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Abstract: Blueberries have high nutritional and economic value and are easy to cultivate, so they are
common fruit crops in China. There is a high demand for blueberry in domestic and foreign markets,
and various technologies have been used to extend the supply cycle of blueberry to about 7 months.
However, blueberry grows in clusters, and a cluster of fruits generally contains fruits of different degrees
of maturity, which leads to low efficiency in manually picking mature fruits, and at the same time
wastes a lot of manpower and material resources. Therefore, in order to improve picking efficiency, it is
necessary to adopt an automated harvesting mode. However, an accurate maturity detection model can
provide a prerequisite for automated harvesting technology. Therefore, this paper proposes a blueberry
ripeness detection model based on enhanced detail feature and content-aware reassembly. First of all,
this paper designs an EDFM (Enhanced Detail Feature Module) that improves the ability of detail feature
extraction so that the model focuses on important features such as blueberry color and texture, which
improves the model’s ability to extract blueberry features. Second, by adding the RFB (Receptive Field
Block) module to the model, the lack of the model in terms of receptive field can be improved, and the
calculation amount of the model can be reduced at the same time. Then, by using the Space-to-depth
operation to redesign the MP (MaxPool) module, a new MP-S (MaxPool–Space to depth) module is
obtained, which can effectively learn more feature information. Finally, an efficient upsampling method,
the CARAFE (Content-Aware Reassembly of Features) module, is used, which can aggregate contextual
information within a larger receptive field to improve the detection performance of the model. In order
to verify the effectiveness of the method proposed in this paper, experiments were carried out on the
self-made dataset “Blueberry—Five Datasets” which consists of data on five different maturity levels
of blueberry with a total of 10,000 images. Experimental results show that the mAP (mean average
precision) of the proposed network reaches 80.7%, which is 3.2% higher than that of the original network,
and has better performance than other existing target detection network models. The proposed model
can meet the needs of automatic blueberry picking.

Keywords: blueberry; deep learning; object detection; content-aware reassembly; enhanced detail feature

1. Introduction

Blueberries are native to North America; they are a common fruit and also a high-value
economic crop. There are various reasons why blueberries are liked by humans. First of all,
blueberry is rich in nutrients, and its nutritional worth has been recognized worldwide.
The Food and Agriculture Organization of the United Nations has named it as one of the
five health foods for human beings. Blueberry is rich in anthocyanins, pectin, vitamins,
etc., which have the functions of anti-cancer, cardiovascular disease prevention, and vision
protection [1–4]. In addition, blueberry is highly valuable economically. The unit price of
blueberry is relatively high. Ordinary blueberries cost nearly USD 14 a catty, and high-
quality blueberry range from USD 14 to USD 42 in price. Therefore, planting blueberry
can bring huge economic benefits. Finally, blueberry trees are easier to plant and maintain
compared with other perennial fruit crops because of their strong resistance to arthropod
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pests and simple plant processes [5]. China began to grow blueberry on a large scale in the
early 21st century. By 2022, China’s blueberry production and planting area have ranked
first in the world, far ahead of other countries, which makes China the main blueberry
planting place in the Asia–Pacific region. With the increase in blueberry production year
by year, manual picking of blueberry cannot meet the huge labor and labor costs required.
At the same time, blueberries are usually sold as fresh berry, so the standard for fruit
picking must reach the specified maturity; the fruit should be in good condition before the
fruit picking operation can be carried out. Because the blueberry development period is
about three to six weeks, blueberry trees usually contain fruits of different maturity levels
at the same time. If the ripe fruit is not picked in time, it may cause problems such as
overripe fruit, fruit wrinkling and loss of taste, fruit rot, and fruit drop. In summary, a
high-performance blueberry ripeness detection model can help blueberry farmers more
accurately and quickly detect the ripeness of blueberries, enabling them to determine the
optimal harvest time and improve the quality and yield of their fruits. At the same time, it
can reduce labor costs, as traditional blueberry ripeness detection requires a lot of time and
manpower; on the contrary, the blueberry ripeness detection model can quickly determine
the maturity and make judgments without the need for manual detection.

Our contributions are:

1. A blueberry dataset containing five different maturity levels is constructed. To expand
the original dataset, data augmentation techniques are used, and then it is named
“Blueberry—Five Datasets”.

2. An EDFM that enhances detail feature extraction is designed and proposed. By
focusing on the two dimensions of space and channel to improve the ability of blue-
berry detail feature extraction, the experiment proves that this module can effectively
improve the detection performance of the network model.

3. By using the Space-to-depth operation to redesign the MP module, a new module, MP-S,
is obtained, which eliminates the loss of fine-grained information due to the use of
convolution step size and can effectively learn more information on the characteristics
of blueberry.

