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Abstract: Soybean (Glycine max L.) is the most important crop plant in the world. Soil saline-alkali
seriously inhibits soybean yield and quality. This study aims to investigate the impact of graphene
oxide (GO) and Rhizobium (Rh) on the expression of soybean-related genes as well as the growth and
yield under saline-alkali stress. The results show that GO + Rh-treated increased the number of root
nodules by 5.43 times compared with the control (Ctrl), the total nitrogen content and root system
parameters of plants were also significantly improved. GO + Rh-treated reduced the Na+/K+ ratio
and the osmotic substances, while the activities of antioxidant enzymes SOD, POD, CAT and APX in
GO + Rh-treated soybean plants increased significantly by 69.18%, 69%, 75.64% and 48.38% compared
with the control plants. The REC, MDA and H2O2 content decreased significantly by 46.73%, 42.80%
and 43.53%. In addition, GA3 content, among all related saline-alkali hormones, was increased by
100.20% compared with the Ctrl. The expression level of GmGBP1, a key gene for GA3 synthesis,
at most increased 6.42 times compared to the Ctrl. The results further reveal that GO + Rh-treated
obviously improves the yield traits of soybean plants, which confirms that GO + Rh-treated could be
effective in enhancing soybean tolerance to saline-alkali stress. Our findings provide a new strategy
for improving the saline-alkali tolerance of soybean, as well as a new perspective for exploiting and
utilizing large-area saline-alkali soil.

Keywords: soybean; saline-alkali stress; graphene oxide; rhizobium; antioxidant enzyme system;
RT-qPCR

1. Introduction

Soybean (Gilcine max L.) as an important food and oil crop is rich in protein and fat [1].
Due to various extreme environments, the yield and quality of soybeans are seriously
affected, among which soil saline-alkali seriously limits soybean growth and yield [2].
Studies have shown that saline-alkali stress could induce stomatal closure of soybean
leaves, thus reducing photosynthesis and transpiration rate [3]. The high salt environment
slows down soybean root growth, which reduced the absorption of the nutrients from
soil [4]. High soil saline-alkali destroys plant cell homeostasis and physiological and
biochemical processes, and excessive Na+ produces toxic effects and destroys the ion
balance of soybean, leading to osmotic stress and water deficit [5]. The accumulation of
harmful ions induces plants to produce a large number of reactive oxygen species, which
damages the cell membrane and destroys the homeostasis of plants, eventually reducing the
photosynthetic rate and inhibiting plant growth [6]. Moreover, the root growth is hindered
in high concentration saline-alkali environments, which has a destructive impact on the
metabolism and transportation of plants [7]. Soybeans exposed to alkali stress will also
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suffer the same osmotic stress and oxidative damage as salt stress. Especially, the high pH
value caused by soil alkalization seriously inhibits ions absorption by plants. To overcome
the toxicity caused by saline-alkali stress and eliminate excess ROS, plants balance the
osmotic potential and maintain normal growth and development through the repair of the
antioxidant enzyme system and ion transport while the self-regulation of plants is very
limited [8]. At present, the main strategies to improve saline-alkali tolerance of soybean are
gene editing or transgenic methods. However, molecular breeding for soybean varieties to
improve saline-alkali resistance still has some insurmountable problems, such as the lack
of genetic resources, and time-consuming and inconvenient inspection. Therefore, a kind
of green, high-efficiency, cost-saving strategy is a requisite to facilitate plant growth.

Graphene oxide (GO), with more functional groups, is the oxidized state of graphene.
It has better water solubility and good reactive oxygen removal capacity, which is widely
used in various fields, including pharmaceutical carrying, biological treatment, and agri-
cultural production. Particularly application in the agricultural field is gradually extensive
for improving plant resistance to adverse responses [9]. GO application could also enhance
physiological indices and enzyme activity resulting in increasing the resistance of crops to
abiotic stress [10]. Studies have revealed that GO applies to maize’s (Zea mays L.) growth
and development impacts [11]. Therefore, GO has a vital function in the growth and
development of plants under stress.

GO concentration has a different impact on plant growth, and excessive concentration
might cause toxic effects. For seed germination, a low dose of GO (0.1–10 mg/L) could
significantly improve the situation of wheat germination, and prolong the growth period
of rose [12]. An amount of 25 to 100 mg/L GO inhibits rape (Brassica napus L.) root growth,
but significantly increases the content of ABA [13]. Overall, GO could promote seed
germination and plant growth at a suitable concentration. Especially, GO improves the
ability of plants to resist abiotic stress.

