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Abstract: Continuing progress in machine learning (ML) has led to significant advancements in
agricultural tasks. Due to its strong ability to extract high-dimensional features from fruit images,
deep learning (DL) is widely used in fruit detection and automatic harvesting. Convolutional neural
networks (CNN) in particular have demonstrated the ability to attain accuracy and speed levels
comparable to those of humans in some fruit detection and automatic harvesting fields. This paper
presents a comprehensive overview and review of fruit detection and recognition based on DL
for automatic harvesting from 2018 up to now. We focus on the current challenges affecting fruit
detection performance for automatic harvesting: the scarcity of high-quality fruit datasets, fruit
detection of small targets, fruit detection in occluded and dense scenarios, fruit detection of multiple
scales and multiple species, and lightweight fruit detection models. In response to these challenges,
we propose feasible solutions and prospective future development trends. Future research should
prioritize addressing these current challenges and improving the accuracy, speed, robustness, and
generalization of fruit vision detection systems, while reducing the overall complexity and cost.
This paper hopes to provide a reference for follow-up research in the field of fruit detection and
recognition based on DL for automatic harvesting.

Keywords: computer vision; deep learning; fruit detection; fruit recognition; automatic harvesting;
current challenge; development trend; research review

1. Introduction

In recent years, the application of artificial intelligence (AI) techniques and robotic
systems to automate agricultural processes has garnered significant interest (as shown in
Figure 1). Fruits usually grow in complex environments with many uncertainties. Powerful
fruit vision detection systems are necessary for intelligent agriculture and automatic harvesting.
Fruit vision detection systems’ characteristics mainly include imaging sensors and visual
information about fruits. Fruit vision detection systems generally operate through the five
stages (as shown in Figure 2): fruit image acquisition, fruit image preprocessing, fruit feature
extraction, fruit image segmentation, and fruit image recognition. Black and white cameras,
red–green–blue (RGB) cameras, spectral cameras, thermal cameras, and RGB-depth map
(RGB-D) cameras (as shown in Figure 3) are commonly used for fruit vision detection systems
to obtain color, shape, texture, and size information of fruits in specific operational areas.
A comparison of different types of imaging sensors is shown in Table 1. Fruit images acquired
through different imaging methods are shown in Figure 4. The main research processes of
fruit detection and recognition methods are shown in Figure 5. Since DL has a strong ability
to extract high-dimensional features from fruit images, researchers have proposed many
fruit detection and recognition methods based on DL (you only look once (YOLO), single
shot multibox detector (SSD), Alex Krizhevsky networks (AlexNet), visual geometry group
networks (VGGNet), residual networks (ResNet), faster region-convolutional neural networks
(Faster R-CNN), fully convolutional networks (FCN), SegNet, and mask region-convolutional
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neural networks (Mask R-CNN)) for automatic harvesting (as shown in Table 2). Despite much
research, many challenges need to be overcome to build an effective fruit vision detection and
harvesting system.
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Figure 1. Typical harvesting robots. (a) A plum-harvesting robot (photo reprinted with permission
from ref. [1]. 2021, Brown, J.); (b,d–f) Apple-harvesting robots (photo reprinted with permission from
ref. [2]. 2021, Yan, B.; ref. [3]. 2017, He, L.; ref. [4]. 2012, Ji, W.; ref. [5]. 2011, Zhao, D.); (c,n–p) Sweet
pepper-harvesting robots (photo reprinted with permission from ref. [6]. 2020, Arad, B.; ref. [7].
2017, Lehnert, C.; ref. [8]. 2014, Bac, C.W.); (g–i) Strawberry-harvesting robots (photo reprinted
with permission from ref. [9]. 2020, Xiong, Y.; ref. [10]. 2019, Xiong, Y.; ref. [11]. 2010, Hayashi,
S.); (j) A lychee-harvesting robot (photo reprinted with permission from ref. [12]. 2018, Xiong, J.);
(k,m) Tomato-harvesting robots (photo reprinted with permission from ref. [13]. 2018, Feng, Q.;
ref. [14]. 2010, Kondo, N.); (l) A kiwifruit-harvesting robot (photo reprinted with permission from
ref. [15]. 2019, Williams, H.A.M.).
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Figure 2. Different processes of fruit detection and recognition based on DL (image reprinted with
permission from ref. [16]. 2023, Xiao F.).
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Figure 3. Different types of imaging sensors commonly used for fruit vision detection systems
(accessed on 5 January 2023).
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Figure 4. Fruit images acquired using different imaging methods. (a) Black and white image; (b) RGB,
depth, and infrared images (photos reprinted with permission from ref. [17]. 2020, Fu L.); (c) spectral
image (photo reprinted with permission from ref. [18]. 2009, Okamoto H.); (d) color and thermal-
registered image (photo reprinted with permission from ref. [19]. 2010, Wachs J.P.).

Some review articles have been published encompassing diverse agricultural appli-
cations, such as crop recognition, fruit counting, weed discrimination, and plant disease
detection, with or without a robotic system, by considering AI/computer vision (CV)/other
advanced vision control techniques. For example, Rehman, T.U. et al., (including re-
searchers based in America and Canada) (2019) [20] provided a comprehensive summary
of ML algorithms that have been utilized in diverse agricultural operations. Brazilian
researchers Patrício, D.I. and Rieder, R. (2018) [21] investigated potential applications of
machine vision (MV) for diverse agricultural tasks, such as crop disease/pest detection,
grain quality evaluation, and automatic plant phenotyping. Narvaez, F.Y. et al., (including
researchers based in Chile, Italy, and America) (2017) [22] summarized various sensing
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techniques, along with their limitations, to categorize fruits/plants. Indian researchers Jha,
K. et al., (2019) [23] outlined the latest smart methodologies, such as the Internet of Things
(IoT), for agricultural purposes. Dutch researchers Wolfert, S. et al., (2017) [24] reviewed the
application of big data in agriculture. There are also some review articles that have been
published incorporating only a particular type of agricultural application or scenario. For
example, we reviewed fruit detection and recognition techniques based on digital image
processing and traditional ML for fruit harvesters in [16]. New Zealand researchers Saleem,
M.H. et al., (2019) [25] summarized and explained DL models for the identification and
classification of plant diseases, along with the application of DL with advanced imaging
techniques, including hyperspectral/multispectral imaging. Wang, D. et al., (including
American researchers and a researcher based in Israel) (2019) [26] and Chinese researchers
Wang, A. et al., (2019) [27] reviewed procedures for weed detection using various classifica-
tion methods, including ML and DL. The review literature on AI/ML/DL/MV/CV/other
advanced vision control techniques for intelligent agriculture and automatic harvesting
also includes [28–41]. However, unlike the articles mentioned above, our work focuses
on providing an overview and review of the use of DL applied to fruit image recognition
(mainly in the areas of detection and classification) for automatic harvesting. In order to
further define the study areas of our paper, we identify fruit detection and classification
tasks such as the determination of classes based on their specific types.

Methods based
on YOLO-v6
and YOLO-v7 

Methods based
on YOLOX

Methods based
on YOLO-v3

Methods based
on VGG and 

R-CNN

2008 201520142012 2016 2017

2018202020212023 2022

Methods based
on AlexNet

Methods based
on CNN

Methods based
on ResNet, Fast
R-CNN, FCN,
and YOLO-v1

Methods based
on Faster R-

CNN and SSD

Methods based
on YOLO-v8 

Methods based
on YOLO-v4
and YOLO-v5 

Methods based
on YOLO-v2,
SegNet, and

Mask R-CNN 

Figure 5. Main research processes of fruit detection and recognition methods based on DL.

Table 1. Comparison of different types of imaging sensors commonly used in fruit vision detec-
tion systems.

Fruit Imaging Sensors Types Information Advantages Limitations

RGB-D camera and LSS
(Lift, Splat, Shoot) Active RGB and depth images Complete fruit scene

characteristics Lack of feature descriptors

Black and white camera

Passive

Shape and texture
features

Little effect of changes in
lighting conditions Lack of color information

RGB camera Color, shape, and
texture features

Exploiting all the basic
features of target fruits

Highly sensitive to changing
lighting conditions

Spectral camera Color features and
spectral information

Providing more information
about reflectance

Computationally expensive for
complete spectrum analysis

Thermal camera Thermal signatures Color-invariant Dependency on minute
thermal difference
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Table 2. Fruit detection and recognition methods based on DL.