4. By integrating EDFM, MP-S, RFB (Receptive Field Block), and CARAFE (Content-
Aware ReAssembly of FEatures), a new blueberry ripeness detection model based
on EDFM and content-aware reassembly is proposed, which provides a premise and
method for the realization of automatic picking technology in the future.

2. Related Work

Artificial intelligence in agriculture is also known as “Agricultural Intelligence”, which
is gradually becoming part of the technological revolution in the agricultural industry. In
recent years, computer vision has made great progress and has been well developed
in the field of agriculture, such as agricultural robots, unmanned tractors, variable rate
seeding, etc. [6–9]. Fruit maturity detection methods based on traditional machine learning
generally identify fruit maturity by extracting shallow features such as color and texture
from the target fruit, and then combining support vector machines and K-means clustering
technologies. Although traditional machine learning methods can identify fruit maturity, it
requires a lot of time to manually select appropriate fruit features and has poor robustness.
However, with the development of computer vision, deep learning technology has been
applied to many classification and detection tasks [10–18], among which it is also widely
used in detecting the maturity of fruits. Tian et al. [10] proposed an improved Yolov3
(You only look once version 3) algorithm for detecting apples at different growth stages in
orchards with fluctuating light, complex backgrounds, overlapping apples, overlapping
branches, and overlapping leaves. The average detection time of the model is 0.304 s per
frame, which can realize real-time detection of apples in the orchard. Wang et al. [11]
proposed a blueberry maturity identification method based on improved YOLOv4-Tiny,
where the mAP reaches 97.30%, meaning it can effectively identify blueberry and detect
fruit maturity. In order to distinguish the ripeness of olive in natural environment for realizing
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the automatic picking mode of olive, Chen et al. [12] proposed a method for detecting the
ripeness of olive based on improved EfficientDet. Experiments prove that the Precision, Recall
and mAP reached 92.89%, 93.59% and 94.60%, respectively. Parvathi et al. [13] used the Faster
R-CNN (Region-based Convolution Neural Network) model to detect the maturity of coconuts
in complex backgrounds with a mAP of 89.4%. In order to accurately classify different types
of fruits, Gulzar [14] proposed a fruit image classification model based on MobileNetV2 and
deep transfer learning techniques which can effectively classify different types of fruits with
high prediction performance. Albarrak et al. [15] proposed a deep learning-based date fruit
classification model to accurately classify date fruits, which can overcome the shortcomings
of manual expertise and perform better than AlexNet, VGG16, InceptionV3, ResNet, and
MobileNetV2 in terms of accuracy. Mamat et al. [16] proposed a deep learning-based image
classification model for classifying the maturity of oil palm fruits. The model can identify
multiple types of fruits and provide image annotation. Experimental results show that this
method helps farmers strengthen fruit classification and improve yield. In summary, although
deep learning technology has made some achievements in fruit maturity detection, there
are few ways to detect the ripeness of blueberry. Therefore, in order to make the blueberry
industry keep up with the pace of modernization, this paper uses deep learning technology to
design a blueberry ripeness detection model based on EDFM and content-aware reassembly
to distinguish the maturity of blueberry.

Existing target detection networks are roughly divided into two categories: the two-stage
network Faster R-CNN mentioned in the above research content, and the single-stage network
YOLO [19–21] series. The two-stage network has a large number of parameters [22,23] and is
time-consuming, which makes it difficult to meet the needs of real-time detection in real scenes.
Therefore, in this paper, YOLOv7 was chosen for use, which is a single-stage target detection
network with fast speed and excellent performance. The network inherits the advantages
of the previous network architecture, integrates more advanced network architecture and
training strategies, and has higher detection accuracy. However, the blueberry targets
to be detected are small and easily occluded by branches, leaves, and other structures,
which makes it particularly difficult to detect blueberries from images. Therefore, it is a
challenging task to accurately classify the ripeness of blueberry. In order to further improve
the detection performance of the model, this paper improves the YOLOv7 network. In
addition, the attention mechanism can play a role in making the model focus on important
features, and most of the current improved methods add attention mechanisms to the
original network structure. Jiang et al. [24] proposed a real-time monitoring of hemp
duck based on the improved YOLOv7 target detection algorithm, in which three CBAM
(Convolutional Block Attention Module) attention modules are placed in the Backbone
to improve the ability to extract features of ducks. The experiments have proved that
the improved algorithm can solve the problems of low efficiency and high cost in hemp
duck breeding industry due to manual counting. Chen et al. [25] added CBAM attention
mechanism, small object detection layer, and lightweight convolution to YOLOv7 for
constructing a multi-scale lightweight network model Citrus-YOLOv7, which outperforms
current state-of-the-art network models. Therefore, the proposed model helps automate
citrus picking. Zhao et al. [26] applied the improved model YOLOv7-sea to maritime
search and rescue missions, finding attention regions in the scene by adding SimAM
(Simple, Parameter-Free Attention Module). In addition, a micro-scale detection layer was
added to detect small objects, and an about 7% higher efficiency than that of the original
algorithm mAP was gained. Pham et al. [27] added CA (Coordinate Attention) to YOLOv7
for improving road damage detection, which is superior to the existing algorithms. In
summary, adding the attention mechanism can play a role in improving the accuracy of
model detection. Therefore, this paper also integrates the attention mechanism into the
designed module to make the model pay more attention to the characteristics of blueberry.
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3. Blueberry Dataset Construction
3.1. Blueberry Image Collection