Most leguminous plants could be symbiotic for nitrogen fixation with a variety of
bacteria, collectively known as Rhizobium [14]. Studies also show that the inoculation
of soybean with rhizobium could significantly increase nitrogen nutrition, leaf area, and
chlorophyll content, and reduce root and leaf relative electrolytic leakage (REL), further
improving the ability to resist salt stress [15]. Moreover, the combination of Rhizobium and
nano iron oxide can also improve the capability of alfalfa to resist soil cadmium pollution [16]
and the combination of exogenous gibberellin. Additionally, rhizobium could improve
the nodule numbers and nitrogen absorption ability of alfalfa, and promote growth [17].
Rhizobium has a good application prospect in interacting with other substances to resist
adverse environmental impacts. However, there are few reports about the effects of the
combination of GO and rhizobium on the saline-alkaline tolerance, and nitrogen fixation of
the plants.

Studies reveal that GO could promote the growth of rhizobium, and increase the
nodule numbers to improve the nitrogen fixation ability of plants [18]. In our findings, we
demonstrate that GO and Rh combination constructions can improve tolerance of saline-
alkali stress in soybean plants, which could significantly increase soybean phenotypic
performances and indexes, defense enzymes activity, nitrogen fixation ability, hormone
levels, and hormone-related genes expression level under saline-alkali. Furthermore, we
find that GO and Rh combination also has an active effect on the yield traits of soybean.
Our results provide new insights for enhancing saline-alkali tolerance of soybean plants by
application of GO + Rh biological agents.

2. Material and Methods
2.1. Experimental Materials

Soybean seeds were provided by the Cangzhou Academy of Agricultural Sciences, and
the variety was Cangdou 1438. The concentration of graphene oxide (GO, Suzhou Tanfeng
Company, Suzhou, China.) was 30 µg/mL. The effective viable count of Bradyrhizobium
japonicum is greater than 3 × 109 (Rh, Shanghai biology Company, Shanghai, China).
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The germinating seeds were set in 500 mL hydroponic bottles filled with 1/2 Hoagland
solution and 80 mmol/L saline-alkali solutions, and grown in a growth chamber (28/20 ◦C,
75% humidity) and provided with a photoperiod for 16 h. We soaked the germinated seeds
in Bradyrhizobium japonicum solution for 10 min, and inoculate them to the roots for 3 mL
when transplanting them. The plants were classified into five treatments when they grew
to 4–6 true leaves, each for 15 bottles. The detailed treatment of the five groups is shown
in Table 1.

Table 1. Treatment methods of hydroponics.

Abbreviation Mixture Components

No treatment Hoagland solution
Ctrl Hoagland solution+ saline-alkali solution
GO Hoagland solution + saline-alkali solution + 100 mL GO
Rh Hoagland solution+ saline-alkali solution + 3 mL Rh

GO + Rh Hoagland solution+ saline-alkali solution + 100 mL GO + 3 mL Rh

Pot-culture: Soybean was planted in flowerpots and placed in the garden of College of
Life Sciences, Hebei University. Saline-alkali treatment began at the full flowering stage of
soybean, and each treatment is shown in Table 2.

Table 2. Treatment details of pot culture.

Abbreviation Mixture Components

No treatment normal watering
Ctrl saline-alkali solution

GO + Rh saline-alkali solution + 100 mL GO + 3 mL Rh

The samples of soybeans were collected at the seedling stage and mature stage, treated
with liquid nitrogen and stored in the refrigerator at −80 ◦C. Hydroponic culture treatment
and pot culture for soybean plants were designed as shown in Figure 1.
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2.2. GO Characteristics

The GO solution was first observed with the transmission electron microscope (TEM,
Tecnai-G20, FEI, USA), environmental scanning electron microscopy (SEM, MFP-3D, Oxfod,
UK), Raman spectroscopy (InVia2000, Renishaw, London, UK), and Fourier transform
infrared spectroscopy (FITR, Nicolet-460, Thermo Fisher, CT, USA). Further, the GO solution
was dispersed in distilled water by ultrasound (Kunshan Shumei Ultrasonic Instruments
Co., Ltd., Suzhou, China) with a 2 h ultrasonic duration and >300 W ultrasonic power, and
the temperature was controlled below 20 ◦C during ultrasonication.

2.3. Determination of Morphological Index

Fresh weight (FW) of the plant tissue was weighed immediately, then dry weight
(DW) was measured after blanching at 105 ◦C for 15 min and drying to constant weight
at 75 ◦C by an oven. The absolute water content was calculated: (FW-DW)/DW × 100%.
The root morphological parameters were determined using a root system scanner (Seiko
Epson Corp., Tokyo, Japan). The root total length, root volume, and root surface area were
measured by WinRHIZO 4.0b software.