Types Accuracy Applied Crops Advantages Disadvantages

YOLO 84–98% cabbage, citrus, lychee,
mango, tomato

High fruit detection speed; it can meet
real-time requirements well for

automatic harvesting

Fruit detection accuracy under severe
occlusion, low resolution, and

changing lighting conditions is low

SSD 75–92% apple, mango, pear, sour
lemon

High detection accuracy and speed;
good robustness and generalization

Fruit images need to be preprocessed;
detection accuracy for small targets is

low

AlexNet 86–96% apple, strawberry, sugar
beet, tomato

Using dropout to avoid overfitting;
good generalization ability

Network convergence takes a
little longer

VGGNet 92–99% jujube, potato, sugar beet,
tomato

Simple structure of fruit vision
detection models

Network convergence takes a little
longer; using more

network parameters

ResNet 90–95% apple, banana
Using residual blocks to deepen

network layers and reduce network
parameters

Too deep network layers may result in
vanishing gradients, poor training

effectiveness, and low detection
accuracy

Faster R-CNN 90–99% apple, mango, orange High detection accuracy
Fruit detection speed is slow, and it
cannot meet real-time requirements

well

FCN 89–98% cotton, grape, guava,
kiwifruit

Accepting fruit image inputs with
arbitrary sizes; high efficiency and

low computational effort

Insensitive to the details of fruits in
fruit images; fruit classification does
not consider inter-pixel relationships

SegNet 83–95% apple, tomato

Obtaining edge contours and
maintaining the integrity of

high-frequency details
in segmentation

Neighboring information may be
ignored when fruit feature maps with

low resolution are unpooled

Mask R-CNN 80–94% apple, strawberry, tomato
Combining semantic segmentation
with fruit detection by outputting

mask images

Fruit detection speed is slow, and it
cannot meet real-time requirements

well

The contributions of this work are as follows: (1) systematically summarizes and
explains all kinds of fruit detection and recognition methods based on DL for automatic
harvesting from 2018 up to now; (2) systematically compares and analyzes the advantages,
disadvantages, and applicability of various fruit detection and recognition methods based
on DL for automatic harvesting; (3) systematically demonstrates the current challenges
affecting fruit detection performance for automatic harvesting and proposes feasible so-
lutions and prospective future potential developments. Through this clearer and more
comprehensive overview and review, we aim to provide a reference for follow-up research
in the field of fruit detection and recognition based on DL for automatic harvesting.

According to Martín-Martín, A. et al., (including Spanish researchers and a researcher
based in the UK) (2018) [42], Google Scholar citation data encompass a larger set of publications
than Web of Science and Scopus. In order to comprehensively survey the literature relevant
to the scope of this article, the Google Scholar database has been selected as the source. In
the first step, combinations of keywords such as “fruit detection”, “fruit recognition”, “deep
learning”, “computer vision”, and “fruit harvesting” were utilized in the initial search process.
All retrieved papers were subsequently evaluated for their relevance to the subject matter.
The second step included the examination of the references from step one for a more thorough
review. In the final step, to ensure that our study focuses on the most current research, all
papers published before 2018 were excluded. Only the recent literature from 2018 to the
present was considered. The final set of papers regarding fruit detection and recognition
based on DL for automatic harvesting included 53 research articles. Figure 6 displays the
distribution of articles per year, network models used, and crops detected.
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As shown in Figure 6, in recent years, the application of DL techniques and robotic
systems to automate agricultural processes has garnered significant interest. Improvement
and application research based on Faster R-CNN (21%) is currently a hotspot. The recogni-
tion accuracy of fruit detection methods based on Faster R-CNN is high, but recognition
speed is limited by complex anchor frame mechanisms. When there are mobile deployment
and high recognition speed requirements, fruit detection methods based on YOLO (17%)
are used most frequently. Their recognition speed is fast, but the recognition effect for small
target fruits is not very good. In addition, ResNet (11%) is the most popular backbone
network, followed by AlexNet (7%).

Most of the research focuses on apples (32.14%), followed by tomatoes (8.93%), and
citrus (7.14%). These three kinds of fruits are in high demand and yield globally. There
are some reasons that make them ideal candidates for automatic harvesting. Firstly, they
individually hang from plants, making them easily detectable based on their distinctive
features. Secondly, they have no extreme variations in size or weight. Lastly, they are
relatively hard and not easily damaged in mechanical operations. However, in terms of fruit
dimensions and peduncle length, different cultivars may exhibit different characteristics,
which can affect fruit detection and recognition performance. This poses challenges for
adapting fruit detection and recognition methods for different cultivars. Future work could
aim to identify cultivars that are more suitable for automatic harvesting.

The outline of this article is shown in Figure 7. The organization of the rest of the
paper is as follows: Section 2 summarizes and explains previous research articles about
DL applied to fruit detection and recognition for automatic harvesting. We compare and
analyze the advantages, disadvantages, and applicability of various fruit detection and
recognition methods based on DL (YOLO, SSD, AlexNet, VGGNet, ResNet, Faster R-CNN,
FCN, SegNet, and Mask R-CNN) for automatic harvesting; Section 3 discusses the current
challenges affecting fruit detection and recognition performance for automatic harvesting
(scarcity of high-quality fruit datasets, fruit detection of small targets, fruit detection in
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occluded and dense scenarios, fruit detection of multiple scales and multiple species, and
lightweight fruit detection models) and proposes feasible solutions and prospective future
development trends; Section 4 concludes this article.
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Balance of performance and complexity Operation optimization Neural network processing unitModel compression 

Multi-scale training

Transfer learning

Incremental learning

Figure 7. Outline of the article.

2. Fruit Detection and Recognition Based on DL

The concept of DL originated from research on artificial neural networks (ANN), pro-
posed by Canadian researchers Hinton, G.E. and Salakhutdinov, R.R. in 2006 [43]. Since DL
has a strong ability to extract high-dimensional features from fruit images, many researchers
have conducted extensive and in-depth research on fruit detection and recognition based
on DL for automatic harvesting. The basic architecture of DL-based ANN for fruit detection
and recognition is shown in Figure 8.



Agronomy 2023, 13, 1625 8 of 32

Fruit image acquisitionStart Fruit dataset preprocessing Training a fruit detection model

Convolutional
layer

Maxpool
layer

Dropout
layer

Fully connected layer Softmax classifier Output accuracy accepted ?

Evaluating the performance of
the fruit detection model

Stop Testing the fruit detection model

No

Yes

Figure 8. Basic architecture of DL-based ANN for fruit detection and recognition.

CNNs were proposed by American researchers LeCun, Y. et al. in the 1980s [44,45].
They can efficiently capture patterns in multidimensional space. A typical CNN framework
for fruit detection and recognition is shown in Figure 9. It includes the convolutional layer
(Conv), pooling layer (Pool), nonlinear activation function, and fully connected layer (FC).
The convolutional layer is the core of the CNN for fruit feature extraction. Depending
on the designed convolution kernel, convolution operations capture fruit image contours
and generate corresponding fruit feature maps. In order to reduce the spatial size of the
fruit feature maps, the pooling layer performs down-sampling operations by sampling the
maximum or average value in a neighborhood range. The nonlinear activation function
uses activation functions to process the input data. Neurons in the fully connected layer are
connected to all activated neurons in the layer above it. When training the CNN, the model
scores categories of predicted images, calculates training loss using selected loss functions,
and updates weights through backpropagation functions and gradient descent. The cross-
entropy loss function is one of the most widely used loss functions, and the stochastic
gradient descent method is the most popular method to address gradient descent.

Input Conv 1 Pool 1 Conv 2 Pool 2 FC 1 FC 2 Output

Figure 9. Typical CNN framework for fruit detection and recognition.

Compared with digital image processing and traditional ML techniques, fruit detection
and recognition methods based on CNN have great advantages in terms of accuracy.
Jahanbakhshi, A. et al., (including Iranian researchers and a researcher based in the UK)
(2020) [46] proposed an improved CNN (15, 16, and 18 layers) to detect apparent defects
in sour lemons. In comparison to traditional fruit feature extraction methods, such as
histogram of oriented gradient (HOG), local binary pattern (LBP), support vector machine
(SVM), k-nearest neighbor (KNN), decision tree, and fuzzy classification, the improved
CNN was found to outperform these methods, achieving an accuracy of 100%. Bangladeshi
researchers Sakib, S. et al., (2019) [47] proposed a fruit detection system using CNN. The
Fruits-360 dataset was utilized to evaluate the proposed system. The training accuracy
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and testing accuracy are 99.79% and 100%, respectively. In general, fruit detection and
recognition methods based on CNN can achieve state-of-the-art (SOTA) accuracy for
detecting and recognizing any type of fruit on any background.