In Nanchang City, Jiangxi Province, the ripening period of blueberry is between mid-
June and early July every year. Shooting during the ripening period can simulate the real
situation of automatic picking. Therefore, this article chooses to take blueberry images in
the blueberry garden in Nanchang City, Jiangxi Province during this period. In order to
simulate the lighting conditions in different time periods, we shot from 9 a.m to 2 p.m.
At the same time, considering the impact of shooting distance, we shot blueberry from
close and long distances. In the end, we captured a total of 1000 blueberry images using a
Canon high-definition digital camera. As shown in Figure 1, there are some hard-to-detect
situations in the blueberry image, such as occlusion of branches and leaves, occlusion
between dense fruits, a complex background, blueberry of different maturity in a single
cluster of fruits, etc.
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Figure 1. A series of images of blueberries that are difficult to identify (a) foliage occlusion; (b) dense
fruit occlusion between fruits; (c) complex background; (d) blueberry with different ripeness in a
single cluster of fruits).

3.2. Data Preprocessing

Considering the blueberry maturity classification standard, the field inspection of
blueberry and the suggestions of relevant agricultural experts, the blueberries are divided
into five maturity levels, which are levels 1–5. Unripe blueberries (level 1) are green in
color; the blueberries (level 2) that have just begun to mature begin to turn red; semi-ripe
blueberries (level 3) are red; fully ripe blueberries (level 4) are smooth and blue–purple in
appearance; and overripe blueberries (level 5) have wrinkled surfaces, as shown in Figure 2
for details.
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Labeling the data is a time-consuming and labor-intensive process, and it is necessary
to manually label the real bounding box of each blueberry [7]. In this paper, the data labeling
software Labelimg [28] is used to mark the data according to the maturity classification
standard proposed. Labelimg automatically generates a marked xml tag file. In order to
avoid omissions and mistakes in the marking process, the team members divided the labor
to check for omissions and make up for omissions. After the marking work is completed,
the marked dataset is divided according to the requirements of train, verification, and test.
Our division ratio is 6:2:2. The train set has 600 pictures, the verification set has 200 pictures,
and the test set has 200 pictures.

3.3. Data Augmentation

The input end of YOLOv7 comes with data augmentation of Mosaic [29]. The principle
of Mosaic is shown in Figure 3. In addition, in order to avoid the model overfitting
phenomenon caused by too little training data, this paper performed a series of data
enhancement operations on the original dataset, mainly including color transformation
and geometric operations. The color transformation includes changing brightness and
increasing noise, and geometric operations include mirroring, rotation, translation, shearing,
and flipping. Finally, the dataset was expanded to 10,000 images. The number of labels for
each category after data enhancement is shown in Table 1. The number of blueberry labels
for levels 1–5 is 70,050, 7120, 7530, 91,210, 3340, respectively, with a total of 179,250. The
number of blueberry images for levels 1–5 is 8670, 3900, 4450, 10,000, 1610, respectively.
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Table 1. The number of blueberry tags for levels 1–5.

Percentage Blueberry Ripeness Number of Labels Number of Images

train set 60%

level 1 41,210 5120
level 2 4440 2320
level 3 4000 2490
level 4 54,320 6000
level 5 2090 970

val set 20%

level 1 13,730 1770
level 2 1360 800
level 3 1810 990
level 4 17,240 2000
level 5 630 290

test set 20%

level 1 15,110 1780
level 2 1320 780
level 3 1720 970
level 4 19,650 2000
level 5 620 350



