used to expand the training set by a factor of
5 through random adjustment of the saturation [19], brightness, contrast, orientation, and
scale (scaling factor of 1–1.5) of the images. Such a process can improve model training,
resulting in superior semantic segmentation accuracy.

3. Model Construction
3.1. Swin-Unet Semantic Segmentation Model

To accurately identify the crop seedlings and their morphology in a maize field, the
Swin-Unet maize seedling semantic segmentation model was developed. The network
backbone is that of U-Net, and Swin transformer blocks (Figure 2) are used for feature
extraction and target segmentation [20,21]. The Swin-Unet model comprises four main
components: an encoder, a decoder, a bottleneck, and skip connections. The key unit of the
Swin-Unet network is the Swin transformer module. The encoder mainly performs patch
partition, linear embedding, and patch merging functions with Swin transformer blocks.
The encoder performs layer-by-layer downsampling on an input image to obtain feature
information at different scales, and then gradually compresses and fuses the extracted
feature information to obtain a high-level semantic feature representation. The decoder
mainly performs patch expanding and linear projection functions with a Swin transformer
block. The decoder’s structure mirrors that of the encoder; using deconvolution, it gradually
reduces the feature information extracted by the encoder and fuses shallow and deep
feature information to increase the accuracy of the segmentation results. The bottleneck
comprises two Swin transformer blocks, which reduce the dimensionality of the feature
maps extracted by the encoder, reducing the required computation. The skip connection
layer fuses the high-level feature maps from the encoder with the corresponding low-level
feature maps from the decoder by using convolutional layers. This process improves the
information flow and enables the use of feature information at various levels, effectively
preventing gradient vanishing while improving semantic segmentation.
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Figure 2. Swin-Unet network structure.

3.2. Swin Transformer Block

The Swin transformer block is the basic unit of the Swin-Unet network and executes
window multi-head self-attention (W-MSA), multi-head self-attention based on a shift
window (SW-MSA), multi-layer perceptron with a GELU nonlinear activation function
(MLP), residual connectivity, and layer normalization functions [22]. The structure of the
Swin transformer block is shown in Figure 3. The formula of the block can be expressed as
follows [23]:

Ẑl = W −MSA(LN(Zl−1)) + Zl−1 (1)

Zl = MLP(LN(Ẑl)) + Ẑl (2)

Ẑl+1 = SW −MAS(LN(Zl)) + Zl (3)

Zl+1 = MLP(LN(Ẑl+1)) + Ẑl+1 (4)

where Ẑl represents the features output by the (S) W-MSA module, and Zl represents the
features output by the MLP module; l represents the number of blocks.
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Figure 3. Structure of the Swin transformer block.

The Swin transformer block extracts high-dimensional features from the input im-
age and generates feature maps of various scales. In the encoder of the proposed model,
multiple Swin transformer blocks are stacked to capture more comprehensive and global
semantic visual information. The block uses shift window division and a unidirectional
cyclic mechanism to divide the acquired feature maps of various scales into disjoint win-
dows, each with similar semantic features. The features within each window are weighted
by W-MSA, and the attention weights are adaptively adjusted in accordance with bootstrap
features selection. The features within each window are then weighted and scaled in
accordance with the adjusted weights. SW-MSA performs information transfer among the
sub-windows in combination with a patch-merging operation to achieve global attention.
This process obtains a more comprehensive feature expression as follows:

Attention(Q, K, V) = SoftMax(
QKT
√

d
+ B)V (5)

where Q denotes the query vector, K denotes the key vector, V denotes the value vector, d
denotes the dimensionality of the key–value vector (i.e., the hyperparameter), and B denotes
the relative position bias. Attention is calculated independently for each sub-window.

3.3. DropBlock Regularization

Dropout regularization is used in the original Swin-Unet network. This regularization
approach reduces the risk of model overfitting by randomly hiding neurons in the fully
connected layer [24]. However, dropout is ineffective in models with convolutional layers,
because each feature element in the feature map has a corresponding perceptual field. The
size of the extracted feature maps decreases as the size of perceptual fields and number
of network layers increase, eventually resulting in the model being unable to learn the
corresponding semantic information from the adjacent elements. This limits generalization
ability and causes data explosion.

