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Abstract: Hole sowing is a new and efficient cultivation method with few studies. This study
investigated the effects of different sowing densities and nitrogen topdressing at the jointing stage on
dry matter, quality, and yield under wheat hole sowing to provide a theoretical basis for integrating
wheat fertilizer and density-supporting technology. In this study, a two-factor split-plot design was
used. The sowing density was the main plot, and four levels were set: D1, D2, D3, and D4 (238, 327,
386, and 386 suitable seeds·m−2). The four sowing levels were sown according to 8 grains/hole,
11 grains/hole, 13 grains/hole, and 16 grains/hole, respectively, with a row spacing of 25 cm and
a hole spacing of 13.5 cm; the amount of nitrogen fertilizer applied at the jointing stage was the
sub-area, with four levels: N1, N2, N3, and N4 (0, 60, 120, and 180 kg·ha−1). After two years of
experimental research, the following main conclusions are drawn: the use of high sowing density
and nitrogen topdressing is helpful to improve the dry matter quality of wheat spikes at the maturing
stage; the sowing density had significant or highly significant effects on protein content, starch
content, and sedimentation value. The yield from 2018–2019 reached a maximum of 8448.67 kg·ha−1

under D4N4 treatment, and the yield from 2019–2020 reached a maximum of 10,136.40 kg·ha−1 under
D4N3 treatment. Therefore, the combination of 225 kg·ha−1 sowing density and 120–180 kg·ha−1

nitrogen topdressing at the jointing stage can be used in field production, which can help improve
wheat production potential. Similarly, understanding the interaction between wheat hole sowing
and different sowing densities and nitrogen topdressing amounts provides a practical reference for
high-yield wheat cultivation techniques.

Keywords: wheat; Triticum aestivum L.; hole sowing; cultivation techniques; yield

1. Introduction

With the growth of the population, food security has become a severe problem for the
world. In 2015, among the world’s 7.3 billion people, an estimated 654 million people were
malnourished [1–3]. By 2019, 864 million people were considered malnourished. In order
to meet global food demand, food production needs to increase by 70~100% by 2050 [4–6].
Wheat is an important food source for humans worldwide, with 20% of the world’s wheat
consumption by 50% of the world’s poorest people [7–10]. More than 50% of the world’s
wheat comes from developing countries, and more land is planted for wheat than for any
other crop in the world [11,12].

In wheat cultivation, sowing density and nitrogen fertilizer are critical factors affecting
wheat population structure and yield formation [13–16]. Suitable sowing density can make
wheat make full use of water, nutrients, and light energy [17,18], alleviate the competition
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between populations and individuals, and help to construct a reasonable population
structure [19,20]. Rational use of nitrogen fertilizer can promote the healthy growth of
wheat, improve grain quality, increase yield, and achieve sustainable development of
agriculture [15,21,22]. Many experts and scholars have carried out much research on the
level of nitrogen supply in crops. If the application of chemical fertilizer is stopped, it
will half the total global crop yield [23–25]. In addition, the unreasonable use of nitrogen
fertilizer will also lead to environmental problems such as groundwater pollution [26],
greenhouse effect, soil acidification [27], and so on. Therefore, the rational use of nitrogen
fertilizer while achieving high yield and quality of wheat is significant for wheat production.

As a new cultivation technology, wheat hole sowing is an efficient agricultural tech-
nology integrating rain, drought resistance, and efficient utilization of light and heat
resources [28,29]. Due to the characteristics of wheat hole sowing cultivation, each hole
has a noticeable border effect. The outer wheat of each hole has more solar energy, better
ventilation, and less nutrient competition than the inner wheat [30]. Therefore, in the
actual field production, the boundary advantage of hole sowing itself helps to improve
productivity and bring more economic benefits and value to people.