2.4. Determination of Physiological Indexes Related to Saline-Alkali Tolerance

The accumulation of hydrogen peroxide (H2O2) usually was determined by the di-
aminobenzidine (DAB) staining method [19]. The soybean seedling’s leaves were fully
soaked in DAB staining solution at 25 ◦C for 2 h, after extracting the DAB solution and
adding ethanol (70%). The soybean leaves were boiled to observe the leaves’ color [20].
H2O2 contents were measured by a kit (No. A064-1-1, Nanjing Jiancheng Bioengineering
Co., Ltd., Nanjing, China). The 0.1 g soybean leaves were pestled, and then 0.9 mL physio-
logical saline was added to gain a supernatant. Then, it was centrifuged (3500 rpm, 4 ◦C)
for 10 min. The preparation solution was determined at 420 nm.

The relative electrical conductivity (REC) was measured by a conductivity meter
(DDBJ-350) [19]. Malondialdehyde (MDA) was detected by the method with thiobarbituric
acid [20] (No. A003-1-1). The free proline (Pro) was analyzed with a kit (No. A107-1-1) by
colorimetric method. All the above kits are from Nanjing Jiancheng Bioengineering Co.,
Ltd., Nanjing, China.

Determination of Na+ and K+ content in tissue by Atomic Flame Photometer (FP6410,
Shanghai Yidian, Shanghai, China) [21].

2.5. Determination of Enzymatic Activities

Reagent kits were used to determine superoxide dismutase activities (SOD, No. A001-
1-1), peroxidase activities (POD, No. A048-3-1), catalase activities (CAT, No. A007-1-1), and
ascorbate peroxidase activities (APX, No. A107-1-1). All the above kits are from Nanjing
Jiancheng Bioengineering Co., Ltd., China.

2.6. Determination of Total Nitrogen Content

Determination of total nitrogen content with the Kjeldahl method [22]. Using a KDN-
520 (Lü bo). The total nitrogen is calculated as follows:

N (mg/g) = [(V1 − V2) ×M × 0.028]/G × 100.

Measure of leghaemoglobin: Take a proper amount of root nodules (W) and grind
them into homogenate in phosphoric acid buffer at 4 ◦C, the amount of phosphoric acid
buffer is about 4 times the volume of nodules, centrifuge at 4 ◦C for 15 min (V), discard the
sediment, and continue to collect the supernatant. Centrifuge at 4 ◦C for 20 min, and then
put the supernatant in a spectrophotometer. Colorimetric determination of absorbance at
540 nm, mark it as A [23]. The calculation formula is as follows:

CLb (g/L) = A × 367.7 (g/L)
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Leghemoglobin content (mg g) = CLb × V/W

The activity of nitrogenase was determined by the acetylene reduction method [23].
0.3 g nodules (m) were set into a serum bottle, inject acetylene with an air ratio of 1:100
into the bottle, and incubate in a 28 ◦C incubator in the dark for 2 h (t). Use a gas mass
spectrometer (Thermo Scientific, Trace GC Ultra, USA) to measure the ethylene content,
and record it as X. The calculation formula is as follows:

Nitrogenase activity (nmol/mg·h) = X/m × t

2.7. Determination of Hormone Levels

The related saline-alkali hormones, such as ABA, IAA, JA, and GA3 were detected by
Zoonbio Biotechnology. The product of samples was analyzed with the ZORBAX SB-C18
column (Agilent Technologies) of the high-performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS) method. The solvents for the mobile phase were
ultrapure water and 0.1% methanoic acid, methanol, and 0.1% methanoic acid, and injected
volumes were 2.5 µL. Mass spectrometer (MS) treatment was completed at a voltage of
4000 V. The pressure of the nebulizer, air curtain, and aux gas was 60, 20, and 75 psi,
respectively, and the temperature of atomizing was set at 350 ◦C.

2.8. Determination of Gene Expression

Samples were collected at 0 h and 7 h after treatment, respectively, and RNA extraction
was used by the RNA Kit (DNase I) (CW2598S, CWBIO). The primers of qRT-PCR were
made by Primer-BLAST software. The soybean actin gene was taken as the internal
reference gene, in which three biological repeats were set up and repeated three times.
The reverse transcription kit is a 2 × Fast Super EvaGreen qPCR Master Mix kit. The
temperature and time were set as 95 ◦C for 5 min, followed by 45 cycles of 95 ◦C for 15 s
and 57 ◦C for 60 s. The expression levels of genes were calculated according to the 2−∆∆Ct

method. All primer sequences were shown in Supplementary Table S1.