To avoid these problems, the DropBlock regularization method is used in our pro-
posed model. DropBlock interferes with the learning of semantic information between
neighboring blocks by randomly hiding the feature blocks, forcing the network to learn
to use information from other feature blocks. Moreover, the remaining feature blocks
are normalized to achieve regularization, reducing overfitting while improving model
performance [25]. Figure 4 presents an example of this regularization process. Figure 4a
shows the input image, while Figure 4b demonstrates the result of Dropout regularization.
The green area represents the activated units of semantic information in the input image,
and Dropout regularization randomly masks this semantic information. However, the
convolutional layers exhibit spatial correlation among features, and the random Dropout
mechanism cannot effectively mask the semantic information between neighboring blocks,
thereby posing a risk of overfitting in the network. Figure 4c illustrates the result of Drop-
Block regularization, which randomly masks contiguous blocks in the feature map. This
approach effectively prevents the flow of semantic information between adjacent blocks in
the network, further reducing the risk of overfitting.
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3.4. Weed Identification Model Based on Improved Swin-Unet

The collected images were 512× 512 pixel, three-channel red, green, blue (RGB) images.
We applied our network to these images using the process described as follows: first, the
patch partition function segments an input image into nonoverlapping 4 × 4 image blocks;
including the three channels, each image block contains 4× 4× 3 = 48 data points. The size
of the segmentation blocks is selected on the basis of the desired size of the feature map to be
output by each stage of the network. Small segmentation blocks result in segmented feature
maps with low dimensionality and carrying capacity for local information. Moreover, more
segmentation blocks increase the computational complexity of the model. By contrast, large
segmentation blocks result in a low-resolution output feature map, which typically results
in low recognition accuracy.
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Stage 1 of the model comprises the linear embedding function and a Swin transformer
block. The linear embedding function maps the original feature dimension of the segmented
image block to 128, and the Swin transformer block then performs feature extraction on the
image. This process does not change the resolution or dimensions of the output feature
map. Both stages 2 and 3 of the model perform the patch-merging function and contain
a Swin transformer block. Patch merging halves the resolution of the feature map and
increases the feature dimensionality, forming a hierarchical feature representation through
a downsampling while reducing the required computations during learning. The process
is illustrated in Figure 5 for an example of a single-channel image.

The image is then processed through the bottleneck to a size of 32 × 32 pixels, with a
feature dimension of 512. The image is then inputted into the decoder, which has a layout
opposite that of the encoder. Patch expansion is applied in which the original feature
map is reconstructed from the inputted low-resolution feature map by an upsampling
operation, which increases the size of the feature map and reduces the feature dimension.
The skip connection mechanism in the U-Net network then concatenates the image features
extracted by the encoder layer corresponding to the current decoder layer to mitigate the
loss of spatial information caused by the downsampling operation. After patch expanding,
the Swin transformer block then enhances the feature map representation by applying its
unique self-attention mechanism, enabling the network to effectively capture the semantic
information and spatial structure of the image.

The image is then upsampled four times through patch expansion, ultimately yielding
a 512 × 512 feature map with a feature dimension of 48. It is then processed by a linear
projection function to complete pixel classification and output the category mask, which
is used to produce the segmentation map. This process enables pixel-level inference on a
target image, resulting in fine-grained segmentation and accurate target recognition. The
related details of the image processing pipeline for this model are illustrated in Figure 2.
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Corn seedlings and weeds have similar colors in images; hence, distinguishing them
is difficult. However, extracting all plant regions and stripping the background from
the image is easier. This paper proposes a method in which a semantic segmentation
model is combined with simple morphological processing to achieve rapid segmentation
of foreground weeds. An overview of the method is visualized in Figure 6; the steps are
as follows: (1) Original RGB images are segmented using the ExG super green feature
algorithm (Excess Green). A binarized image is then obtained by using the super green
feature component of the image as the gray value, and Otsu’s algorithm (the maximum
interclass variance algorithm) is applied to extract a mask of the plant region. (2) The crop
area is deleted from the plant region mask. The crop mask is subjected to a mild dilation
operation to clarify its boundaries, and the values of the pixels in the maize region of
the segmented mask are set to 0 such that only the weed region is included in the mask.
(3) Then, the weed mask is further optimized through a dilation operation to fill small
holes, followed by subsequent etching to increase the adaptability and smoothness of the
mask boundaries. Finally, the image is subjected to a closing operation to further eliminate
fine voids and noise within the mask area and to optimize the morphology of the mask
area. (4) Finally, a weed mask segmentation map is obtained.
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4. Weed Recognition Test
4.1. Test Environment

Model testing and training were performed on an Ubuntu 20.04 system with the Py-
torch1.6 deep learning framework, CUDA11.6 parallel computing architecture, cuDNN8.4.0
deep neural network GPU acceleration library, Python 3.9 programming language, and
OpenCV4.5.1 vision library. The system had 64 GB of memory, an Intel Core i9-10900KF
CPU running at 3.7 GHz with 20 threads, and an NVIDIA GeForce RTX3090 produced



Agronomy 2023, 13, 1846 9 of 15

using the 8-nm production process and with 24 GB of memory and a core frequency of
1695–1725 MHz.