In this study, from 2018 to 2020, through wheat cultivation with the hole sowing
method, its border effect was measured. Different amounts of nitrogen fertilizer were
applied according to different sowing densities and jointing stages to explore the effects
of different sowing densities and nitrogen topdressing amounts and their interaction on
the dry matter, quality, and yield of wheat. We assumed that different sowing density,
nitrogen topdressing, and their interaction would have different effects on dry matter of
wheat spikes, grain quality, and yield. The objectives of this study were to: (1) explore the
effects of different sowing density and nitrogen topdressing on dry matter of wheat spikes;
(2) evaluate the effects of different sowing density and nitrogen topdressing on grain
quality; (3) evaluate the effects of different sowing density and nitrogen topdressing on
yield and components. This study’s results will help provide new ideas and references for
future research on wheat hole sowing to help scholars quickly lock in relevant knowledge
and insights in the field.

2. Materials and Methods
2.1. Test Designs

This experiment was conducted at the Doukou Crop Experimental Demonstration
Station of Northwest A & F University from 2018 to 2020. The experimental demonstration
station is located in Xinglong Village, Yunyang Town, Jingyang County, Xianyang City,
Shaanxi Province, China, 108◦52′ E, 34◦37′ N. The precipitation during the two-year growth
period of wheat was 84.57 mm and 122.68 mm, and the average temperature was 9.53 ◦C
and 10.65 ◦C, respectively (Figures 1 and 2). The soil in the test field was loam. Before
sowing, 0–40 cm soil samples were randomly drilled at 5 points. After air drying, grinding,
and screening, the soil’s basic nutrient content was determined: organic matter content
(potassium dichromate method) 18.02 g·kg−1, total nitrogen content (inorganic and organic,
semi-micromethod of Kay’s fixed nitrogen) 1.39 g·kg−1, available nitrogen content (nitric
acid powder test method) 86.8 mg·kg−1, available phosphorus content (ultraviolet spec-
trophotometry colorimetry) 16.83 mg·kg−1, available potassium content (flare photometer)
232.07 mg·kg−1, pH value 7.93, with medium fertility.

The ‘XN805’ wheat variety was selected as the experimental material. The variety is a
semi-winter mid-early-maturity variety, with semi-stowing seedlings, dark green leaves,
medium tillering ability, high panicle rate, medium winter cold resistance, medium late
spring cold resistance, and average plant height of 66.9 cm and of a compact plant type. The
main area was sowing density, and four sowing density levels were set: D1 (238 suitable
seeds·m−2), D2 (327 suitable seeds·m−2), D3 (386 suitable seeds·m−2), D4 (475 suitable
seeds·m−2). The sub-area was the amount of nitrogen topdressing at the jointing stage
(P, K fixed), and four nitrogen fertilizer application levels were set. The nitrogen fertilizer
(nitrogen content 46.4%) and the base fertilizer were wheat special slow-release fertilizer
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(N: P2O5: K2O mass fraction 24: 15: 5) 750 kg·ha−1, and the base fertilizer was applied once
during rotary tillage. Nitrogen fertilizer without basal fertilizer was applied at the jointing
stage: N1 (no urea), N2 (urea 60 kg·ha−1), N3 (urea 120 kg·ha−1), N4 (urea 180 kg·ha−1).
The sowing method was hole sowing. After calculating the four sowing density levels, the
sowing was carried out according to 8 grains/hole, 11 grains/hole, 13 grains/hole, and
16 grains/hole, respectively. The row spacing was 25 cm and the hole spacing was 13.5 cm.
Each plot was 3.5 m × 2 m = 7 m2. Sowing was carried out manually on 5 October 2018
and 1 October 2019, weeding and pest control were carried out at different crop growth
stages throughout the wheat growing season, and other management measures were taken
to ensure consistency with local high-yielding farmland. During the experiment, the wheat
was sown for 10 days, in mid-November, March, and May of the second year, and irrigated
according to the actual situation in the field. The two-year processing was consistent and it
was harvested on 4 June 2019 and 1 June 2020.
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2.2. Determination Items and Methods

Dry matter of wheat spikes: 20 plants with uniform growth were randomly selected in
each hole at the booting stage, heading stage, flowering stage, filling stage, and maturing
stage. On the same day as harvesting, the wheat spikes were baked in an oven at 105 ◦C
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for 30 min, then the temperature was reduced to 60–80 ◦C, and the drying was continued
for about 8 h so that it was quickly dried and then removed. Finally, the sample continued
to dry for 4 h, with weighing again until the weight was constant, then the final weight
was measured.