2.9. Statistical Analysis

The indexes and gene expressions are displayed as means ± standard deviations (SD)
basis on three independent experiments. All results were using Origin software (version
8.5) by a one-sample t-test. The GO, Rh, GO + Rh-treated samples were compared to the
Ctrl except for no treatment. The p ≤ 0.05 or p ≤ 0.01 were considered significant. A
principal component analysis (PCA) was used by OriginPRO (version 2021) to test the
relationship between each sample and the variable.

3. Results
3.1. GO Characteristics

First, we obtained the surface characteristics of GO. Through the SEM technology,
it was found that GO had a fold structure and presented a stacking state (Figure 2A). In
addition, the TEM image showed that GO contained a multi-layer fold structure (Figure 2B).
Using FITR technology, it was found that GO contained various oxygen-containing func-
tional groups such as –OH, C–O, C=O, –COOH, and –O (Figure 1C). Further, as shown in
the Raman spectrum, we detected that GO had two main characteristic peaks located in the
D band of about 1349 cm−1 and the G band of 1590 cm−1, respectively (Figure 2D).

3.2. GO + Rh Enhanced Saline-Alkali Tolerance of Soybean Seedlings

The different treatments of Ctrl, GO, Rh, and GO + Rh were carried out to further
analyze their effects on the soybean seedlings’ growth under the saline-alkali stress. As
expected, the Ctrl had significantly saline-alkali-sensitive symptoms with wilting leaves;
whereas the GO-treated and Rh-treated soybeans’ growth performance resulted in slightly
wilted leaves. However, the soybean leaves of GO + Rh-treated showed no obvious changes
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under saline-alkali stress, similar to the no-treatment soybeans performance (Figure 3A).
Meanwhile, saline-alkali stress could reduce the physiological indicators such as fresh
weight and water content of soybean plants, the GO + Rh-treated soybeans showed a better
effect than the GO and Rh-treated soybeans. The GO + Rh-treated, GO-treated, and Rh-
treated fresh weight of shoot and root and absolute water content were obviously increased
by 153.57%, 92.06%, and 71.00% compared with those of the Ctrl soybeans (Figure 3B,C).
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Further, K+ high uptake and Na+ reduction is the important strategy for soybean plants
during saline-alkali stress. Our results revealed that K+ contents in the leaf were notably de-
creased under saline-alkali stress, but were improved with GO or Rh and GO + Rh-treated.
The K+ content of GO + Rh-treated performed best and increased by 23.05%, significantly
compared to the Ctrl. Na+ content in the leaf was obviously increased under saline-alkali
stress resulting in an Na+/K+ ratio increased under saline-alkali stress. While Na+ con-
tent was significantly decreased by 47.45% with the GO + Rh-treated compared to the
Ctrl (Figure 3D,E). We also found that the Na+ content in the hydroponic solution of
GO + Rh-treated soybean was significantly higher than that of the Ctrl. This indicated that
the GO + Rh-treated absorbed less Na+ in the hydroponic solution, thus ensuring the ion
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balance in vivo (Table 3). Our results revealed that GO + Rh might regulate positively in
the growth development of soybean plants subjected to saline-alkali stress.
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means ± standard deviation (SD). (n = 3) (** p ≤ 0.01,* p ≤ 0.05).
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Table 3. Content of Na+ in water culture solution.

Time Treatment Na+ Content (mg/g)

0 d

No treatment 6.40 ± 0.68
Ctrl 6.35 ± 0.82
GO 6.44 ± 0.54
Rh 6.51 ± 0.28

GO + Rh 6.26 ± 0.46

7 d

No treatment 8.46 ± 0.92
Ctrl 219.08 ± 8.52
GO 225.48 ± 5.73
Rh 221.59 ± 4.79

GO + Rh 237.87 ± 6.56 *
Data showing the means ± standard deviation (SD). (n = 3) (* p ≤ 0.05).

3.3. GO + Rh Promoted N Uptake and Improved Soybean Seedlings Root Parameters

Developing a strong root system is vital for soybean plants to promote absorbing
water, nutrition, inorganic salts, and the transportation of nitrogen nutrition. We found that
the root system of GO, Rh, and GO + Rh-treated soybeans were denser root systems than
the Ctrl. All of theGO + Rh-treated acted not much differently in the growth performance
compared to the no-treatment soybeans with optimum root systems under saline-alkali
stress. In detail, the root total length, surface area, diameter, and volume of GO + Rh-treated
were higher than the Ctrl by 57.19%, 54.99%, 20.54%, and 52.87%, which showed the best
result compared to GO, Rh alone. (Figure 4A; Table 4). Further, the number of nodules of
roots with GO + Rh-treated roots increased by 5.43 times, compared with the Ctrl roots
(Figure 4B,C). The increase in the number of root nodules also promoted the improvement of
the nitrogen fixation ability of roots, ensuring the supply of nitrogen nutrition (Figure 4D).