Current fruit detection and recognition methods based on DL for automatic harvesting
can be classified into two categories: single-stage fruit detection and recognition methods
(such as YOLO and SSD) based on regression, and two-stage fruit detection and recognition
methods (AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask R-CNN)
based on candidate regions. Single-stage methods define fruit detection tasks as regression
problems of class confidence and bounding box locations (as shown in Figure 10). They
divide input fruit images into a grid of cells, extract fruit feature information through the
convolutional layer, and predict object class probabilities and bounding box coordinates
for each cell. In contrast, as shown in Figure 11, for two-stage methods, in the first stage,
a set of target fruit proposals is generated by the RPN on fruit feature maps produced
by the convolutional layer. The RPN generates region of interest (RoI) proposals for each
location on the fruit feature maps. Each proposal consists of a fixed-size bounding box
and a probability score of containing a target fruit. Based on the scores assigned to these
proposals, the top N highest-scoring regions are selected as final RoI proposals. To generate
RoI proposals, the RPN applies sliding windows of different scales and aspect ratios to
fruit feature maps. In the second stage, each final RoI proposal is cropped into a fixed-size
feature map using RoI pooling. The maps are then fed into a separate CNN for fruit
classification and bounding box regression.
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Input fruit
image 

Convolutional 
layer

Fruit feature
extraction

Fruit bounding box 

Feature map Region proposal
network

RoI proposal RoI pooling

Figure 11. Comparison of one-stage and two-stage fruit detection and recognition methods.

Table 3 compares and analyzes different fruit detection and recognition methods used
by various researchers. In the section on “crop, description, and merit”, we explain the
innovation. In the section on “improvement”, we identify the weaknesses and potential
improvements. In general, two-stage fruit detection and recognition methods have been
shown to achieve higher accuracy than single-stage fruit detection and recognition methods
due to their ability to propose more accurate fruit locations. However, they are slower and
computationally more intensive than single-stage fruit detection and recognition methods.
On the other hand, while single-stage fruit detection and recognition methods are faster
and simpler than two-stage fruit detection and recognition methods, they may be less
accurate, especially for small target fruits.
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Table 3. Comparison of different fruit detection and recognition methods based on DL.

Crops, Description, and Merit En* Datasets Pixels Sensors Condition Improvements Value (%)

Olive (CNN)/Indian researchers Khosravi,
H. et al., (2021) [49] propose a real-time

detection method for two olive cultivars in
four ripening stages. Adagrad, SGD,

SGDM, RMSProp, Adam, and Nadam are
evaluated. Nadam shows the best efficiency

√ Train: 14,017;
test: 878 256 × 256 Galaxy J6

smartphone camera Natural lighting

Lighting conditions and
fruit image-capturing

settings are
not considered

Overall accuracy:
91.91; CPU: 12.64 ms;

GPU: 4.10 ms

Blueberry (CNN)/Chilean researcher
Quiroz, I.A. and Mexican researcher

Alférez, G.H. (2020) [50] present a DL
solution for image recognition of legacy

blueberries in rooting stages

×
Total: 258; train:

168; val: 54;
pre: 36

1920 × 1080 Microsoft Lifecam
Studio digital camera

Good lighting
conditions, not

blurred, and
without distracting

objects in
the background

It could use GANs to
generate synthetic
images that closely
resemble real ones,

minimizing the need for
accessing real data

Accuracy: 86;
precision: 86; recall:

88; F1 score: 86

Sour lemon (CNN)/Jahanbakhshi, A. et al.,
(including Iranian researchers and a

researcher based in the UK) (2020) [46]
detect apparent defects in sour lemons.

Data augmentation and stochastic pooling
mechanisms are used to improve

detection performance

√
Total: 5456;

healthy: 2960;
damaged: 2496;

train: 70%;
val: 30%

16 × 16; 32 × 32;
64 × 64

Camera (Canon,
Japan)

A lighting box
including two

LED lamps

Future work may
include accommodating

more varied fruit
detection conditions

Accuracy: 100

56 diseases infecting 12 plant species
(CNN)/Brazilian researcher Barbedo, J.G.A.
(2018) [51] studies the effectiveness of DL

and TL for plant disease classification

×
Total: 1383;
train: 80%;
val: 20%

224 × 224 × 3
A variety of digital

cameras and
mobile devices

Under controlled
conditions: 15%;

under real
conditions: 85%

The number of samples
is too small for the CNN

to thoroughly capture
the characteristics and
variations associated

with each class

It is a challenge to
build fruit databases

comprehensive
enough for the

creation of
robust fruit

detection models

Strawberry (AlexNet)/Chinese researchers
Ni, J. et al., (2021) [52] propose an enhanced
AlexNet for strawberry quality evaluation.

The size of the convolution kernel is
modified. The single convolutional layer is

divided into three convolutional layers
with different convolution kernels. The BN

layer and L2 regularization are used

×

Total: 3006;
unripe: 778;

medium: 382;
fully: 787;
bad: 847;

malformed: 212;
train: 80%;

val: 10%; test: 10%

227 × 227 HUAWEI mobile
phone

Two different
scenes of a field
and a laboratory

It is not certain which
augmentation method
will help improve fruit
detection performance

Average accuracy:
90.70; after

augmentation: 95.75
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Table 3. Cont.

Crops, Description, and Merit En* Datasets Pixels Sensors Condition Improvements Value (%)

Grape bunch (AlexNet)/Italian researchers
Marani, R. et al., (2021) [53] investigate the use of
DL for grape bunch segmentation in natural fruit
images captured using a consumer-grade camera.
It is based on the optimal threshold selection of
bunch probability maps as an alternative to the
conventional minimization of cross-entropy loss

for mutually exclusive classes

× Total: 84;
train: 60; val: 24 640 × 480 Intel RealSense R200

RGB-D camera

Fruit images under
direct (opposite)
sunlight are not
considered since

they become
overexposed, and

their colors saturate
to white

Depth data could be
used to guide the

selection of the size
N of the moving
window for the

proposed processing

Mean segmentation
accuracy on the

bunch class: 80.58;
IoU: 45.64

Date fruit (VGGNet)/Saudi Arabian researchers
Altaheri, H. et al., (2019) [54] propose an efficient
MV framework for date fruit-harvesting robots

×

Total: 8072;
5 date types in

different
pre-maturity
and maturity
stages; more
than 350 date

bunches;
belong to

29 date palms

-- RGB video camera

The dataset reflects
the challenges,

including
variations in angles,

scales, and
illumination
conditions

It may lead to
confusion in the

detection of date fruit
maturity, including
labeling rules and

interference between
maturity stages

Type, maturity, and
harvesting decision

classification
accuracies: 99.01,

97.25, 98.59;
classification times:
20.6, 20.7, 35.9 ms

Apple (ResNet)/Chinese researchers Wang,
D. et al., (2020) [55] develop a remote apple

horizontal diameter detection system to achieve
automatic measurement of apple growth

throughout the entire growth period. The fused
convolutional feature network developed can
effectively remove complex backgrounds and

accurately detect apple edges with near
real-time performance

√

Total: 903; train:
743; val: 160;

test: 170;
5944 images are

eventually
obtained

through data
augmentation;

mature red,
immature

green,
semimature

403 × 303 iPhone 7 plus

To prevent distinct
edges from forming
on the surfaces of

apples due to
intense natural

light, the images
are captured on

cloudy days or at
dusk when the

light is not
as intense

Future
improvements are
needed to track the
monitored apple in
order to achieve the
goal of adjusting the

camera’s shooting
angle and selecting

seed points
automatically

F1 score: 53.1;
average run time:

75 ms; mean average
absolute error of the
apples’ horizontal

diameters detected:
0.90 mm
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Table 3. Cont.

Crops, Description, and Merit En* Datasets Pixels Sensors Condition Improvements Value (%)

Passion fruit (Faster R-CNN)/Chinese
researchers Tu, S. et al., (2020) [56] propose a

multiple-scale Faster R-CNN approach based on
RGB-D images for small passion fruit detection
and counting. It detects lower-level features by

incorporating feature maps from shallower
convolutional feature maps for RoI pooling

√

Total RGB
images: 8651;

train: 6055;
test: 2596; total
depth images:

3352;
train: 2346;
test 1006

1920 × 1080;
512 × 424 Kinect V2

The Kinect V2
sensor is used to

avoid strong
sunlight and work

in shady areas
because the ToF

technique is
unsuitable in

strong sunlight
conditions

The detection
performance of
passion fruit in

different growth
stages could be
evaluated and

analyzed

Recall: 96.2;
precision: 93.1;
F1-score: 94.6

Young tomato fruit (Faster R-CNN)/Chinese
researchers Wang, P. et al., (2021) [57] propose a

method for detecting young tomatoes on
near-color backgrounds based on an improved
Faster R-CNN with attention mechanisms. Soft

non-maximum suppression is used to reduce the
missed detection rate of overlapping fruits

×

Total: 2235;
train: 80%;
val: 10%;
test: 10%

3000 × 3000 MI 9 smartphone

Different weather
conditions (sunny
and cloudy) and

different time
periods (morning,

noon, and evening)

Future work could
include

accommodating
various cultivars of
tomatoes and more

unstructured
environments

mAP: 98.46; average
detection time: 84 ms

Lychee (YOLO)/To improve the efficiency of
lychee harvesting, Chinese researchers Li,

C. et al., (2022) [58] propose a column-comb litchi
harvesting method based on K-means 3D

clustering partitioning

×
Total: 1049;
train: 840;
test: 209

1280 × 800;
1280 × 720

Intel RealSense
depth camera

Orchard
environments

(strong light and
backlight, sunny
and cloudy days,
and far and near

distances)

Current detection
performance are

obtained by testing
on well-defined fruit
images with a limited

sample size

Recall: 78.99;
precision: 87.43; F1

score: 0.83

Tomato (YOLO)/Chinese researchers Miao,
Z. et al. (2022) [59] integrate classic image

processing methods with YOLOv5 to increase
fruit detection accuracy and robustness

×
Total: 1000;
train: 800;
val: 200

1920 × 1080;
1280 × 720

Intel RealSense
depth camera

Artificial
experimental
environments

Extended tests and
improvements in a

real orchard and
greenhouse will be

the main focus

Average deviation:
2 mm; average
operating time:

9 s/cluster
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Table 3. Cont.