Wheat grain quality: After two months of physiological after-ripening, the protein
content, stability time, starch content, and sedimentation value of wheat grain samples
after harvest were measured by the Danish FOSS Infratec TM 1241 (Manufactured by FOSS
China Co., Ltd., Beijing, China) near-infrared grain quality analyzer.

Yield composition statistics: After the wheat matured, the effective panicles in the 1 m
double-row sample section of each plot were counted. After harvest, the samples were
sun-dried to remove impurities and a few plates of 1000 grains were weighed, which was
repeated 3 times and the average value was taken for the 1000-grain weight. In each plot,
20 plants with uniform growth were randomly selected, and the grains per spike were
counted to obtain the average value. Due to the small area of the plot, the hole sowing
had an obvious border effect. In order to eliminate the influence of the border effect on the
yield, 1 m2 wheat was randomly taken from each plot in the middle and threshed with a
thresher, dried in the sun, and weighed with an electronic balance to calculate the grain
yield (kg·ha−1).

2.3. Statistical Analysis of Data

Microsoft Office Excel 2021 and SPSS 26.0 were used for statistical analysis. RStudio
was used for linear regression analysis, correlation analysis, and figure drawing. The
significance level (p < 0.05) was used to judge the average difference by the minimum
significant difference test.

3. Results
3.1. Effects of Different Sowing Density and Nitrogen Topdressing on Dry Matter of Wheat Spikes

The dry matter of wheat spikes at different stages (booting stage, heading stage,
flowering stage, filling stage, and maturing stage) was measured and analyzed (Table 1).
It can be seen from Table 1 that the effect of sowing density on the dry matter under
different treatments designed in this experiment was very significant in the heading stage,
flowering stage, filling stage, and maturing stage from 2018–2019 and 2019–2020. The effect
of nitrogen topdressing amount on the dry matter under different treatments was highly
significant at the filling stage and maturing stage from 2018–2019 and 2019–2020, and there
were also significant differences between the heading stage and the flowering stage from
2019–2020. There was no significant difference in the dry matter of wheat spikes in different
years; there were significant differences in heading stage, flowering stage, filling stage, and
maturing stage of wheat between different years and sowing densities.

Table 1. Effects of different sowing density and nitrogen topdressing on dry matter of wheat spikes
in different stages.

Year Sowing
Density

Nitrogen
Topdressing

Booting
Stage

Heading
Stage

Flowering
Stage Filling Stage Maturing

Stage

2018–2019 D1 N1 1.12 ab 1.35 cde 1.65 def 1.68 g 1.75 k
N2 1.06 ab 1.42 abcde 1.78 bcdef 1.89 fg 2.08 jk
N3 1.13 ab 1.56 abc 1.79 bcdef 2.21 bcd 2.35 hij
N4 1.12 ab 1.39 bcde 1.74 cdef 2.18 bcd 2.42 ghij

D2 N1 0.98 ab 1.23 de 1.62 ef 1.92 efg 2.24 ij
N2 1.03 ab 1.27 de 1.58 f 1.92 efg 2.29 hij
N3 1.07 ab 1.38 bcde 1.74 cdef 2.01 def 2.59 defgh
N4 0.96 ab 1.19 e 1.93 abcd 2.17 bcde 2.53 efghi

D3 N1 1.12 ab 1.48 abcd 1.92 abcd 2.07 cdef 2.44 fghi
N2 0.94 b 1.26 de 1.99 abc 1.99 def 2.77 cdef
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Table 1. Cont.