Table 4. Soybean root system parameters under saline-alkali stress.

Time Treatment Root Length
(m)

Root Surface
(cm2)

Root Diameter
(mm)

Root Volume
(cm3)

0 d

No treatment 4.45± 0.96 55.23 ± 12.77 4.0 ± 0.18 0.57 ± 0.13
Ctrl 4.43 ± 0.82 52.97 ± 5.13 3.97 ± 0.38 0.50 ± 1.0
GO 4.52 ± 0.43 53.53 ± 3.34 3.76 ± 0.36 0.51 ± 0.06
Rh 4.41 ± 0.11 54.37 ± 10.82 4.04 ± 0.11 0.56 ± 0.11

GO + Rh 4.51 ± 0.27 56.72 ± 4.33 4.02 ± 0.40 0.57 ± 0.09

7 d

No treatment 23.69 ± 0.44 278.46 ± 5.54 5.50 ± 0.48 2.61 ± 0.63
Ctrl 14.53 ± 0.56 178.23 ± 9.57 4.01 ± 0.12 1.74 ± 0.13
GO 18.56 ± 3.21 235.50 ± 38.71 4.20 ± 0.20 2.38 ± 0.37
Rh 21.25 ± 0.44 * 261.49 ± 11.19 ** 4.36 ± 0.40 2.56 ± 0.19 *

GO + Rh 22.84 ± 3.24 * 276.24 ± 28.61 ** 4.83 ± 0.13 ** 2.66 ± 0.16 *

Data showing the means ± standard deviation (SD). (n = 3) (** p ≤ 0.01,* p ≤ 0.05).

To sum up, GO + Rh could promote root growth, nodulation and increase total nitrogen
content to resist saline-alkali stress, and the effect was much higher than when GO, Rh was
applied alone.

3.4. GO + Rh Increased Antioxidant Enzyme System Activity and Decreased Hydrogen
Peroxide Content

The accumulation of hydrogen oxide in cells leads to oxidative stress. Catalase
plays a key role in the antioxidant activity of the defense system. In this study, GO-
treated, Rh-treated, and GO + Rh-treated all increased antioxidant enzymes SOD, POD,
CAT, and APX activities in soybean with saline-alkali stress. It should be mentioned
that GO + Rh-treated increased by 69.18%, 69%, 75.64%, and 48.38% more than the Ctrl,



Agronomy 2023, 13, 1637 9 of 19

respectively (Figure 5A–D). This positive effect was approximately double that of GO,
Rh alone.
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Further, we observed H2O2 accumulation in leaves with DAB staining. A yellow
product generation is due to a 3,3′-diamino-benzidine (DAB) reaction with H2O2 after
saline-alkali stress. We found that the Ctrl had the deepest color, while GO + Rh plants had
the lightest color, indicating the least H2O2 accumulation (Figure 5E). The H2O2 content of
GO, Rh, and GO + Rh plants decreased to 26.62%, 23.45%, and 43.53% compared with the
Ctrl (Figure 5F). Our findings indicated that the GO + Rh-treated could increase antioxidant
enzyme activity, reducing the accumulation of hydrogen peroxide to decrease the harm of
saline-alkali stress on soybean seedlings that were treated by saline-alkali.

3.5. GO + Rh Responds to Soybean’s Osmotic Substances System

The REC and MDA are important factors in cell membrane damage. The accumulation
of proline could also enhance resistance by regulating the osmotic pressure of cells’ saline-
alkali stress, leading to an increase in MDA and PRO contents and a decrease in REC.
The contents of MDA in GO + Rh-treated were the lowest and decreased by 42.80%. The
REC decreased by 46.73%. Further, the PRO content of GO + Rh-treated was 56.49% more
than that of the Ctrl (Figure 6A–C). This result showed that GO + Rh treatment especially
could ameliorate the negative impacts of saline-alkali representation. Meanwhile, their
combination would significantly reduce the damage to the cell membrane induced by
saline-alkali stress, and increase the positive regulation of GO and Rh in the combined
nano-structure.
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3.6. GO + Rh Specifically Activates GA3 Hormones