Agronomy 2023, 13, 1613 6 of 19

4. The Proposed Method
4.1. YOLOv7 Original Network Structure

YOLOv7 improves the accuracy of detection without increasing the amount of cal-
culation and reasoning required. Figure 4 shows the YOLOv7 network architecture. This
network consists of four parts: Input, Backbone, Neck and Prediction. First, the input
image is subjected to Mosaic, adaptive anchor box calculation, adaptive image scaling
and other operations and further resized to 640 × 640 × 3. Second, features are extracted
through the Backbone, which is composed of four CBS (Conv + Batch Normalization + Silu)
composite modules, alternating MP (MaxPooling) modules, and ELAN (Efficient Layer
Aggregation Network) modules. Third, the SPPCSPC module of the Neck is employed to
increase the receptive field of the network. Fourth, the features of different scales are fused
in the PANet (Path Aggregation Network) through combining the ELAN-W module with
up and down sampling. Finally, the new fused feature map output by the Neck is input to
the Prediction part, which first uses the reparametrized convolution RepConv to adjust the
number of output channels, and then sends the features processed by the CBM module to
the detection head; then, the final result is obtained.
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The loss function of this network is the same as that of YOLOv5, as shown in Equation (1),
which is composed of localization loss, confidence loss, and classification loss:

Lossobject = Lossloc + Lossconf + Lossclass. (1)

The coordinate loss function uses CIOU whose calculation process is shown in
Equation (2). CIOU adds an impact factor “αν” to the penalty item of DIOU. This im-
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pact factor takes into account the aspect ratio of the predicted frame to fit the aspect ratio of
the real frame, making the predicted frame more in line with the actual situation.

LCIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv. (2)

4.2. Our Proposed Network

Due to the small area of the blueberries in the image, as well as the dense growth,
complex backgrounds, and susceptibility to occlusion by branches and leaves, the noise
and background can interfere with feature extraction and classification. Therefore, it is
very difficult for the original YOLOv7 network to detect blueberries of different maturity
levels. In response to the above problems, this paper makes some improvements to the
YOLOv7 network to improve detection accuracy, thereby meeting the basic requirements
of automatic picking work for detection performance.

First of all, this paper proposes a module that enhances detail feature extraction
capabilities, and names it EDFM (Enhanced Detail Feature Module), which is placed
behind each ELAN module of the Backbone to solve the problem of insufficient detail
feature extraction capabilities of the Backbone for blueberry. Second, a more efficient
RFB module with fewer parameters is introduced to increase the receptive field of the
original network model. Then, all the MP modules in the Neck are replaced with the
redesigned MP-S module to eliminate the loss of fine-grained information caused by
the use of convolution step size, which can effectively learn more feature information
about blueberries. Finally, the CARAFE module is added to the Neck network in the
original network, which can aggregate context information for upsampling operations. Our
proposed network architecture is shown in Figure 5.
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4.2.1. Enhanced Detail Feature Module

In order to solve the problem of insufficient detail feature extraction ability of the
original Backbone for blueberry, this paper proposes a module to enhance detail feature
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extraction capabilities and names it EDFM (Enhanced Detail Feature Module). The EDFM
module consists of the C3 module, CBS, and Shuffle Attention [30]. As shown in Figure 6,
the input feature map passes through two branches. One branch first passes through a C3
module, and then passes through a Shuffle Attention. The purpose of this design is to first
use the C3 module with excellent performance to extract more blueberry detail features.
After that, Shuffle Attention can focus on blueberry features from space and channels.
The features output by this branch contain richer, more detailed information. The other
branch consists of CBS and C3 of 1 × 1 convolution. Finally, the features extracted by the
two branches are fused. The EDFM can enhance the model’s ability to extract blueberry
features and suppress the interference of complex backgrounds and negative samples in
blueberry images. In this paper, the EDFM module is placed behind each ELAN module
in the Backbone of the proposed network model, which can improve the ability of the
Backbone to extract blueberry texture, color, and other detailed features, thereby solving the
problem of insufficient blueberry detail feature extraction by the Backbone and ultimately
improving the model detection performance.
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As shown in Figure 7, the C3 module includes three standard convolutional layers and
N bottleneck modules which are the main modules for learning residual features. Because
of its excellent feature extraction ability, it is used in the design of the proposed EDFM
module and mainly plays the role of extracting blueberry features.
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Figure 7. The structure of C3.

The attention mechanism can play a role in focusing on important features while
suppressing unnecessary features. Therefore, we add Shuffle Attention to the designed
EDFM module. Shuffle Attention uses Shuffle Unit to effectively combine space and
channel attention, which can reduce the overhead of computing costs. As shown in
Figure 8, the input features first group the channel dimension into multiple sub-features,
and each sub-feature passes through two branches. One branch generates channel attention
maps by exploiting channel interrelationships while the other branch generates spatial
attention maps by exploiting inter-spatial relationships between features. After that, all
sub-features are aggregated, and the “channel shuffle” operator is used to realize the
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information communication between different sub-features which can effectively increase
the expression ability of target features in space and channel dimensions.
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4.2.2. Receptive Field Block

The RFB (Receptive Field Block) module [31] draws on the central idea of the Inception
module and adds a dilated convolution based on it, which can enhance the discriminability
and robustness of features and improve the performance of network detection without
requiring too much calculation.