Year Sowing
Density

Nitrogen
Topdressing

Booting
Stage

Heading
Stage

Flowering
Stage Filling Stage Maturing

Stage

N3 0.88 b 1.42 abcde 1.88 abcde 2.13 cdef 2.81 cde
N4 1.22 a 1.36 bcde 1.92 abcd 2.39 b 3.07 abc

D4 N1 0.93 b 1.57 abc 1.91 abcde 2.19 bcd 2.75 cdefg
N2 0.97 ab 1.57 abc 1.91 abcde 2.3 bc 2.92 bcd
N3 1.06 ab 1.62 ab 2.04 ab 2.99 a 3.19 ab
N4 1.22 a 1.66 a 2.13 a 3.09 a 3.39 a

F value FD 1.117 14.17 *** 10.608 *** 54.44 *** 214.04 ***
FN 1.95 1.95 2.423 39.23 *** 79.96 ***

FD × FN 2.15 0.893 1.209 4.109 * 0.047
2019–2020 D1 N1 0.98 cd 1.17 f 1.45 i 1.83 f 1.90 h

N2 1.06 bcd 1.34 def 1.66 ghi 1.77 f 2.04 gh
N3 1.13 bcd 1.44 cd 1.73 fghi 1.89 ef 2.14 gh
N4 1.16 abc 1.42 cde 1.8 defgh 1.88 ef 2.16 g

D2 N1 0.98 cd 1.41 cde 1.75 efghi 1.96 ef 2.07 gh
N2 1.03 bcd 1.34 def 1.59 hi 1.83 f 2.08 gh
N3 1.07 bcd 1.41 cde 1.62 hi 1.86 f 1.91 gh
N4 0.99 cd 1.48 cd 1.73 fghi 2.09 de 2.45 f

D3 N1 1.12 bcd 1.54 bc 1.96 cdefg 2.24 cd 2.52 ef
N2 0.94 cd 1.24 ef 1.81 defgh 2.27 cd 2.71 cde
N3 0.91 d 1.31 def 2.01 cdef 2.43 c 2.57 ef
N4 1.25 ab 1.46 cd 2.06 bcde 2.41 c 2.88 bcd

D4 N1 0.93 cd 1.37 cdef 2.13 bcd 2.34 c 2.64 def
N2 1 cd 1.49 cd 2.35 ab 2.84 b 2.95 bc
N3 1.09 bcd 1.73 ab 2.24 bc 2.96 ab 3.08 ab
N4 1.39 a 1.81 a 2.67 a 3.08 a 3.3 a

F value FD 2.876 * 8.932 *** 46.67 *** 91.733 *** 105.9 ***
FN 0.728 5.437 ** 16.16 *** 6.903 *** 15.8 ***

FD × FN 1.093 5.205 *** 1.206 6.291 *** 3.128 **
FY 1.058 1.428 1.878 2.234 2.467

FY × FD ns ** * ** *
FY × FN ns ns ns ns ns

FY × FD × FN ns ns ns ns ns

Note: Y, D, and N represent different years, sowing density, and nitrogen topdressing, respectively. Different
letters in the same column mean significant difference at 0.05. ns, not significant at 0.05 probability level; *, **, and
*** refer to significant differences at 0.05, 0.01, and 0.001 level, same as Tables 2 and 3.

At the late filling stage, the assimilates of wheat plants are transported to the grains in
large quantities, and their dry matter reaches the maximum at the maturity stage, eventually
affecting their yield. Therefore, compared with other growth stages, the dry matter of the
wheat maturity stage has a more significant impact. With the increase in sowing density, the
overall performance of dry matter in the maturing stage was N4 > N3 > N2 > N1; with the
increase in the amount of nitrogen, the overall performance of dry matter in the maturing
stage was D4 > D3 > D2 > D1. As the dry matter of wheat spikes in the maturing stage was
the most prominent, different sowing densities and nitrogen topdressing amounts were
significantly different at this stage. In our study, we further explored the effects of sowing
density (Figure 3) on the dry matter of wheat spikes at the maturing stage from 2018–2020
by linear regression analysis. Through the analysis of the two-year experiment, it can be
found that the sowing density has a significant influence on the dry matter of wheat spikes,
and it is significant.