Crops, Description, and Merit En* Datasets Pixels Sensors Condition Improvements Value (%)

Hass avocado, lemon, apples (SSD)/Vasconez,
J.P. et al., (including Chilean researchers and a

researcher based in America) (2020) [60] test two
of the most common architectures: Faster R-CNN
with Inception V2 and SSD with MobileNet. To

address the problem of video-based fruit
counting, it uses multi-object tracking based on

Gaussian estimation

√

Avocado train:
1021; val: 211;
test: 211; apple

train: 694;
val: 191;

test: 191; lemon
train: 539;
val: 202;
test: 202

360 × 640
Commercial RGB

camera; acquiring at
30 FPS

Hass avocado,
lemon, and apple
datasets acquired

under illumination
levels ranging from
1890 to 43,600, 4800
to 52,000, and 3500

to 38,000 lux,
respectively

The CNN
architectures are

highly dependent on
the quality of the
training set. The

results might not be
conclusive for other

groves with
different fruits

SSD with MobileNet,
the minimum relative
error: 7 (avocados);

13 (apples);
20 (lemons);

computing time:
220 ms

Guava (FCN)/Chinese researchers Lin, G. et al.,
(2019) [61] use a low-cost RGB-D sensor to

achieve guava detection and pose estimation. It
uses Euclidean clustering to detect all the 3D

fruits from the fruit binary maps output by FCN.
It also establishes a 3D line segment detection
method to reconstruct the branches from the

branch binary maps

×
Total: 437;

train: 80%; val:
20%

424 × 512 Kinect V2 All kinds of
illuminations

Branch is a little
difficult to segment

Precision: 98.3; recall:
94.8; 3D pose error:

23.43◦ ± 14.18◦;
execution time:

56.5 ms

Lychee clusters (SegNet)/Chinese researchers Li,
J. et al., (2020) [62] develop a reliable algorithm
based on RGB-D cameras to accurately detect

and locate the fruit-bearing branches of multiple
lychee clusters. It revises density

clustering-based branch extraction and optimal
clustering-based parameter analysis

√ Total: 452;
train: 80%;
val: 20%

1920 × 1080;
512 × 424 Kinect V2

All kinds of
illuminations; no
artificial shade or

lighting
interference

Future studies could
focus on improving
the success rate of

picking tasks

Detection accuracy:
83.33; positioning

accuracy:
17.29◦ ± 24.57◦;
execution time:

464 ms

Apple (SegNet)/Majeed, Y. et al., (including
American researchers and researchers based in
China) (2020) [63] develop a DL-based semantic

segmentation method. Both simple and
foreground RGB images are used for training

SegNet to segment trunks and branches

√ Total: 509;
train: 70%;
test: 30%

960 × 540 Kinect V2
Different lighting
conditions (sunny,
cloudy, and night)

Optimal branches
will be selected for

training by
estimating the

essential parameters
desired for canopy

architecture

Mean accuracy: 89;
IoU: 52; boundary-F1-

score: 81
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Table 3. Cont.

Crops, Description, and Merit En* Datasets Pixels Sensors Condition Improvements Value (%)

Cherry tomato (Mask R-CNN)/Chinese
researchers Xu, P. et al., (2022) [64] propose an

improved Mask R-CNN for the visual
recognition of cherry tomatoes by using depth
information and considering the prior adjacent

constraint between fruits and stems

√ Total: 3444;
train: 80%;
val: 20%

640 × 480 Intel RealSense
depth camera Natural conditions

Future work may
include reducing the
processing time and

accommodating
more varied
conditions

Detection accuracy of
fruits: 93.76; accuracy

and recall of stems:
89.34 and 94.47;

computing
time: 40 ms

Strawberry (Mask R-CNN)/Chinese researchers
Yu, Y. et al., (2019) [65] perform a visual

localization method for strawberry picking
points after generating mask images of ripe fruits
using Mask R-CNN. ResNet-50 is adopted as the
backbone network, combined with the FPN for

fruit feature extraction. The RPN is trained
end-to-end to create region proposals for each

feature map

×

Total: 1900;
train: 1520;

val: 380;
test: 100

640 × 480 Hand-held
digital camera

Different periods
(morning and

afternoon); under
varying light

intensity (sunny
and cloudy
conditions);

different levels of
interference

(overlap, occlusion,
and oscillation)

Although the
average processing

frames per second is
8, the speed of the
embedded mobile
harvesting robot is

lower than this result.
Therefore, the

real-time
performance of the
model needs to be
further improved

Average detection
precision: 95.78;

recall: 95.41; IoU of
instance

segmentation: 89.85;
average error

of picking
points: ±1.2 mm

En* represents data enhancement.
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2.1. Single-Stage Fruit Detection and Recognition Methods Based on Regression
2.1.1. Fruit Detection and Recognition Methods Based on YOLO

YOLO is one of the most classic and advanced fruit detection algorithms. It can detect
and classify target fruits simultaneously in a single image. As shown in Figure 12, YOLO-v1
was the beginning. YOLO-v1 was proposed by American researchers Redmon, J. et al. in
2015 [66]. YOLO-v2 was proposed by American researchers Redmon, J. and Farhadi, A. in
2017 [67]. It included improvements to the structure of YOLO-v1. The K-means clustering
algorithm was used to determine the optimal number of anchor boxes and to analyze the
relationship between recognition accuracy and speed. Then, they also proposed YOLO-
v3 [68], which featured improvements such as the Darknet-53 backbone network and
multi-scale prediction. Bochkovskiy, A. et al., (2020) [69] systematically analyzed the
processes of data preprocessing and the design of detection and prediction networks. Based
on the analysis, they designed an efficient target detector (YOLO-v4) suitable for a single
graphics card. YOLO-v5 [70] provided four different sizes of target detectors to meet the
needs of different applications. YOLOR [71], YOLOX [72], YOLO-v6 [73], YOLO-v7 [74],
and YOLO-v8 [75] also appeared one after another. YOLO-v8 is a SOTA model. It was open-
sourced on January 10, 2023. The framework is shown in Figure 13. Specific innovations
include a new backbone network, a new anchor-free detection head, and a new loss function
that can run on various hardware platforms from CPU to GPU.

YOLO-v1

YOLO-v2 YOLO-v3

PP-YOLO-v2

YOLO-v4

PP-YOLO

YOLO-v5

YOLOX

YOLO-v8

YOLOR

PP-YOLOE

YOLO-v6

YOLO-v7

Figure 12. Main research processes of YOLO.

Fruit detection and recognition methods based on YOLO are widely used, by virtue of
their advantages. Chinese researchers Xiong, J. et al., (2020) [76] proposed a method based
on YOLO-v2 to detect and count mangoes in fruit images taken by an UAV. The processing
time is 80ms, and the average detection accuracy is 96.1%. British researchers Birrell,
S. et al., (2020) [77] proposed a method based on YOLO-v3 to detect and classify cabbages
in four growth stages, achieving a total detection accuracy of 91% and a classification
accuracy of 82%. In order to create an even more lightweight fruit detection model, Chinese
researchers Li, C. et al., (2022) [58] proposed an improved YOLO-v3-tiny fruit detection
model based on K-means 3D clustering partitioning for small and densely packed lychee
fruits, and compared it with other fruit detection networks (YOLO-v3-tiny, YOLO-v4,
YOLO-v5, and Faster R-CNN). The improved YOLOv3-tiny can recognize lychee fruits
more accurately. The check-all rate, check-accuracy rate, and F1 score are 78.99%, 87.43%,
and 0.83, respectively. However, fruit detection and recognition methods based on YOLO
do not use prior information when predicting fruit positions. This results in a loss of fruit
location accuracy. In addition, when YOLO predicts detection results corresponding to
each bounding box, it requires that the target fruit’s center point must be located inside
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the bounding box. This imposes a strong spatial constraint on the prediction process of
YOLO and makes fruit detection and recognition methods based on YOLO less effective
at detecting small target fruits that appear in groups. In the future, we can input and
fuse semantic information (such as fruit scene and context-related information) into fruit
detection algorithms to greatly improve fruit detection accuracy. For example, Chinese
researchers Miao, Z. et al., (2022) [59] integrated classic image processing methods with
YOLO-v5 to increase fruit detection accuracy and robustness. A tomato-harvesting robot
can be guided to efficiently harvest truss tomatoes, with an average operating time of 9 s
per cluster.