As shown in Figure 9, the RFB structure has four branches. One of the branches first
uses a 1 × 1 convolution to change the number of channels and is then directly connected
to the shortcut. The remaining branches also first use a 1 × 1 convolution to change the
number of channels, which can reduce the amount of calculation of the network, and then
obtain different receptive fields by setting convolution kernels of different sizes. Finally,
the dilated convolution is placed to capture information in a larger area while maintaining
the same number of parameters. After dilated convolution processing, the 3 branches are
concatenated in the channel dimension and then processed by a 1 × 1 convolution, thereby
being merged with the shortcut branch and finally output by the Relu activation layer.
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In general, lightweight models are well-received for real-time detection. However, it is
generally not superior to other models in terms of accuracy. The emergence of RFB module
broke traditional thinking and reduced the number of parameters of the model while
improving detection accuracy with its excellent design concept. Therefore, in this paper,
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it replaces the SPPCSPC structure with the RFB module in the original network model,
which is used to increase the receptive field of the model to enhance the feature extraction
capability of the network and make the model more lightweight, thereby providing a
feasible method for later deployment to the mobile terminal.

4.2.3. Design of MP-S Module

The role of the MP module is to down-sample the input feature map. As shown in
Figure 10, the original MP structure is composed of two branches: one branch is composed
of the maximum pooling MaxPool module and a 1 × 1 convolution, and MaxPool starts.
The function is subsampled. The other branch consists of a 1 × 1 convolution and a 3 × 3
convolution with a step size of 2. The function of the second convolution is also subsampled.
However, when performing subsampled operations using this convolution, it results in a loss
of fine-grained information and the learning of less effective feature representations. Therefore,
in order to solve this problem, this paper improves the original MP structure; specifically,
it first replaces the 3 × 3 convolution with a stride of 2 with a 1 × 1 convolution, and then
adds the space-to-depth operation. The specific implementation steps of the space-to-depth
operation are shown in Figure 11. First, the input features of size S×S×C1 are separated
into 4 features of S/2×S/2×C1, and then spliced on the channel to obtain the features of
S/2×S/2×4C1. Finally, this feature is processed by a 1 × 1 convolution to obtain the feature
of S/2×S/2×4C2. The space-to-depth operation replaces the convolution step size, which
eliminates the loss of fine-grained information caused by the use of the convolution step size,
so the improved MP module can effectively learn more feature information. We named the
improved MP module MP-S, and the structure of MP-S is shown in Figure 12.
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4.2.4. Content-Aware Reassembly of Features Module

In convolutional neural networks, the purpose of upsampling features is to enlarge
the image and increase its resolution. However, the upsampling methods proposed in the
past have certain disadvantages; for example, the captured semantic information is not rich
enough; a large number of parameters leads to a large amount of calculation; and so on. In
order to solve the challenges brought by the above problems, this paper uses a lightweight
upsampling operator—CARAFE (Content-Aware Reassembly of Features) [32]. Compared
with traditional upsampling methods, CARAFE can gather contextual information in a
large receptive field, dynamically generate an adaptive kernel, reduce the number of model
parameters, and increase the calculation speed.

As shown in Figure 13, CARAFE consists of a kernel prediction module and a content-
aware reassembly module. The kernel prediction module compresses the feature map
inputted to the module by channel compressor which can reduce computational cost, then
generates reassembly kernels through the content encoder, and finally uses the kernel
normalizer to normalize the reassembly kernel in space with the softmax function. The
content-aware reassembly module uses the predicted kernels to reorganize features, and
the new feature semantic information obtained is richer than the previous feature semantic
information. In this paper, the upsampling operator CARAFE is added to the feature
pyramid network to enrich the semantic information of blueberry.
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5. Results and Analysis
5.1. Model Evaluation Metrics

To evaluate the detection performance of the proposed model, we select the following
evaluation indicators in the field of target detection: Parameters, GFLOPS, P (Precision), R
(Recall), AP (Average Precision), mAP (mean average precision).

Parameter quantity is used to measure the number of parameters contained in the model.
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GFLOPS is one billion (=109) floating point operations per second.
Precision indicates how many blueberries of 1–5 levels are predicted to be positive

samples in our Blueberry—Five datasets. The calculation equation is Equation (3).

Precision =
TP

TP + FP
. (3)

Recall indicates how many positive samples in the original sample were predicted
correctly. The calculation equation is Equation (4).