The results showed that, at the maturity stage, the dry matter weight of wheat spikes
treated with D4N4 was higher than that of other treatments, and the dry matter weight of
wheat spikes treated with D1N1 was lower than that of other treatments.
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3.2. Effects of Different Sowing Density and Nitrogen Topdressing on Grain Quality

By analyzing the effects of different sowing densities and nitrogen topdressing on
grain quality (Table 2), from 2018 to 2019, in terms of protein content, D2N4 treatment
had the largest, 14.65%, and D4N3 treatment had the smallest, 13.46%; with the increase
in sowing density, the protein content increased first and then decreased. The protein
content was the highest at the D2 sowing density level, which was 14.42%, and the D2 level
was significantly higher than the D3 level. The starch content increased with increased
sowing density and nitrogen topdressing amount. Under the conditions of different sowing
densities, the settlement value of grains increased first and then decreased with the increase
in sowing density. Compared with D1, D3, and D4, the value of D2 increased by 3.50%,
8.93%, and 13.22% respectively.

From 2019 to 2020, the protein content increased first and then decreased with the
increase in sowing density, and the specific performance was D3 > D2 > D1 > D4. Compared
with D2, D1, and D4, the value of D3 increased by 0.20%, 6.73%, and 5.00%, respectively.
The level of D3 was significantly higher than that of D4. The effect of nitrogen topdressing
on protein content was D4 > D2 > D3 > D1, but there was no significant difference among
different levels. The stabilization time increased first and then decreased with the increase
in sowing density, and reached the maximum at the D2 level, and the stabilization time
decreased with the increase in nitrogen topdressing. The starch content increased with the
increase in sowing density and nitrogen topdressing amount. The sedimentation value of
grains decreased with the increase in sowing density, and the value D1 was significantly
higher than those of the other three sowing density levels, reaching 67.22 mL.

Table 2. Effects of different sowing density and nitrogen topdressing on grain quality of wheat at the
maturity stage.

Year Sowing
Density

Nitrogen
Topdressing

Protein
Content (%)

Stabilization
Time (min)

Starch Content
(%)

Settlement
Value (mL)

2018–2019 D1 N1 14.22 abc 6.85 ab 67.5 d 50.77 abcd
N2 14.37 abc 4.86 bcd 68.47 abcd 51.61 abc
N3 14.49 ab 3.37 d 67.68 cd 52.06 abc
N4 14.53 ab 2.97 d 67.67 cd 51.73 abc

D2 N1 14.56 ab 8.10 a 67.63 cd 53.84 a
N2 14.38 abc 4.31 bcd 68.11 bcd 50.66 abcd
N3 14.08 abc 3.52 cd 67.83 cd 48.65 abcd
N4 14.65 a 3.31 d 67.41 d 53.73 ab
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Table 2. Cont.

Year Sowing
Density

Nitrogen
Topdressing

Protein
Content (%)

Stabilization
Time (min)

Starch Content
(%)

Settlement
Value (mL)

D3 N1 13.76 abc 8.26 a 68.39 abcd 47.25 abcd
N2 13.49 c 3.17 d 68.46 abcd 43.60 d
N3 14.04 abc 3.98 bcd 68.76 abc 49.51 abcd
N4 14.09 abc 3.81 bcd 68.48 abcd 49.59 abcd

D4 N1 13.57 c 7.25 abc 68.77 abc 46.25 bcd
N2 13.65 bc 3.84 bcd 69.38 a 46.15 cd
N3 13.46 c 2.25 d 68.79 abc 45.05 cd
N4 13.57 c 2.89 d 69.17 ab 45.28 cd

F value FD 9.731 * 0.518 13.854 *** 7.398 *
FN 0.596 17.575 ** 2.012 0.663

FD × FN 2.397 * 3.945 ** 0.508 2.090 *
2019–2020 D1 N1 14.46 ab 5.80 ab 66.69 fg 64.71 cd

N2 14.73 ab 3.21 de 67.38 defg 67.35 ab
N3 15.41 ab 3.23 de 66.34 g 67.85 ab
N4 15.58 a 2.47 de 67.57 def 68.97 a

D2 N1 14.43 ab 7.90 a 66.97 efg 63.63 cd
N2 15.56 ab 4.47 bcd 67.79 cde 62.94 d
N3 15.41 ab 4.63 bcd 68.17 bcd 64.22 cd
N4 15.47 ab 3.04 de 67.74 cdef 65.88 bc