4.2. Parameter Settings

The model was trained in an end-to-end manner; the input data were raw RGB
images, and the outputs were the corresponding segmentation masks. The model was
trained through transfer learning; that is, the network was first pretrained on the ImageNet
large plant dataset to obtain the initial weights [26], and then tuned on the target dataset.
ImageNet is a large dataset that is effective for transfer learning [27]. The pretrained
model was then trained on the target dataset to fine-tune these parameters for the target
recognition task. Such transfer learning was intended to improve the generalizability of
the model.

To maximize the learning efficiency possible with the hardware capabilities, the follow-
ing hyperparameters were selected: batch size of 32,110 epochs, and 11,000 total iterations.
For the learning rate, a warm-up strategy was used; that is, the learning rate was initially
low but increased with the number of iterations. Such an approach accelerates convergence
during training. The AdamW [28] optimizer, linear learning rate decay, and linear warm-up
for 880 iterations were used. The learning rate lr for each epoch can be calculated as follows:

lr = lr0 ×
[

1−
(

iter
itermax

)p]
(6)

where lr (lr ≥ 0) is the learning rate for iteration number iter, and lr0 is the initial learning
rate. iter is the number of current iterations, itermax is the decay period, and P is the learning
rate power. In this paper, lr0 = 6 × 10−5, and P = 1. Moreover, weight decay was set to 0.01,
and momentum was set to 0.9.

The loss considered was the cross-entropy loss, which is the distance between the
predicted category probability distribution and the true label probability distribution and
is calculated as follows:

Loss =
1
N

N

∑
i=1

K

∑
c=1

g(αi) log(βic) (7)

where N denotes the number of samples (i.e., pixels), K is the number of categories, i
indicates the current sample, c indicates the current category, αi is the true label category of
sample I, g is the probability distribution function (equal to 1 if αi = c and 0 otherwise), and
βic is the probability that sample i belongs to category c as predicted by a sigmoid activation
function. During training, the performance of the model is evaluated on the basis of the
loss function’s value, and the parameters are fine-tuned by back-propagation to reduce the
distance between the predicted category and the true label to increase model accuracy.

4.3. Model Evaluation Metrics

In this study, mean intersection over union (mIoU), mean pixel accuracy (mPA), and
inference speed were used as metrics for evaluating model performance.

5. Results and Analysis
5.1. Training Error

The Swin-Unet model was trained on the training dataset for 11,000 iterations; the loss
function is presented in Figure 7. As the number of iterations increased, the loss gradually
decreased, and the network converged with a final average loss value of approximately
1.2 × 10−2, indicating that Swin-Unet had been trained successfully.

5.2. Model Comparison

Mask R-CNN, DeepLabv3+, PSANet, the original Swin-Unet, and the improved model
presented in this paper were trained, validated, and tested on the collected dataset, and the
mIoU, mPA, and inference speed of the models were compared. Each model was trained
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three times with initial parameter weights generated from random seeds, and their results
on the validation dataset were averaged. Moreover, the performance of each model during
training was evaluated after every 1100 iterations. The variations in mIoU and mPA with
the number of training iterations are presented in Figure 8.
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Figure 8 reveals that the mIoU of each network model tended to increase as training
progressed; hence, the generalizability of these models is proportional to the number of
iterations. The mIoU curves and mPA curves of Swin-Unet, DeepLabv3+, and PSANet
have large fluctuations, indicating that these networks achieved poor segmentation and
generalization ability after training. In the figure, the mIoU values of Mask R-CNN and
the original Swin-Unet stabilize after 5000 iterations, whereas that of the network model
proposed model increases linearly for approximately 7000 iterations before stabilizing
at 93.71%, substantially higher than the mIoU of other models. After approximately
6000 iterations, the mPA of the proposed model stabilizes at 96.52% and is greater than the
final value for Mask R-CNN of 96.15%, and compared to reference [29], there was a certain
improvement in both the accuracy of identification and segmentation. Thus, the proposed
model achieved the highest mIoU and mPA of all models tested and therefore the optimal
performance. The trained models were tested on the test set; the results are listed in Table 1.