To further study the impacts of exogenous GO, Rh, and GO + Rh on soybean hormone
changes, the ABA, GA3, IAA, and JA contents were measured under saline-alkali stress.
There were not many changes in ABA, GA3, IAA, and JA content in every treatment before
saline-alkali stress. However, we found that the contents of ABA, GA3, IAA, and JA in the
GO, Rh, and GO + Rh-treated were heightened compared with the Ctrl, respectively, and
the GO + Rh-treated were significantly higher than that of the Ctrl. To be more specific, the
contents of ABA, GA3, IAA, and JA in GO + Rh-treated soybeans were improved by 49.57%,
100.2%, 13.74%, and 45.51%, respectively, compared to the Ctrl under the saline-alkali stress
(Figure 7D–G). Overall, our results found that the combination of GO + Rh-treated had the
best effect on improving the saline-alkali tolerance of soybean by GA3 hormone increasing.

3.7. Relationship between Traits under Saline-Alkali Stress

The comprehensive score plot of each treatment was obtained by PCA. We know
the order between the processes: GO + Rh > Rh > GO > Ctrl (Figure 8A). There are
significant differences between GO + Rh-treated and other processes and GO + Rh-treated
was determined to be the optimal treatment. Further, the cumulative contribution rate for
PC1 and PC2 principal components is 82.1%. In detail, PC1 was severely subjected to N,
K+, RFW, SFW, AWE, IAA, GA3, RL, RS, RV, and RD. PC2 was strongly affected by APX,
CAT, PRO, Na+, SOD, POD, REC, H2O2, ABA, JA, and RW (Figure 7B).

3.8. GO + Rh Enhanced the Expression of Related to GA3 Hormone Genes

Four soybean’s saline-alkali tolerance genes of GmCBL1, GmWRI1a, GmGBP1, and
GmGAMYB related to GA3 synthesis were further selected to examine their expression lev-
els under saline-alkali stress. We found that GmCBL1, GmWRI1a, GmGBP1, and GmGAMYB
expression in GO + Rh-treated were markedly increased by 1.44, 3.59, 6.42, and 1.78 times,
respectively, compared with the Ctrl (Figure 9). The findings showed these genes were
up-regulated expression after saline-alkali stress. Further, the GmGBP1 gene was the high-
est expression in GO + Rh-treated. To sum up, the GO + Rh treated signally enhances
saline-alkali resistant gene expression related to GA3 synthesis in soybeans, thus increasing
the content of GA3 and improving the plants’ saline-alkali tolerance.

3.9. Effects of GO + Rh on N Uptake, Number of Nodules at Bloom and Pod-Setting Stage, and
Yield Traits

Making full use of nodule nitrogen fixation can improve soybean quality and yield.
The peak of soybean nodulation was in the period of soybean pod-setting. Our results
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showed that GO + Rh-treated growth performance and yield traits were better than the Ctrl
(Figure 10A,B). In detail, the pod number, empty pod numbers, seed numbers, seed weight,
and 100-grain weight of GO + Rh-treated were increased by 55.81%, 72.31%, 47.51%, 58,81%,
and 38.37% as compared with those of the Ctrl (Table 5). In addition, the root nodules
number and N content of GO + Rh-treated were increased by 176.00% and 38.95% at the
pod-setting stage (Figure 10D,E). In addition, the nitrogenase activity and leghaemoglobin
content of the GO + Rh-treated soybeans increased by 39.41% and 32.15, respectively, which
were positively correlated with the total nitrogen content (Figure 10F,G). We also found
that the variation of Na+ content in soil with different treatments was consistent with the
trend in the hydroponic solution. Therefore, we speculated that the adsorption of Na+

by GO + Rh reduced the over-adsorption of soybean plants. Decreased influence of Na+

toxicity on soybean growth (Table 6). Our results indicated that GO + Rh could not only
improve the growth development of soybean but also significantly increase the yield of
soybean. It can be used as a new type of bio-compound microbial agent to improve saline
alkali soil.
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Figure 8. Principal component analysis (PCA) of all studied traits of soybean seedlings under saline-
alkali stress. (A) PCA-Score plot. (B) PCA-Biplot. Na+: Na+ content; APX: APX activity; CAT:
CAT activity; PRO: Proline content; SOD: SOD activity; POD: POD activity; REC: Relative electrical
conductivity; MDA: MDA content; H2O2: H2O2 content; N: Nitrogen content; K+: K+ content; RFW:
Root fresh weight; SFW: Shoot fresh weight; AWC: The absolute water of shoot; IAA: IAA content;
GA3:CA3 content; ABA: ABA content; JA: JA content; RN: Root nodules; RL: Root length; RS: Root
surface area; RV: Root volume; RD: Root diameter. Clockwise rotation from MDA is as follows: MDA,
Na+, H2O2, REC, PRO, POD, APX, CAT, JA, SOD, ABA, RN, RV, RS, RFW, RLAWC, SFW, GA3, K+,
N, RD, IAA.
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Figure 10. Effects of GO + Rh at bloom and pod-setting stage (A) Phenotype of soybean at bloom
and pod-setting stage. (B) Pod phenotype (C) Root phenotype (D) Number of nodules. (E) Nitrogen
content in soybean. (F) Nitrogenase activity (G) Leghaemoglobin content. Data showing the means
± standard deviation (SD) with three replicates. * and ** represent p ≤ 0.05 and p ≤ 0.01, respectively.
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Table 5. Yield characters of soybean under saline-alkali stress.