D3 N1 15.22 ab 8.03 a 68.72 abc 63.22 cd
N2 15.49 ab 4.00 cde 67.79 cde 64.07 cd
N3 15.25 ab 3.45 de 68.43 bcd 63.48 cd
N4 15.02 ab 3.04 de 68.14 bcd 63.75 cd

D4 N1 14.49 ab 6.59 abc 69.1 ab 62.61 d
N2 14.67 ab 3.95 cde 69.05 ab 63.18 cd
N3 14.28 b 1.52 e 69.13 ab 63.48 cd
N4 14.66 ab 2.47 de 69.5 a 63.41 cd

F value FD 3.193 * 2.107 28.464 *** 19.318 **
FN 1.68 23.404 ** 0.761 3.835 *

FD × FN 1.552 5.425 ** 2.524 * 5.343 **
FY 14.533 *** 4.392 68.157 56.828 ***

FY × FD ns ns ns ns
FY × FN ns *** ns ns

FY × FD × FN ns ns ns ns

The results showed that sowing density had significant effects on protein content,
starch content, and settlement value but did not significantly affect stabilization time from
2018 to 2020. The amount of nitrogen topdressing had a significant effect on stabilization
time. The interaction between sowing density and nitrogen topdressing significantly
affected protein content, stabilization time, and settlement value from 2018–2019. From
2019–2020, it significantly impacted stabilization time, starch content, and settlement value.
Different years had significant differences in protein content and settlement value, and the
interaction between different years and nitrogen topdressing showed significant differences
in stabilization time.

3.3. Effects of Different Sowing Density and Nitrogen Topdressing on Yield and Components

By analyzing the effects of different sowing densities and nitrogen topdressing rates on
yield (Figures 4 and 5) and yield components (Table 3), it was observed that sowing density
had a significant effect on grain per spike, effective spikes, and yield from 2018–2020. The
amount of nitrogen topdressing only had a significant effect on grain per spike and yield
from 2018–2019. The interaction between sowing density and nitrogen application rate had
significant effects on grain per spike, effective spikes, and yield.
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Table 3. Effects of different sowing density and nitrogen topdressing on yield and yield components.

Year Sowing
Density

Nitrogen
Topdressing

Grain per
Spike

Thousand-Grain
Weight (g)

Effective
Spikes

(×104·ha−1)
Yield (kg·ha−1)

2018–2019 D1 N1 37.30 bc 47.05 462.52 d 5491.63 e
N2 38.46 ab 46.57 462.01 d 5536.10 de
N3 38.78 a 46.21 471.09 d 5647.27 de
N4 38.82 a 46.51 476.74 d 5758.43 de

D2 N1 37.18 bc 46 516.04 cd 5847.37 de
N2 37.37 bc 45.98 515.59 cd 6670.00 cd
N3 37.66 abc 46.44 518.48 cd 6981.27 bc
N4 37.84 abc 46.47 521.59 bc 7181.379 bc

D3 N1 36.63 cd 47.74 578.96 bc 7270.30 abc
N2 36.87 cd 45.99 580.29 bc 7514.872 abc
N3 37.18 bc 45.62 594.01 ab 7826.17 abc
N4 37.26 bc 46.27 604.87 ab 7937.40 ab

D4 N1 35.81 d 46.4 624.76 ab 7314.60 abc
N2 35.78 d 45.02 657.93 a 7336.83 abc
N3 35.80 d 45.33 634.60 ab 7714.97 abc
N4 36.85 cd 45.81 643.18 ab 8448.67 a

F value FD 22.766 ** 1.887 51.404 ** 30.285 **
FN 4.104 * 1.357 1.298 4.165 *

FD × FN 5.749 ** 1.554 14.061 ** 7.199 **
2019–2020 D1 N1 33.17 ab 46.64 ab 526.06 d 7972.82 f

N2 33.76 a 46.13 ab 553.73 cde 8235.37 ef
N3 33.93 a 48.13 a 536.27 cd 8441.39 cdef
N4 33.56 a 47.51 ab 551.61 cd 8614.47 bcdef