Recall =
TP

TP + FN
. (4)

According to P and R data, the Precision Recall (PR) curve can be drawn. The horizontal
axis is R, and the vertical axis is the maximum P value corresponding to each R.

The AP refers to the area under the PR curve of a certain category in all predicted
pictures, which is calculated separately for each category. The calculation equation is shown
in Equation (5).

AP =
1

11 ∑
0,0.1...1.0

Psmooth. (5)

The mAP is the average of blueberry AP values on a level of 1–5. The calculation
equation is shown in Equation (6):

mAP =
∑N

1 AP
N

. (6)

In order to understand the evaluation indicators more intuitively, the meanings of TP
(True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) are shown
in Table 2, where 1 represents a positive sample and 0 represents a negative sample. TP
means that both the predicted result and the actual result are positive samples, indicating
that blueberry was correctly predicted. FP indicates that the actual result is a negative
sample, but it is detected as a positive sample, that is, the number of blueberries that were
wrongly detected in this paper; FN indicates that the actual result is a positive sample, but
it is predicted as a negative sample; TN means that the actual result is a negative sample,
and it is predicted as a negative sample; FN and TN represent the number of wrongly
detected blueberries.

Table 2. TP, FP, TN, FN.

Actual Results

1 0

Predicted results
1 TP FP
0 FN TN

5.2. Lab Environment

The experiments in this paper were conducted on the Windows system, and the
Pytorch deep learning framework, Python programming language, Intel Core i7-9700K
CPU @ 3.60 GHz, NVIDIA RTX 2080 Ti graphics card were employed. The parameter
settings are shown in Table 3.

Table 3. Parameter settings.

Name Value

Learning Rate 0.01
Image Size 640 × 640
Batch Size 4
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5.3. Experimental Results and Analysis
5.3.1. Model Selection

In order to select the version of the network model that is most suitable for the research
in this paper, this paper conducts comparative experiments on three official versions:
YOLOv7-Tiny, YOLOv7, and YOLOv7x. YOLOv7-Tiny is a lightweight version of YOLOv7
that reduces model complexity by reducing the number of layers and channels, thereby
improving detection speed. Compared to YOLOv7, YOLOv7 Tiny has a faster detection
speed but slightly lower accuracy. YOLOv7 is the standard version of the YOLOv7 series.
YOLOv7x is an enhanced version of YOLOv7, which has more network layers and more
parameters, but the detection speed is relatively slow. From the experimental data in Table 4,
it can be seen that although the parameter amount of YOLOv7-Tiny is the lowest, the mAP
of YOLOv7-Tiny is 2.1% and 4.6% lower than that of YOLOv7 and YOLOv7x, respectively.
Therefore, YOLOv7-Tiny is not considered as the object of this research. In addition, the
mAP of YOLOv7x is 2.5% higher than that of YOLOv7, but YOLOv7x is 48.4% higher
than YOLOv7 in terms of parameter volume. Blueberry maturity detection needs to be
deployed on corresponding hardware devices in practical applications; therefore, a model
with a small number of parameters and a fast detection speed is required. At the same
time, in order to ensure the effectiveness of blueberry maturity detection, the detection
performance of the model needs to achieve a certain accuracy. Therefore, considering the
efficiency and performance of the model, this paper finally selected YOLOv7 as the basic
network structure and improved it.

Table 4. Performance comparison of different versions of YOLOv7.

P (%) R (%) mAP (%) Parameters GFLOPS

YOLOv7-Tiny 70.8 71.9 75.4 6,018,420 13.1
YOLOv7 71.7 75.1 77.5 36,503,348 103.4

YOLOv7x 71.7 78.9 80.0 70,809,396 188.3

5.3.2. Comparison of Model Performance before and after Data Augmentation

In deep learning, if the data volume is too small, which makes the model not have
enough data to support it, there is no way to detect the features in it. This leads to
underfitting of the model, that is, poor detection ability. Therefore, when the amount of
data in the dataset is insufficient, data enhancement operations can be performed on the
dataset. In this paper, the number of images in the dataset before and after enhancement is
shown in Table 5. The augmented datasets are 10 times larger than the original datasets.
To verify the impact of data augmentation operations on model performance, the research
tested the datasets before and after data enhancement based on the YOLOv7 network model.
The test results are shown in Table 6. After using data enhancement technology, the overall
mAP increased by 15.8%. The recognition performance of blueberries in levels 1–5 has all
been improved; for instance, level 2 blueberries displayed the most improvement since their
mAP increased by 29.3%, and level 1 blueberries, which displayed the least improvement,
also resulted a 3.8% higher value than that of the original result. Therefore, the experiment
in this section proves the feasibility of using data augmentation technology.