Treatment Pods Number Empty Pods
Number Seed Number Seed Weight

(g)
100-Seed Weight

(g)

No treatment 16.25 ± 3.84 3.67 ± 1.83 27.92 ± 6.56 7.07 ± 1.89 30.44 ± 1.4
Ctrl 10.75 ± 3.62 2.42 ± 1.00 18.25 ± 6.22 3.89 ± 1.84 20.9 ± 1.76

GO + Rh 16.75 ± 6.59 ** 4.17 ± 1.27 ** 26.92 ± 12.63 * 6.17 ± 3.37 * 28.92 ± 3.04 *

Data showing the means ± standard deviation (SD). (n = 3) (** p ≤ 0.01,* p ≤ 0.05).

Table 6. Content of Na+ in soil.

Time Treatment Na+ Content (mg/g)

Seedings period
No treatment 1.98 ± 0.42

Ctrl 1.66 ± 0.42
GO + Rh 1.58 ± 0.28

Harvest period
No treatment 2.58 ± 1.01

Ctrl 149.48 ± 1.97
GO + Rh 165.7 ± 6.4 *

Data showing the means ± standard deviation (SD). (n = 3) (* p ≤ 0.05).

4. Discussion

Excessive saline-alkali pressure will destroy the internal and external osmotic balance,
produce ion toxicity to plants, affect the normal ability to absorb and transport nutrients,
and even lead to the collapse of the antioxidant system, causing changes in the expression
of hormones and related genes [24], which finally leads to plant growth inhibition and
even death [25]. Our study also confirmed that exogenous application of GO and Rh could
reduce the negative effects of saline-alkali stress on soybean, and significantly increase the
fresh weight and water content of soybean plants under saline-alkali stress. It might be due
to the fact that GO had hydrophilic functional groups that made it better able to prevent
water evaporation. Further, Rh could promote the growth and nodulation of the root
system, which helped the root system to better absorb and transport water and nutrition,
and ensure the growth of the plant.

A strong root system plays an important role in the whole growth period of soy-
bean [26]. While huge studies have shown that saline-alkali stress has damaged the root
system, leading to a delay in the growth of nodules, reducing the nodulation ability of
roots, and accelerating the senescence of nodules [27,28]. In our study, the root system of
soybean grew slowly under saline-alkali stress, and the root nodule number decreased.
Further, it decreased the nitrogen fixation ability in the soybean. The application of GO
and Rh could alleviate the damage caused by saline-alkali to the root system, and ensure
to absorb the nutrients. This might be because the inoculation of Rh directly promoted
nodulation numbers, and then improved the nitrogen fixation ability. Moreover, the exoge-
nous application of GO could improve water absorption capacity, and accelerate soybean
growth, which has also been reported by Zhao et al. [29]. Our research findings showed that
30 mmg/mL GO promoted the total root length, root surface area, root diameter, and root
volume, and inoculation with Rh promoted the nodulation, thus promoting the nitrogen
fixation ability. Interestingly, the strongest root system with GO + Rh-treated was found
which was consistent with previous studies that rhizobia could alleviate the salt stress of
leguminous plants [30]. In addition, the total nitrogen content of soybean is positively
correlated with the leghaemoglobin content of soybean and the activity of nitrogenase [23].
This positive correlation phenomenon was also found in our research. We speculate that
GO might play a positive role in Rh-promoting nodulation. The findings were also reflected
in the mature stage of soybean performance.