Input CBS CBS C2f×3 CBS C2f×6 CBS C2f×6 CBS C2f×3 SPPF

C2f×3 CBS Concat C2f×3 CBS Concat C2f×3

Concat Upsample C2f×3 Concat UpsampleOutput

CBS Conv BN SiLu CBS Maxpool2d Maxpool2d Maxpool2d Concat CBS

SPPF

Backbone

Neck

Figure 13. YOLO-v8 framework (image reprinted with permission from ref. [78]. 2023, Lou, H.).

2.1.2. Fruit Detection and Recognition Methods Based on SSD

SSD was proposed by American researchers Liu, W. et al. in 2016 [79]. A typical
SSD framework for fruit detection and recognition is shown in Figure 14. It consists of a
base network (such as VGG-16) and an additional set of convolutional and pooling layers
for fruit feature extraction and detection. It also includes an NMS layer for filtering and
selecting the detection results. It borrows the idea of multi-scale fruit detection. Fruit
detection tasks are accomplished by generating multiple fruit feature maps of different
scales during the fruit detection process. The network model calculates confidence scores
for each category in predicted boxes and ground truth boxes, respectively. Then, an NMS
operation is performed on the calculated scores of each prediction boxes. Finally, top-ranked
prediction boxes are outputted as the final result of fruit detection.
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Conv: 3×3×(4×(Classes+4))

Figure 14. Typical SSD framework for fruit detection and recognition.

Validated on multiple fruit datasets, fruit detection and recognition methods based
on SSD have high accuracy and speed. Vasconez, J.P. et al. (including Chilean researchers
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and a researcher based in America) (2020) [60] evaluated two of the most widely used
architectures (Faster R-CNN with Inception V2 and SSD with MobileNet) for fruit detection.
The former achieves 4.55 FPS, whereas the latter achieves a significantly higher perfor-
mance of approximately 16.67 FPS. However, it is worth noting that fruit detection and
recognition methods based on SSD preprocess input fruit images, which may lead to lower
fruit detection accuracy for relatively small target fruits when passing through deeper
convolutional layers. Chinese researchers Liang, Q. et al., (2018) [80] proposed a real-time
detection method for on-tree mangoes based on SSD. New sampling strategies were de-
signed to optimize data augmentation techniques. With optimized data augmentation
techniques and default box proposals, SSD outperforms Faster R-CNN in mango detection.
Detection results for an almond dataset further confirm the effectiveness of the proposed
method. However, it is important to note that the proposed method has deeper layers
and a larger number of parameters. This results in slower operation speed and longer
computation time.

In general, fruit detection and recognition methods based on SSD also have certain
disadvantages. They independently input fruit image features, extracted by different
convolutional layers, into corresponding network detection branches. This means that
the same fruits in detected images may be identified by bounding boxes of different sizes
simultaneously, which can easily lead to the problem of repeated detection. Additionally,
each detection branch only operates on target fruits in its respective field, making it difficult
to consider the relationship between target fruits of different layers and scales. Therefore,
the detection effect of fruit detection and recognition methods based on SSD on small target
fruits is not good. Further research could improve SSD in detector frameworks, prediction
mechanisms, matching mechanisms, and loss functions.

2.2. Two-Stage Fruit Detection and Recognition Methods Based on Candidate Regions
2.2.1. Fruit Detection and Recognition Methods Based on AlexNet, VGGNet, and ResNet

Typical AlexNet, VGGNet, and ResNet frameworks for fruit detection and recogni-
tion are shown in Figure 15. AlexNet was proposed by American researchers Krizhevsky,
A. et al. in 2012 [81]. It is the first DL framework that extends CNN to the field of CV.
Compared with techniques based on digital image processing and traditional ML, fruit
detection and recognition methods based on AlexNet have great advantages in terms of
accuracy. Chinese researchers Zhu, L. et al., (2018) [82] proposed a highly effective method
for vegetable classification based on AlexNet. The accuracy achieved in the testing set
was significantly improved compared to the BP neural network (78%) and SVM classifier
method (80.5%), with a remarkable accuracy of 92.1%. Indian researchers Rangarajan,
A.K. et al., (2018) [83] demonstrated that the classification accuracy of 13,262 fruit images
was 97.49% for AlexNet. Fruit detection and recognition methods based on AlexNet have
gained widespread acceptance due to their advantages. By modifying the size of the convo-
lutional kernel and convolutional layer, fruit detection accuracy can be effectively improved.
For example, Chinese researchers Ni, J. et al., (2021) [52] improved AlexNet by proposing
a new architecture—E-AlexNet. The new architecture enhanced the convolutional layer,
reduced kernel size, and used L2 regularization and a BN layer instead of LRN layer.
E-AlexNet was compared with the original AlexNet by classifying five strawberry varieties
with different qualities. The average recognition accuracy of E-AlexNet was 90.70%, while
that of the original AlexNet was 84.50%.
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Figure 15. Typical AlexNet, VGGNet, and ResNet frameworks for fruit detection and recognition.

VGGNet was proposed by American researchers Simonyan, K. and Zisserman, A. in
2014 [84]. It has high accuracy in fruit detection and recognition. The biggest improve-
ment of VGGNet is the depth of the network, which has been increased from 8 layers to
16 or 19 layers. Additionally, VGGNet uses a 3 × 3 convolution kernel to replace the large
convolution kernels (11 × 11, 7 × 7, 5 × 5) in AlexNet. In the case of the same receptive
field, the accumulation effect of the small convolution kernel is better than that of the large
convolution kernel. For example, Indian researchers Mahmood, A. et al., (2022) [85] as-
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sessed the effectiveness of two CNN paradigms (AlexNet and VGG-16) in classifying jujube
fruits based on their maturity level (unripe, ripe, and overripe). The best accuracy achieved
by VGG-16 was 97.65%. Indian researchers Begum, N. and Hazarika, M.K. (2022) [86] used
several fruit detection models (VGG-16, VGG-19, Inception V3, ResNet-101, and ResNet-
152) to classify three tomato classes (immature, partially mature, and mature). VGG-19 had
the best classification accuracy of 97.37% at epoch 50 and batch size 32. Chinese researchers
Pérez-Pérez, B.D. et al., (2021) [87] pre-trained seven CNN architectures (AlexNet, VGG-16,
VGG-19, ResNet-50, ResNet-101, ResNet-152, and Inception V3) using the ImageNet dataset.
VGG-19, with the Adam optimizer, is the one that reported the best accuracy (99.32%).

In order to further improve the accuracy and speed of fruit detection and recognition,
Chinese researchers Li, Z. et al., (2020) [88] proposed a fruit recognition and classification
method based on VGG-M and VGG-M-BN. On the basis of the original VGG, VGG-M
combined the output features of the first two fully connected layers. VGG-M-BN had
the BN layer added. The convergence rate of VGG-M-BN is nearly three times faster.
The quality of datasets, batch size, and different activation functions also influence fruit
recognition and classification accuracy. Firstly, they used VGG-M-BN to train different
numbers of vegetable datasets. Recognition accuracy decreases as the quality of datasets
decreases. Secondly, by contrasting activation functions, they verified that the rectified
linear unit (ReLU) activation function is better than the traditional Sigmoid and Tanh
functions in VGG-M-BN. Finally, they verified that the fruit recognition and classification
accuracy of VGG-M-BN increases as the batch size increases.

ResNet was proposed by American researchers He, K. et al. in 2015 [89]. It has a
high pattern recognition capability. According to the number of backbone layers, ResNet
can be further subdivided into ResNet-18, ResNet-50, ResNet-101, and ResNet-152. Fruit
detection and recognition methods based on ResNet are widely used, by virtue of their
advantages. Helwan, A. et al., (including Lebanese researchers and researchers based in
Turkey) (2019) [90] performed automatic segmentation of bananas based on ResNet. Wang,
D. et al., (including Chinese researchers and a researcher based in America) (2020) [55]
developed a remote apple horizontal diameter detection system based on ResNet to achieve
automatic measurement of apples throughout the entire growth period.