Table 5. Number of samples.

Datasets Train Val Test

Original 600 200 200
Data Augmentation 6000 2000 2000
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Table 6. Comparison of model performance before and after dataset enhancement.

Datasets Level 1AP (%) Level 2AP (%) Level 3AP (%) Level 4AP (%) Level 5AP (%) mAP (%)

Original 84.7 43.0 62.2 84.1 34.5 61.7
Data Augmentation 88.5 72.3 81.2 89.9 55.9 77.5

Improvement 3.8 29.3 19.0 5.8 21.4 15.8

5.3.3. The Impact of EDFM Module on Network Performance

In order to verify the impact of the enhanced feature fusion module EDFM proposed
in this paper on the overall performance of the model, this paper conducted experiments
on Blueberry—Five Datasets. The experimental results are shown in Table 7. After adding
the EDFM module to the Backbone, the mAP of the model increased by 1.0%, which proves
the effectiveness of our designed module.

Table 7. Effectiveness of EDFM module.

P (%) R (%) mAP (%)

YOLOv7 71.7 75.1 77.5
YOLOv7 + EDFM 72.6 75.2 78.5

5.3.4. Comparison of Performance of Different Enhanced Receptive Field Modules

From YOLOv4 to YOLOv5-5.0, the spatial pyramid pooling structure (Spatial Pyramid
Pooling, SPP) module is used to achieve output adaptive size. In the YOLOv5-6.0 version,
the SPP is changed to the advanced version of SPPF. The structure for SPPF (SPP-Fast)
and SPP is slightly different. The amount of calculation of the SPPF model was reduced
a lot, and the speed of the model was improved. SimSPPF (Simplified SPPF) is a module
proposed in YOLOv6 [33]. Compared with SPPF, SimSPPF employs the ReLU activation
function instead of the SiLU activation function, and its detection speed was also improved.
The ASPP (Atrous Spatial Pyramid Pooling) borrowed from the design idea of SPP and
was proposed in DeepLabv2. ASPP samples the input feature map in parallel with dilated
convolutions at different sampling rates, which can increase the receptive field and capture
multi-scale context information. The RFB is designed to simulate the human visual receptive
field; refer to Inception [32] to design and add dilated convolution, which can effectively
increase the receptive field.

This paper replaces the above different modules in the same position in the YOLOv7
network structure to test their impact on network performance. The experimental results
are shown in Table 8. Among them, the RFB module performed the best in terms of average
precision. After adding the RFB module, the mAP of the model is 78.8%, and the number
of parameters is 33237428. Compared with the original network, the parameter amount
is reduced by 9%, and the mAP is increased by 1.3%. Therefore, this paper replaces the
original SPPCSPC module with the RFB module.

Table 8. Comparison of the effects of different modules.

P (%) R (%) mAP (%) Parameters ms

SPPCPPC 71.7 75.1 77.5 36,503,348 11.2
SPP 72.7 74.2 77.8 30,471,476 11.0

SPPF 73.8 73.7 78.6 30,471,476 10.9
SimSPPF 72.2 76.4 78.3 30,472,500 10.9

ASPP 71.5 75.5 78.3 45,415,732 12.9
RFB 73.9 75.1 78.8 33,237,428 11.0

5.3.5. Replacement Position of MP-S

In the original network, the MP module was used in both the Backbone and the Neck.
Therefore, in order to explore where the MP-S designed in this paper replaces the MP
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module, the detection performance of the overall network is the most suitable. In this
section, three sets of experiments are designed to replace the MP modules of Backbone,
Neck, and Backbone + Neck, respectively.

According to the experimental results given in Table 9, the mAPs of replacing Back-
bone, Neck and performing all replacements are 78.1%, 78.5%, and 78.2%, respectively,
and the detection performance of the original network is improved. The most significant
improvement is observed when only replacing the Neck. In the MP, the mAP is increased
by 1.0%. Therefore, the MP-S module designed in this paper replaces all the MP modules
in the Neck.