D2 N1 32.13 abc 47.82 ab 562.62 bcde 8220.78 ef
N2 32.26 abc 47.12 ab 558.95 bcde 8356.01 def
N3 31.57 abcd 46.92 ab 565.78 abcde 8695.35 bcdef
N4 31.52 abcd 46.88 ab 574.29 abcde 8916.96 abcdef

D3 N1 30.29 abcd 46.10 ab 578.07 abcde 8457.04 cdef
N2 30.88 abcd 45.51 b 591.50 abcde 8772.18 bcdef
N3 30.50 abcd 45.27 b 595.80 abcd 9346.59 abcde
N4 29.43 bcd 45.50 b 603.10 abcd 8821.08 bcdef

D4 N1 28.32 d 46.85 ab 631.22 a 9656.50 abc
N2 29.20 cd 46.24 ab 621.45 abc 9599.63 abcd
N3 32.64 abc 46.351 ab 626.31 ab 10136.40 a
N4 31.95 abcd 46.69 ab 622.16 abc 9758.71 ab

F value FD 7.556 ** 5.796 ** 7.122 ** 12.187 **
FN 0.822 0.759 0.172 1.943

FD FN 2.362 ** 2.230 * 2.267 * 2.987 **
FY 34.397 *** 46.409 567.549 7889.954 ***

FY × FD ns ns ns ns
FY × FN ns ns ns ns

FY × FD × FN ns ns ns ns

From 2018 to 2019, with the increase in sowing density, the number of grains per spike
and 1000-grain weight decreased gradually, and the number of effective spikes increased
continuously. In terms of the number of grains per spike, the high sowing density (D4)
significantly decreased it by 6.32% compared with the low sowing density (D1). There
was no significant difference in 1000-grain weight among different levels. The number of
effective spikes in the D4 treatment increased significantly by 6.65%, 23.17%, and 39.13%,
respectively, compared with D3, D2, and D1. With the increase in nitrogen topdressing, the
number of grains per spike increased gradually, and the specific performance of 1000-grain
weight was N1 > N4 > N2 > N3. The number of effective spikes increased first and then
decreased, and the number of effective spikes under N2 treatment was the highest, which
was 525.86 kg·ha−1. From 2019 to 2020, with the increase in sowing density, the number of
grains per spike decreased gradually, and the level of D1 was significantly higher than that
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of other levels. The 1000-grain weight performance was D2 > D1 > D4 > D3. The effective
spike number of the D4 treatment was significantly higher than that of D1 by 17.70%, and
there was no significant difference among the other three sowing density levels.

From 2018 to 2019, the yield increased with the increase in sowing density. Compared
with D3, D2, and D1, the value of D4 treatment increased by 66.59 kg·ha−1,
1033.77 kg·ha−1, and 2095.41 kg·ha−1, respectively. The yield increased with the increase in
nitrogen application. Compared with N3, N2, and N1, the value of N4 treatment increased
by 289.05 kg·ha−1, 567.02 kg·ha−1, and 850.49 kg·ha−1, respectively. From 2019 to 2020,
there was a positive correlation between sowing density and yield. Compared with D1, D2,
and D3, the value of D4 increased by 17.70%, 14.53%, and 10.51%, respectively. There was
no significant difference among D1, D2, and D3 levels. The yield increased first and then
decreased with the increase in nitrogen application. D4N3 treatment reached the maximum
value of 10136.40 kg·ha−1.

3.4. Correlation Analysis of Different Indexes of Wheat

Correlation analysis of different wheat indicators from 2018 to 2020 was carried out
(Figures 6 and 7). It can be seen from Figure 6 that the sowing density was significantly
positively correlated with effective spikes, starch content, and yield from 2018 to 2019.
Sowing density was significantly negatively correlated with grain per spike, protein content,
and settlement value. Nitrogen topdressing was significantly positively correlated with
grain dry matter. It was significantly negatively correlated with stabilization time. From
2019 to 2020, sowing density was significantly positively correlated with effective spikes,
starch content, yield, and grain dry matter. The sowing density was significantly negatively
correlated with settlement value and grain per spike. Nitrogen topdressing was only
significantly negatively correlated with stabilization time.
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Figure 6. Correlation analysis of different wheat indexes from 2018–2019 (different colors in the
figure represent positive and negative correlation, and color depth represents the correlation size.
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are in different colors, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, the same as Figure 7).
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In summary, the increase in sowing density mainly promoted effective spikes, starch
content, and yield and inhibited settlement value and grain per spike. The increase in
nitrogen topdressing amount mainly inhibited the stabilization time.