Table 1. Model performance on test set.

Networks mIoU (%) mPA (%) Segmentation Rate (FPS)

DeepLabv3+ 90.48 92.47 14.9
PSANet 91.67 94.09 14.3

Mask R-CNN 91.97 95.06 15.3
Swin-Unet 92.03 95.27 15.0

Model in this paper 92.75 95.57 15.1

Table 1 reveals that the mIoU of the proposed model (92.75%) was 2.27%, 1.08%, 0.78%,
and 0.72% greater than those of the DeepLabv3+, PSANet, Mask R-CNN, and original
Swin-Unet models, respectively (mean improvement of 1.21%). Similarly, the mPA of the
proposed model (95.57%) was 3.10%, 1.48%, 0.51%, and 0.30% greater than those of the
DeepLabv3+, PSANet, Mask R-CNN, and original Swin-Unet models, respectively (mean
improvement of 1.35%). All models exhibited similar inference speed; the average inference
speed was 14.92 FPS. The proposed model achieved both superior segmentation accuracy
and inference speed to those achieved by the other models, and compared to reference [30],
there was a certain improvement in the inference speed. Thus, the model can be used for
detection of weeds and accurate weeding in the unstructured environments of maize fields.

5.3. Maize Identification and Segmentation

To test the recognition accuracy and segmentation of the proposed model, each model
first performed inference on the test set, and the obtained maize masks were overlaid with
the original RGB images for quantitative evaluation of recognition and segmentation ability.
Some example images are displayed in Figure 9.

Figure 9a–c presents randomly selected original images and the corresponding seg-
mentations by the proposed model DeepLabv3+. The images reveal that the proposed
model accurately identified the maize seedling; the segmentation error was limited to a
few pixels near the boundary. By contrast, DeepLabv3+ tended to mis-segment the ends
of leaves and perform poorly in areas in which leaves and weeds overlapped. The results
suggest that the model proposed can accurately identify and segment a target crop in a
complex, unstructured environment more effectively than competing models.

A weed segmentation map based on the inference of proposed improved Swin-Unet
network was generated. The results are presented in Figure 10.

The images in Figure 10 reveal that the proposed algorithm and model can recognize
and segment areas containing weeds. In each of these randomly selected test-set images,
the weed area is segmented completely with the target crop preserved. The maize and weed
areas are independent, retain their respective morphological characteristics, and do not
overlap. Hence, our model can be used to identify weeds in the unstructured environments
of maize fields, despite crop overlap. The proposed model is simple and efficient and can
be implemented in real time to provide reliable visual information for weeding robots.
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6. Conclusions

To improve the accuracy of models for recognizing weeds in the complex environment
of maize fields, this study developed an improved version of the Swin-Unet model. The
model selectively extracts target features to reduce interference from redundant information
on the inference speed. The proposed model in this paper can capture more global visual
information and achieve an interaction between information through an SW-MSA mecha-
nism. Additionally, this model focuses solely on the identification of crop targets without
the requirement of identifying and classifying common companion weeds in the field. This
greatly reduces the difficulty of sample collection compared to the literature [31,32]. The
model was able to effectively recognize and segment target crops in a complex environment.

(1) The proposed model achieved up to 96.52% mPA and 93.71% mIoU, superior to
those achieved by the DeepLabv3+, PSANet, Mask R-CNN, and original Swin-Unet
models, indicating its effectiveness for target recognition and segmentation. The
crop masks obtained through segmentation are used to obtain a weed mask through
a morphological processing algorithm. Because the weed region can be obtained
directly from the maize mask, only the maize seedlings must be labeled in the training
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set, greatly reducing the labor required. The method can efficiently and accurately
identify and segment maize and weeds in a complex maize field environments, even
where crops and weeds in some overlap.

(2) The proposed model exhibited a higher inference speed than the original Swin-
Unet, DeepLabv3+, and PSANet models; the processing time for each frame was
5.28 × 10−2 s. Hence, the proposed method is sufficiently fast for real-time data
processing in applications such as vision for a weeding robot.

(3) The proposed model in this paper, compared to similar studies, shows a slight im-
provement but lacks significant advantages. In future research, we will further en-
hance the model structure to improve the practicality of the method and develop a
more efficient and accurate weed identification approach.
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