Saline-alkali stress mainly causes the production of ROS and the accumulation of
osmotic substances in plant cells, which eventually leads to oxidative stress and damages
the function of the plant cell membrane [31]. Plants resist oxidative stress and remove
excessive ROS through their defense mechanisms. In detail, SOD is an important enzyme
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for plants to resist the toxicity of ROS, which converts superoxide radicals (O2−) into oxygen
(O2) and H2O2. Excess H2O2 is further converted into nontoxic water by a reaction of CAT,
APX, and POD [32–34]. Our findings showed that H2O2, MDA, and PRO content in soybean
increased under saline-alkali stress. While GO + Rh-treated increased the PRO content,
decreased the H2O2 and MDA contents, and alleviated the oxidative damage. Moreover,
the activities of SOD and POD treated with GO + Rh-treated also increased significantly,
which was consistent with the previous research results [35]. Therefore, we speculated
that GO + Rh-treated could regulate the antioxidant enzyme activities of plants themselves
and cope with the damage caused by saline-alkali stress by eliminating excessive ROS.
More importantly, the combined use of GO + Rh made the activity of antioxidant enzymes
increase the most, the ability to scavenge ROS was the strongest, and the ability to resist
saline-alkali stress was significantly better than that of a single treatment.

Plants preferentially absorb Na+ under saline-alkali stress, which leads to the absorp-
tion of K+ and nutrients being inhabited, the ratio of K+/Na+ being changed, and the
ion balance being destroyed [36]. Studies have shown that the absorption of K+ and the
decrease in Na+ concentration in soybean leaves are prerequisites for resisting saline-alkali
stress [37]. Our data showed that GO + Rh-treated soybeans’ Na+ decreased, while K+

increased significantly. It showed that GO + Rh-treated could inhibit the accumulation
of Na+ in cells by reducing the influx of Na+ and maintaining the ion balance. We spec-
ulated that Rh-treated might be due to rhizobia promoting root nodulation and further
root could better excrete excessive Na+ and absorb more K+ which makes the K+/Na+

ratio increase [38]. GO as a nano-material, has a strong adsorption ions ability, and led to
reducing the Na+ absorption of soybean. This also confirmed that the Na+ content in the
soil treated with GO + Rh was significantly higher than that of the control plants.

When plants suffer from saline-alkali stress, excepted removing the influence of
reactive oxygen species through an osmotic adjustment mechanism and defense system,
they could also resist adversity by regulating hormone content [39]. IAA, ABA, GA3, and
JA play a key role in the process of plant resistance to saline-alkali stress [40]. In our study,
the change in GA3 content in soybean plants treated with GO + Rh was the most significant.
Previous studies have shown that GA could promote the elongation of hypocotyl by
regulating the plant’s growth under saline-alkali stress [41], Which was consistent with
our findings. In addition, the GmCBL1, GmWRI1a, GmGBP1, and GmGAMYB genes
expression levels, involved in GA3 synthesis, were increased under saline-alkali stress, all
of them, and GmGBP1 gene expression levels increased most significantly. We speculated
that GmGBP1 was involved in soybean resistance to saline-alkali stress. The GBP1 gene
could enhance the ability of resisting saline-alkali has also been reported in Arabidopsis
thaliana [42]. Therefore, we speculated that GO + Rh-treated might regulate endogenous
GA3 synthesis by increasing the expression level of GmGBP1, and further participate in
soybean resistance to saline-alkali stress.

Saline-alkali stress reduced the agronomic traits, quality, and economic yield of crops,
which was the fundamental reason why the development of agricultural production was
significantly affected by saline-alkali [43]. Our findings found that the pod number of
each plant, grain weight, and 100-grain weight of soybean plant were obviously lower
than those of soybean plants under normal conditions Negrão et al. [44]. pointed out
that soybean yield under saline-alkali stress was only 70% of that under natural growth.
It has been reported that inoculation of rhizobium could significantly increase the grain
yield of wheat [45]. This is consistent with our finding that application of GO + Rh could
significantly improve the yield traits of soybeans, resulting in fuller grains. In addition,
the increase in the number of empty pods per plant might be related to the increase in the
total number of pods in each plant [46]. The reason why the yield traits were significantly
improved by applying GO + Rh under saline-alkali stress might be that the application of
GO + Rh could alleviate the hazards brought by saline-alkali stress and make plants more
tolerant to saline-alkali.
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5. Conclusions

As GO, and Rh have positive effects on soybeans at different growth stages when they
are used alone, the effect could be doubled when their combination in a nanostructure
“GO + Rh” is applied. The findings showed that the GO + Rh application would alleviate
the hazards caused by saline-alkali because it improves the antioxidant enzyme activity of
soybean plants, ionic equilibrium, the content of related saline-alkali tolerance hormones,
and the expression of saline-alkali tolerance genes, and ultimately, improving the yield
indicators at the maturity stage of soybeans.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13061637/s1, Table S1: Primers used in fluorescence
quantitative PCR experiments.
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