4. Discussion

Sowing density is a limiting factor for plants to obtain environmental resources [31]. It
is considered to be one of the most influential cultivation methods for grain yield and other
agronomic traits. Changes in sowing density are particularly important in wheat crops and
have a direct impact on grain yield and its components [14]. The dynamics of nitrogen and
its loss trend create a challenging environment for the effective management of this nutrient
in topdressing [32], which is mainly due to various reactions and instability in the soil. The
low efficiency of nitrogen is attributed to the volatilization, leaching, and surface runoff
of ammonia [20]. Some studies have found the effects of sowing density and nitrogen
on crops. For example, Kanwal et al. [33], by evaluating the effects of different sowing
densities and nitrogen doses on oat forage yield, found that the interaction of sowing
density and nitrogen amount significantly changed the yield and quality attributes of oat
green forage. The sowing rate of forage oat crops should be 90 kg·ha−1 and supplemented
with 120 kg·ha−1 nitrogen, producing a higher yield, better quality, and better return.

Our research group has previously proved that hole sowing has an excellent effect on
the growth characteristics of wheat by comparing the wheat hole sowing method with the
traditional sowing method. Wu et al. [28] studied the effects of different sowing methods
(drill sowing, wide sowing, and hole sowing) on the yield and quality of wheat. It was
found that the hole sowing treatment increased the flag leaf area of wheat, the nitrogen
application increased the dry matter quality of the above-ground part of the hole sowing
treatment, and the actual yield of the hole sowing treatment was the highest. However,
most of the field experiments on wheat sowing density and nitrogen topdressing in the past
were carried out by drilling technology and the influence of the hole sowing cultivation
method was not explored [34–37]. Under the conditions of this experiment, the density
had a very significant effect on the number of effective spikes and yield. Increasing the
sowing density would reduce the number of grains per spike and thousand grain weight,
significantly increase the number of effective spikes per unit area, and expand the number
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of populations, which could compensate for the lack of individuals. Increasing the amount
of topdressing nitrogen had little effect on protein content and settlement value, which
may be due to the high nutrient content in the soil before sowing in this experiment, so
topdressing had little effect on the experiment. The results of our experiment were also
slightly different between years. Different years had significant effects on dry matter of
wheat spikes, protein content, settlement value, grain per spike, and yield. The dry matter
of wheat spikes, the number of effective spikes per unit area, yield, protein content, and
settlement value of each treatment from 2018–2019 were lower than those from 2019–2020.
The main reason may be that, from 2019–2020, the precipitation and average temperature
during the wheat growth period were higher than from 2018–2019, and abundant rainfall
and suitable temperature were conducive to crop growth and development.

5. Conclusions

After two years of research on the use of different sowing densities and nitrogen top-
dressing amounts of wheat under hole sowing conditions, we found that field production
can use a combination of a sowing density of 475 suitable seeds·m−2 and 120–180 kg·ha−1

of nitrogen topdressing at the jointing stage, which can fully tap the production potential of
wheat. The experimental results fill the gap in wheat research on the cultivation method of
hole sowing and provide valuable references and help for future researchers. In addition,
there are still some limitations and deficiencies in this experimental study. The experiment
was only over a two-year research period, and due to the significant difference in climatic
conditions between the two years, although the overall trend is consistent, the regularity
and universality of individual index changes are not strong. It is necessary to further carry
out long-term positioning experiments to more accurately grasp and lay a theoretical basis
and technical support for fully tapping wheat’s high-quality and high-yield potential under
hole sowing conditions.
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