Capturing fruit feature information on multiple scales is one way to address the prob-
lem that target fruits are overlapped and occluded by branches and leaves. American
researchers Rahnemoonfar, M. and Sheppard, C. (2017) [91] optimized the structure of
Inception-ResNet. The Improved-Inception-ResNet can count efficiently, even if fruits are
under shadow, overlapped, and occluded by leaves. However, although the above fruit
detection and recognition methods have high accuracy, they are slow. To address this prob-
lem, Australian researchers Kang, H. and Chen, C. (2020) [92] introduced an enhanced deep
neural network DaSNet-v2 with ResNet. It has the ability to carry out both detection and
instance segmentation of fruits, alongside semantic segmentation of branches. To further
improve the speed of fruit detection and meet the real-time requirements of harvesters,
Australian researchers Kang, H. and Chen, C. (2019) [93] constructed a multifunctional
network for the real-time detection and semantic segmentation of apples and branches.
They combined it with the lightweight backbone of ResNet-101 to improve the real-time
computational performance of the fruit detection model.

2.2.2. Fruit Detection and Recognition Methods Based on R-CNN, Fast R-CNN, and
Faster R-CNN

Typical R-CNN, Fast R-CNN, and Faster R-CNN frameworks for fruit detection and
recognition are shown in Figure 16. R-CNN was proposed by American researchers
Girshick, R. et al. in 2014 [94]. It is the first algorithm to successfully apply DL to object
detection and recognition. Fast R-CNN was proposed by American researcher Girshick,
R, one of the creators of R-CNN, in 2015 [95]. It solves some problems of its predecessor,
such as slow speed and a large overlap of proposal boxes. One of the key innovations of
Fast R-CNN is the “RoI pooling layer”, which operates by taking CNN feature maps and
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regions of interest as inputs and providing the corresponding features for each region. This
allows Fast R-CNN to extract fruit features from all regions of interest in fruit images in a
single pass, instead of R-CNN processing each region separately. It significantly improves
the speed of fruit detection and recognition. However, Fast R-CNN still requires regions of
fruit images to be extracted and provided as inputs to fruit detection models.

Cache
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Fast 
R-CNN

Faster 
R-CNN

Selective 
search CNN

Crop  and  
resize

Store all region feats
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CNN
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Figure 16. Typical R-CNN, Fast R-CNN, and Faster R-CNN frameworks for fruit detection and
recognition.

Faster R-CNN was proposed by American researchers Ren, S. et al. in 2016 [96]. It takes
images of fruits as inputs and returns a list of fruit classes, along with their corresponding
bounding boxes. Its main innovation is the “RPN”. By integrating region detection into the
main neural network structure, Faster R-CNN achieves near real-time detection speed with
high accuracy and generalization capability.

The fruit detection performance obtained by Faster R-CNN may outperform other
networks (YOLOv3, SSD, and ReFCN) [97]. Therefore, fruit detection and recognition
methods based on Faster R-CNN are widely used. Chinese researcher Wan, S. and Greek
researcher Goudos, S. (2020) [98] proposed a multi-class fruit (apple, mango, and orange)
detection method based on Faster R-CNN. The average detection accuracy was 90.72%,
and the image processing time was 58ms. Fu, L. et al., (including Chinese researchers and
researchers based in America) (2018) [99] proposed a kiwifruit detection method based on
Faster R-CNN and evaluated it on kiwifruit images collected in field environments. Zhang,
J. et al., (including Chinese researchers and researchers based in America) (2020) [100] used
Faster R-CNN to improve a multi-class fruit detection method. They aimed to automatically
detect apples, branches, and tree trunks in natural environments and estimate the bobbing
locations of collected and captured apples.

Under changing lighting conditions, with low resolution, and with severe occlusion
by adjacent fruits and leaves, fruit detection and recognition are very challenging tasks. To
solve the problem, Chinese researchers Wang, P. et al., (2021) [57] proposed an improved
Faster R-CNN with an attention mechanism based on a near-color background for young
tomato detection and recognition. Small target fruit detection and recognition are also very
challenging tasks. To solve this problem, in the localization phase, Chinese researchers Cao,
C. et al., (2019) [101] proposed an improved loss function based on intersection and ratio for
bounding box regression. Additionally, in the recognition phase, the bilinear interpolation
method is used to improve the pooling operation of interest regions.
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2.2.3. Fruit Detection and Recognition Methods Based on FCN, SegNet, and Mask R-CNN

FCN was proposed by American researchers Long, J. et al. in 2015 [102]. A typical
FCN framework for fruit detection and recognition is shown in Figure 17. FCN classifies
fruit images at the pixel level and solves the problem of semantic image segmentation.
FCN replaces the fully connected layer of the original CNN with the convolutional layer so
that the output will be a heatmap instead of a category. Meanwhile, to solve the problem of
smaller image size due to convolution and pooling, up-sampling is used to recover image
size. Chinese researchers Lin, G. et al., (2019) [61], German researchers Zabawa, L. et al.,
(2019) [103], and Li, Y. et al., (including Chinese researchers and a researcher based in
Germany) (2017) [104] used FCN for the semantic segmentation of guava, grape, and
cotton, respectively. Although guava can be segmented easily, the branch is a little difficult
to segment. They also compared FCN with SegNet and classification and regression tree
classifier (CART). FCN outperforms the other two methods. However, FCN makes some
false predictions due to the effects of overlaps and changing lighting conditions. American
researchers Chen, S.W. et al., (2017) [105] proposed a method based on FCN for accurate
fruit counting in complex natural environments. The method works well even under highly
shaded conditions. Furthermore, American researchers Liu, X. et al., (2018) [106] combined
deep convolutional segmentation to accurately count sequential images of visible fruits.

Figure 17. Typical FCN framework for fruit detection and recognition (Source: https://github.com/
Alpharouk (accessed on 5 January 2023).

In general, fruit detection and recognition methods based on FCN can accept fruit
image inputs of arbitrary size, and the recognition efficiency is higher. They avoid the prob-
lem of repeated storage and computational convolution caused by the use of pixel blocks.
They reduce the computational effort of the whole fruit detection operation. However, the
recognition accuracy is not high because they are insensitive to the details in fruit images,
and the classification does not consider inter-pixel relationships.

SegNet was proposed by British researchers Badrinarayanan, V. et al. in 2017 [107].
A typical SegNet framework for fruit detection and recognition is shown in Figure 18. It
follows the segmentation idea of FCN and is a symmetric network model with a supervised
coding and decoding structure. SegNet can handle fruit image inputs of arbitrary sizes.
The coding part reduces the size of input fruit images and the number of parameters
stage by stage through maximum pooling, and records the pooling index positions in
the fruit images. In order to ensure consistency in resolution between input and output
fruit images, decoding processes recover fruit image information through up-sampling.
Finally, it outputs semantic segmentation results through the SoftMax classifier. The major
difference between SegNet and FCN is the method used for up-sampling low-resolution
feature maps to high-resolution feature maps.

https://github.com/Alpharouk
https://github.com/Alpharouk
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Figure 18. Typical SegNet framework for fruit detection and recognition (image reprinted with
permission from ref. [108]. 2020, Peng, H.).

Harvesting robots usually operate in complex natural environments, and the random
growth of trunks and branches poses a challenge for fruit detection and recognition. Majeed,
Y. et al., (including American researchers and a researcher based in China) (2018) [109]
developed a trunk and branch segmentation method using a Kinect V2 sensor. Harvesting
robots need to optimize the position of the end effector based on the position and angle
between fruits and robot components before approaching, grasping, and cutting target
fruits. For this purpose, Dutch researchers Barth, R. et al., (2019) [110] proposed inferring
the position of fruits and stems through sparse semantic segmentation in the image plane.
In addition, to improve the efficiency of fruit detection and enhance real-time performance,
Australian researchers Kang, H. and Chen, C. (2019) [93] used a semantic segmentation
network to detect and segment apples and branches in an orchard in real-time. Meanwhile,
in order to enable harvesting robots to simultaneously recognize and locate multiple target
fruit clusters, Chinese researchers Li, J. et al., (2020) [62] proposed a semantic segmentation
method to segment fruit RGB images into three categories: background, fruit, and branch.
The method achieved accurate and automatic detection of fruits and branches of multiple
lychee clusters in complex natural environments and guided robots to complete continuous
harvesting tasks.