Table 9. Comparison of the effects of different modules.

mAP (%)

Original 77.5
Backbone 78.1

Neck 78.5
Backbone + Neck 78.2

5.3.6. Ablation Experiment

In order to verify the effectiveness of the improved method in this paper, ablation
experiments were conducted on Blueberry—Five Datasets. The experimental data are
shown in Table 10. Because the final evaluation is the detection accuracy of the model
and the number of parameters of the model, mAP and parameters were selected as the
evaluation criteria for this experiment. A total of five sets of experiments were designed. In
order to reduce the weight of the model, the SPPCSPC was replaced by the RFB module.
According to the results of the second set of experiments, the mAP was increased by 1.3%,
and the number of model parameters decreased by 9%, which proves the effectiveness
of RFB module in improving the model accuracy and reducing the number of model
parameters. After adding the EDFM module, the mAP of the model reached 79.6%, which
can prove that the module designed in this paper enhances the detail feature extraction
ability of blueberry. Then, the MP module in the Neck was replaced with the redesigned
MP-S, and the mAP reached 80.4%. Finally, when the upsampling method was replaced
with CARAFE, the mAP of the final model reached 80.7%. The mAP was 3.2% higher
than that of the original network, which proves the effectiveness of the proposed method
in this paper, and can meet the needs of automatic picking. In addition, it can further
help blueberry farmers improve the quality and yield of blueberries, reducing economic
losses caused by manual operations. The mAP training process diagram of the ablation
experiment is shown in Figure 14. The comparison of training loss before and after model
improvement is provided in Figure 15.

Table 10. Comparison of the effects of different modules.

RFB EDFM MP-S CARAFE mAP (%) Parameters

1 77.5 36,503,348
2

√
78.8 33,237,428

3
√ √

79.6 70,052,692
4

√ √ √
80.4 69,643,092

5
√ √ √ √

80.7 70,514,428

As shown in Figure 16, we compared the heat map output by the proposed network
model with the heat map output by the original network. Column b is the output heat
map of the original network model, and column c is the heat map output of our proposed
network model. From Figure 16, it can be seen that the red area of the c column image
is significantly larger than that of the b column image. Moreover, the proposed network
model predicts data for more fruits than the original network. Therefore, it can be proved
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that our proposed model pays more attention to the characteristics of blueberries than the
original model.
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5.3.7. Comparison with Other Methods

In this paper, the proposed model is also compared with other mainstream target
detection algorithms, such as YOLOv5, YOLOX [34], EfficientDet [35], Faster RCNN [36],
YOLOv7-GhostNet [37], YOLOv7-MobileNetV3 [38]. The mAPs of the proposed model
are 10.7%, 10.5%, 13.3%, 25.4%, 5.5%, and 5% higher, respectively. From the experimental
results in Table 11, it can be seen that the detection accuracy of the proposed algorithm
is higher than that of the existing network model, and the overall mAP is 3.2% higher
than that of the original YOLOv7 network structure, which proves the effectiveness of our
proposed model.

Table 11. Performance comparison with other models.

Level 1AP (%) Level 2AP (%) Level 3AP (%) Level 4AP (%) Level 5AP (%) mAP (%)

YOLOv5 83.2 68.0 76.2 83.5 39.2 70.0
YOLOX 83.0 67.2 75.2 85.1 40.4 70.2

EfficientDet 79.0 65.0 74.7 78.7 39.7 67.4
Faster RCNN 53.8 55.9 60.4 66.8 39.6 55.3

YOLOv7-GhostNet 84.7 71.7 81.3 87.9 50.3 75.2
YOLOv7-MobileNetV3 85.3 70.3 80.7 87.8 54.5 75.7

YOLOv7 88.5 72.3 81.2 89.9 55.9 77.5
Ours 89.1 74.4 82.3 90.6 67.3 80.7

6. Conclusions

This paper uses deep learning technology to develop a blueberry ripeness detection
model based on enhanced detail feature and content-aware reassembly for detecting and
dividing blueberry maturity in real time, which is improved on the original network
structure of YOLOv7. This paper first designs a module for EDFM that enhances detail
feature extraction capabilities and places it in the Backbone to enhance the model’s ability
to extract blueberry features. Second, the lightweight module RFB is added to the network
to solve the problem of the insufficient receptive field of the original network model. Then,
by using the Space-to-depth operation to redesign the MP module, a new MP-S module is
obtained, and MP-S can effectively learn more feature information. Finally, the efficient
upsampling module CARAFE is used to enrich the semantic information of blueberry.
The mAP of the proposed model reached 80.7%, 3.2% higher than that of the original
network model. The model has better performance than the existing target detection
models. Therefore, the network model proposed in this paper is helpful to improve the
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ability to identify the ripeness of blueberry and provides a new method for the automation
of subsequent harvest management. It can not only reduce the large amount of manpower
and material resources consumed by the traditional picking method, but also prevent the
waste of resources caused by picking too early or too late, which has great significance for
improving the blueberry output. This paper also carries out lightweight work with the
purpose of reducing the model size and speeding up the calculation speed of the model. In
the future, we will continue to focus on improving the accuracy of the model and reducing
the number of model parameters, which is a prerequisite for the deployment of the model
on the mobile end. Deploying the model on the mobile end can make it more convenient
and efficient for blueberry farmers to use the blueberry maturity detection model.
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