Mask R-CNN was proposed by American researchers He, K. et al. in 2017 [111]. A
typical Mask R-CNN framework for fruit detection and recognition is shown in Figure 19.
It consists of three parts. Firstly, the backbone network extracts fruit feature maps from
input fruit images. Secondly, the fruit feature maps outputted by the backbone network
are sent to the RPN to generate proposals. Finally, the proposals outputted by the RPN are
mapped, and the corresponding target fruit features are extracted from the shared feature
maps. These features are outputted to the FC and FCN for fruit classification and instance
segmentation, respectively. The process generates classification confidence, bounding
boxes, and mask images.

Mask R-CNN combines semantic segmentation with object detection by outputting
mask images. This improves the localization accuracy of small target fruits, as well as the
prediction accuracy of mask images. Fruit detection and recognition methods based on
Mask R-CNN have better robustness and generality for fruit detection and recognition, es-
pecially in situations of clustered fruit growth. Chinese researchers Yu, Y. et al., (2019) [65]
and Jia, W. et al., (2020) [112] used a Mask R-CNN instance segmentation network model
to recognize overlapping strawberries and apples, respectively. They can determine not
only categories but also individuals. Since some ripe green tomatoes are similar in color
to branches and leaves, shaded by branches and leaves, or overlapped by other tomatoes,
accurate detection and localization of these tomatoes is difficult. Chinese researchers
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Zu, L. et al., (2021) [113] proposed using Mask R-CNN for the detection and segmentation
of ripe green tomatoes. The research results showed the effectiveness of the method. The
best model performance was achieved when the IoU was 0.5, and the F1-score of both
the testing set bounding box and the masked region reached 92%. Chinese researchers
Xu, P. et al., (2022) [64] proposed an improved Mask R-CNN network model for the
recognition of cherry tomatoes, considering the prior neighborhood constraint between
fruits and stalks.
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In the future, improvements in fruit detection and recognition methods based on
Mask R-CNN should focus on integrating more convolutions to improve performance,
and reducing the computational complexity of multi-head attention in the transformer.
In addition, multimodal fruit detection methods could be adopted to design Mask R-
CNN fruit detection models based on vision, LiDAR, millimeter-wave radar, and other
multisensor fusion technologies.

3. Discussion

Currently, there are many factors leading to low accuracy, slow speed, and poor
robustness of fruit detection and recognition. They can be summarized in the following
aspects: scarcity of high-quality fruit datasets, detection of small target fruits, fruit detection
in occluded and dense scenarios, detection of multi-scale and multi-species fruits, and
lightweight fruit detection models.

(1) Scarcity of high-quality fruit datasets. Fruit datasets, as signal sources to guide fruit
detection algorithms based on DL for information understanding [41], largely determine
the final performance of trained fruit detection models. Fruit detection and recognition
methods based on DL have two requirements for datasets. One is the sufficiency of data,
and the other is the richness of data categories. Fruit datasets are mainly collected in real
field environments and through internet channels. A comparison of the advantages and
shortcomings of the two collection methods is shown in Table 4. In order to objectively
compare the performance of fruit detection and recognition methods, as shown in Table 5,
international communities provide some public benchmark datasets. Different fruit datasets
have significant differences in the number, quality, and category of images. Researchers
can choose compatible fruit datasets for experiments according to their needs. The Fruits-
360 dataset is the most commonly used public benchmark dataset. The total number of
categories in this dataset is as high as 131, and the total amount of images is considerable.
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However, it suffers from the problems of single-image backgrounds, insufficient data
diversity, and category imbalance.

Table 4. Comparison of fruit image collection methods.

Types Methods Advantages Shortcomings

Real fruit detection
environment

Hand-held camera
High image quality of fruits;

close to real scenes

The process of shooting is
time-consuming and laborious; fruit
image quality is unstable; fruit image
quantization and contrast are difficult

UGV

UAV

Internet channel -- No need for a camera; easy
and fast collection

There are situations such as blurred
images and incorrect labels; data cleaning

and inspection are required

Table 5. Some frequently used fruit image databases.

Datasets
Samples

Species Web-Link Year
Total Training Set Testing Set

Fruit images of
MS COCO - - - - https://cocodataset.org/#download

(accessed on 6 March 2023) 2017

Fruit images of
ImageNet - - - -

https://image-net.org/challenges/LSVRC/
index.php

(accessed on 6 March 2023)
2012

Fruits-360 90,380 67,692 22,688 131
(100 × 100 pixels)

www.kaggle.com/datasets/moltean/fruits
(accessed on 16 February 2023) 2020

Fruit-A 22,495 16,854 5641 33
(100 × 100 pixels)

www.kaggle.com/datasets/sshikamaru/fruit-
recognition

(accessed on 16 February 2023)
2022

Fruit-B 21,000 15,000 vail: 3000
text: 3000

15
(224 × 224 pixels)

www.kaggle.com/datasets/misrakahmed/
vegetable-image-dataset

(accessed on 16 February 2023)
2021

Fruit quality
classification 19,526 - - 18 (256 × 256/

192 pixels)

www.kaggle.com/datasets/ryandpark/fruit-
quality-classification

(accessed on 16 February 2023)
2022

Fresh and rotten
fruits 13,599 10,901 2698 6

www.kaggle.com/datasets/sriramr/fruits-
fresh-and-rotten-for-classification

(accessed on 16 February 2023)
2019

When public benchmark fruit detection datasets cannot meet practical needs, some
scholars have created individual fruit datasets to train a fruit detection model for fruit
detection and recognition in specific environments. In particular, most of the existing public
benchmark fruit detection datasets, such as fruit images of MS COCO and ImageNet, are
collected through internet channels. Many of these images differ greatly from actual fruit
recognition and harvesting situations. They consist of data from simple scenes, mainly for
large and medium-sized fruits. Additionally, datasets for small target fruit detection in
complex scenes are especially scarce. International communities might consider continually
providing and updating quality public benchmark fruit detection datasets, for example,
establishing a unified standard fruit data-sharing platform. The public can upload their fruit
images to the platform, and the platform organizes personnel to identify and annotate them.

Due to the scarcity of high-quality fruit datasets, there are potential directions for
development in the future: (1) Fruit detection and recognition methods based on small-
sample learning may be a key breakthrough. For certain fruit categories for which it is
difficult to obtain a large number of samples, this method allows a small number of fruit
samples to be selected as representative of new fruit categories. Then, the inherent internal
connection between the base fruit class and the new fruit class is used to realize effective
knowledge transfer. (2) Fruit detection and recognition methods based on unsupervised
learning/semi-supervised learning may be another key breakthrough. Current methods

https://cocodataset.org/#download
https://image-net.org/challenges/LSVRC/index.php
https://image-net.org/challenges/LSVRC/index.php
www.kaggle.com/datasets/moltean/fruits
www.kaggle.com/datasets/sshikamaru/fruit-recognition
www.kaggle.com/datasets/sshikamaru/fruit-recognition
www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset
www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset
www.kaggle.com/datasets/ryandpark/fruit-quality-classification
www.kaggle.com/datasets/ryandpark/fruit-quality-classification
www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification
www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification
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are mainly based on supervised learning, in which performance relies on a large amount of
labeled fruit data. In unsupervised/semi-supervised learning, the model is pre-trained on
the data with no or little labeled information.

(2) Detection of small target fruits. Fruits always grow in complex environments
with many uncertainties (as shown in Figure 20). We usually define a small target fruit
as being smaller than 32 × 32 pixels relative to the absolute size of the image it is in. The
difficulties of small target fruit detection are as follows: (1) Limited features that can be
extracted. Small target fruits have a small area share and low resolution in images, and they
contain limited features themselves. (2) Convolution operations can cause loss of small
target features. Fruit detection and recognition methods based on DL extract information
of interest about fruits by performing convolution operations on fruit images containing
a large amount of redundant information [50]. Fruit feature maps keep shrinking as the
number of convolutions increases. If the down-sampling rate is too high, a lot of detailed
information for small target fruit detection will be lost. (3) Requirements for the positioning
accuracy of the small target fruit bounding boxes are higher. Compared with large target
fruits, small target fruits are more sensitive to the offset of prediction boxes and less tolerant
of errors. (4) The scale of anchor boxes has not been designed properly. When the scale of
anchor boxes is too large, the area of small target fruits is reduced. Therefore, even if small
target fruits are within anchor frames, the IoU may not reach the threshold value, resulting
in missed detection. In addition, when the receptive field is too large, the fruit detection
results are easily disturbed by a large number of other features. When the preset scale of
anchor boxes is too close, the spatial difference after down-sampling cannot be guaranteed,
resulting in small target fruits being ignored. (5) Sample imbalance. The IoU-based positive
and negative samples are considered negative if the IoU is smaller than the threshold. This
may lead to small target fruits being ignored in the process of model learning due to the
small number of positive samples. Small target fruits usually grow in clusters, which may
further cause occlusion and dense detection problems. When small target fruits appear
together with other scaled fruits, this gives rise to multi-scale detection problems.
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Current solutions for small target fruit detection mainly include: (1) Increasing the
number of small target fruit samples through data preprocessing and enhancement, such



Agronomy 2023, 13, 1625 26 of 32

as in the research presented in [46,49,55,56,60,62–64]; (2) Generating higher-quality small
target fruit candidate regions by improving the RPN, such as in the research presented
in [56,57,65]; (3) Ensuring the sensory field and small target fruit matching by optimizing
anchor boxes, such as in the research presented in [58,61,62]. Combining traditional
methods for small target fruit image detection may be a trend for future development.
Some small target fruit images contain little information, and they lack the necessary
semantic information. Fruit detection and recognition methods based on DL have limited
feature extraction ability for small target fruits at the pixel level. Therefore, traditional
feature extractors can be introduced to make them more capable of representing features of
fruit images. In addition, depth features extracted using CNN can also be combined with
traditional methods, such as saliency detection and superpixel segmentation, to obtain a
more effective fruit feature representation.

(3) Fruit detection in occluded and dense scenarios. Fruit growth environments
are usually complex. There are cases of inter-fruit occlusion and occlusion by shadows
or other distractions, such as branches and leaves. The difficulty of detecting fruits in
occluded and dense scenarios lies in improving the recall rate of the occluded target
fruits [29]. In overlapping cases, the main reasons for missing the detection of obscured
target fruits are: (1) Fruits are incomplete, and extractable fruit features are sharply reduced.
(2) Overlapping target fruits usually have highly similar features, and it is difficult for fruit
detection models to determine whether they belong to different individuals. (3) The NMS
post-processing method directly discards objects with lower scores in overlapping regions.
For fruit detection in occluded and dense scenarios, the main method of improvement is to
enhance fruit feature extraction.

Commonly used methods to enhance the feature extraction capability of fruits are: (1) in-
creasing the width or depth of networks, such as in the research presented in [52,53,57,59].
However, this method will increase the computational load of models. This requires us
to strike a balance between performance improvement and computational cost increase.
(2) Adding attention mechanisms, such as in the research presented in [55–57]. The in-
troduction of attention mechanisms can help fruit detection models fully consider the
connection between each position of target fruits, effectively enhancing the ability of fruit
detection models to learn fruit features. Current scholars divide them into the channel
attention mechanism and spatial attention mechanism, according to the way the attention
acts on feature maps. In fruit detection models, common implementations of attention
mechanisms include squeeze-and-excitation networks (SENet) and the convolutional block
attention module (CBAM). However, adding an attention mechanism will make fruit de-
tection models more complex and increase convergence time. At the same time, adding
an attention mechanism requires careful consideration of whether the design principle of
attention, as well as the position and method of action, are suitable for current tasks. Other-
wise, it may have a negative impact on fruit detection models. How to reasonably design
and implement attention mechanisms, and efficiently use a wide range of environmental
features, are important research directions for the future.

(4) Detection of multi-scale and multi-species fruit. Most current fruit detection models
are solutions for specific crops. When the detected fruits appear on multiple scales or in
multiple types, it is difficult to guarantee the model’s generalization ability. For the multi-
scale fruit detection problem, the multi-scale training method may be a key breakthrough.
It can enable fruit detection models to process fruit information at different scales and
improve their ability to capture cross-scale fruit information. Overall, the use of multi-
scale fruit prediction networks can make full use of receptive fields, which can effectively
alleviate the lack of scale invariance in convolutional neural networks. However, this also
increases the number of calculations, resulting in higher demand for hardware facilities.
For multi-category fruit detection problems, a common solution is to use transfer learning
technology to fine-tune existing models. However, this may result in a loss of detection
accuracy for the original fruit categories. Adding a large amount of new category data to
the original dataset and retraining a new model can ensure the detection effectiveness of
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the original fruit categories. However, every time a new category appears, it needs to be
trained from scratch. This not only consumes time and resources, but also cannot satisfy
complex, dynamic environments such as farmland orchards. For this problem, we believe
that introducing the idea of incremental learning can improve the generalization ability
and adaptive learning ability of fruit detection models.

(5) Lightweight fruit detection models. With the continuous development of the
field of fruit detection and recognition, researchers are also committed to improving the
accuracy of fruit detection models, and the fruit detection models are gradually becoming
more complex. For example, some researchers add a super-resolution module to the
localization part of fruit detection networks. This may increase the computational load,
which, in turn, makes the fruit detection model more dependent on high-performance
computing resources. How to further optimize network structures, reduce the number of
model parameters, decrease computational complexity, improve running speed, and deploy
them on mobile devices are currently hot research topics. Model pruning, quantization,
knowledge distillation, and matrix decomposition are effective ways to achieve lightweight
and high efficiency. For example, the lightweight MobileNet [11] or ResNet-101 [23] are
used to replace the original backbone feature extraction network for fruit feature extraction.
At the same time, optimizing operators within frameworks and using AI chips in hardware
can greatly accelerate the running speed and parallelism of fruit detection models.

4. Conclusions

Fruit detection and recognition methods based on DL are the mainstream methods
for accurate, fast, and robust fruit detection and recognition. These methods are also an
important development trend. They are relatively less affected by environments. Our work
focuses on providing an overview and review of DL applied to fruit image recognition,
mainly in the areas of detection and classification. In order to further define the study
areas of this paper, we identify fruit detection and classification tasks as the determination
of the class based on their specific types. In general, current fruit detection and recogni-
tion methods based on DL can be divided into the following areas: methods based on
YOLO, SSD, AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask R-CNN.
These methods can also be classified into two categories: single-stage fruit detection and
recognition methods (YOLO, SSD) based on regression, and two-stage fruit detection and
recognition methods (AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask
R-CNN) based on candidate regions.

Most of the current research work is based on two-stage fruit detection and recognition
methods. Improvement and application research based on Faster R-CNN (21%) is currently
a hotspot. The recognition accuracy of fruit detection and recognition methods based
on Faster R-CNN is high, but the recognition speed is limited by complex anchor frame
mechanisms. When there are mobile deployment and high recognition speed requirements,
fruit detection and recognition methods based on YOLO (17%) are used most frequently.
Their recognition speed is fast, but the recognition effect on small target fruits is not very
good. In addition, ResNet (11%) is the most popular backbone network, followed by
AlexNet (7%). Most of the research focuses on apples (32.14%), followed by tomatoes
(8.93%), and citrus (7.14%). These three kinds of fruits are in high demand and yield
globally. There are some reasons that make them ideal candidates for automatic harvesting.
Firstly, they hang from plants individually, making them easily detectable based on their
distinctive features. Secondly, they have no extreme variations in size or weight. Lastly,
they are relatively hard and not easily damaged in mechanical operations. However, in
terms of fruit dimensions and peduncle length, different cultivars may exhibit different
characteristics that can affect fruit detection and recognition performance. This poses
challenges for adapting fruit detection and recognition methods for different cultivars.
Future work could aim to identify cultivars that are more suitable for automatic harvesting.

The scarcity of high-quality fruit datasets, detection of small target fruits, fruit detec-
tion in occluded and dense scenarios, detection of multiple scales and multiple species



Agronomy 2023, 13, 1625 28 of 32

of fruits, and lightweight fruit detection models are the current challenges of fruit de-
tection and recognition based on DL for automatic harvesting. The quality and scale of
fruit datasets, appropriate improvement strategies, and underlying model architectures
all have a significant impact on the detection and recognition performance. For example,
fruit data preprocessing can standardize data by cleaning and adjusting them. Fruit data
augmentation can effectively expand data and increase data diversity, thereby reducing the
dependence on specific factors and improving model robustness. Fruit feature fusion is
conducive to alleviating the problem of fruit feature disappearance and improving the detec-
tion effect of small target fruits and multi-scale fruits. Building a multi-task learning model,
the original fruit detection framework is beneficial for obtaining more fruit information by
combining other learning tasks. Moreover, establishing a parameter-sharing mechanism
through multi-task learning can significantly improve the performance of fruit detection
and recognition. Two-stage fruit detection and recognition methods pursue faster speeds
and lighter weights while ensuring fruit detection accuracy. Single-stage fruit detection and
recognition methods improve fruit detection accuracy while maintaining the advantages
of detection speed and model size. Achieving higher fruit detection performance and a
balance between fruit detection precision and speed are current development trends.

Future research should prioritize addressing these current challenges and improv-
ing the accuracy, speed, robustness, and generalization of fruit vision detection systems,
while reducing the overall complexity and cost. This paper hopes to provide a reference
for follow-up research in the field of fruit detection and recognition based on DL for
automatic harvesting.
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