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Abstract: Precise recognition of maize growth stages in the field is one of the critical steps in
conducting precision irrigation and crop growth evaluation. However, due to the ever-changing
environmental factors and maize growth characteristics, traditional recognition methods usually
suffer from limitations in recognizing different growth stages. For the purpose of tackling these
issues, this study proposed an improved U-net by first using a cascade convolution-based network as
the encoder with a strategy for backbone network replacement to optimize feature extraction and
reuse. Secondly, three attention mechanism modules have been introduced to upgrade the decoder
part of the original U-net, which highlighted critical regions and extracted more discriminative
features of maize. Subsequently, a dilation path of the improved U-net was constructed by integrating
dilated convolution layers using a multi-scale feature fusion approach to preserve the detailed
spatial information of in-field maize. Finally, the improved U-net has been applied to recognize
different growth stages of maize in the field. The results clearly demonstrated the superior ability
of the improved U-net to precisely segment and recognize maize growth stage from in-field images.
Specifically, the semantic segmentation network achieved a mean intersection over union (mIoU) of
94.51% and a mean pixel accuracy (mPA) of 96.93% in recognizing the maize growth stage with only
39.08 MB of parameters. In conclusion, the good trade-offs made in terms of accuracy and parameter
number demonstrated that this study could lay a good foundation for implementing accurate maize
growth stage recognition and long-term automatic growth monitoring.

Keywords: recognition; growth stage; semantic segmentation; precision agriculture; U-net; dilation path

1. Introduction

Maize is one of the main food crops in the world with a wide range of applications
such as feed, energy, food and chemical [1,2]. The growth stage information of field crops
is not only crucial basic data for analyzing the relationship between crop growth process
and agrometeorological conditions but also holds significant value for multiple facets of
precision agriculture [3–5]. Accurate recognition of maize growth stages in the field plays a
key role in estimating yields and conducting agricultural activities. Maize needs sufficient
nutrients during the seedling stage, appropriate attention should be paid to the work of
irrigation during the jointing stage, and the small trumpet stage is susceptible to insect pests.
Proper timing of fertilizer, irrigation, cultivation, harvest, insect, weed and disease control
can help in significantly improving yields [6]. However, manual recognition of the growth
stage of maize is a time-consuming, labor-intensive, subjective and discontinuous process [7].
Furthermore, improper operation during manual recognition can introduce human error and
potentially lead to crop damage [8]. Therefore, a recognition method of the maize growth
stage is particularly critical in a more efficient, continuous and automatic way.
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Deep learning pertains to the domain of machine learning that specifically focuses on
the utilization of intricate artificial neural networks (ANNs) characterized by significant
depth [9]. Deep learning entails the exploitation of deep network architectures to extract
high-level representations from input data, enabling enhanced performance in various
learning tasks [10–12]. Nowadays, deep learning has been playing a significant role in
the new era of agriculture [13–18]. It offers an automated solution that is both low-cost
and lightweight [19]. Semantic segmentation occupied the frontline as a technology that
deals with how deep learning could achieve crop phenotypic characteristics from digital
images [20]. Through semantic segmentation technology, objects can be effectively sepa-
rated from their background. Among the most notable and scalable models, U-net stands
out with its unique U-shape structure, which consists of an encoder and decoder [21].
The encoder component extracts image features and performs down-sampling, while the
decoder restores image resolution to ultimately produce the result [22]. Yu et al. conducted
a comprehensive investigation on the potential of the U-net model for segmenting maize
tassels. Their study demonstrated exceptional segmentation accuracy even in complex
scenarios [23]. Due to the intricacies of agricultural work, some researchers made improve-
ments to the original U-net model. In [24], an Attention feature fusion U-net (AFFU-Net)
was proposed to achieve fast and accurate crack segmentation of winter jujubes in complex
environments, and it provided guidance for the quality assessment of winter jujubes. Zou
et al. reduced the computational burden of the original U-net for segmenting crops and
weeds, which achieved precise weeding and reduced herbicide pollution [25]. Moreover,
an Enhanced U-net (En-UNet) model was also constructed and trained to segment the
rotten portion present in apples. The successful segmentation of previous work based on
U-net provided a reference for maize segmentation and growth stage recognition in fields.
However, since maize is a natural connectivity crop with slender stems, the color similarity
between weeds and maize, and because it grows in a complex environment, it is difficult
to recognize the growth stage for conducting irrigation and crop growth evaluation. To
address these pending issues, the primary way is to replace the backbone network to improve
the feature extraction ability of the U-net on the color, texture and morphology of maize.

Many of the proposed high-performance backbone networks have been applied to
implementing the tasks of agricultural image segmentation, detection and classification be-
cause of their potential to enhance the feature extraction ability of deep learning models. In
recent years, the VGG16 network was used for transfer learning after fine-tuning to identify
and classify the seed images [26]. Ayhan and Kwan utilized DeepLabV3+ with Xception
to classify forest and grassland [27]. A U-net model with a ResNet backbone was selected
for classifying irrigation systems at a regional scale using remote sensing imagery [28].
Roy and Bhaduri proposed a real-time object detection framework, Dense-YOLOv4, by
including DenseNet in the YOLOv4 backbone to optimize feature transfer and reuse [29].
Chen et al. used a dual path network as a feature extraction network to extract richer small
target semantic features for detecting cherry tomatoes [30]. Wang employed EfficientNet
as the backbone of the recognition model, which effectively facilitated data augmentation
and recognition performance of practical cucumber leaf diseases [31]. However, since the
structure of U-net has no effective mechanism to learn the characteristics of a specific region,
it tends to extract features on the whole range of the image rather than focus on specific
objects. As a result, a part of the background surrounding the weeds and debris is often
inevitably involved when the original U-net is implementing maize growth stage recognition.

In visual tasks of agriculture, attention mechanisms played a positive role in highlight-
ing critical local regions and extracting more discriminative features and the ability of deep
learning models. For the purpose of effectively dealing with the common challenge of a
complex environment, numerous applications of the attention mechanism were carried
out. Gong et al. proposed a model based on Squeeze-and-Excitation (SE) attention so that
the model paid attention to the relationship between channels and could automatically
learn the importance of different channel features and solve the problem of plant roots seg-
mentation with strong noise in the background [31]. Kang et al. introduced Convolutional
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Block Attention Module (CBAM) modules to DeepLabv3+ to recognize the root system
of cotton located in dark and closed soil, which put more weight on the segmentation
and recognition of fine roots and root hairs, reducing the extraction of soil environment
information [32]. Wang et al. integrated Coordinate Attention (CA) block into the Swin
Transformer to distinguish the regions in the background where the color and texture are
similar to the diseased spots and then applied it to the recognition of practical cucumber leaf
diseases [33]. Despite the excellent results of the aforementioned methods, the recognition
performance of the maize growth stage was still limited due to the natural connectivity of
maize and the long span of the stem.

In the past years, dilated convolution has been proposed for adjusting the reception
fields of feature points without decreasing the resolution of feature maps [12]. It can be
used as a cascade model [34] and parallel model [35], both of which have a strong ability
to preserve spatial information and increase segmentation accuracy. It was widely used
recently; S. Chen et al. applied dilated convolution to the backbone network, achieving
high segmentation accuracy and efficiency for the filed grape bunches [13]. Ma et al. seg-
mented the winter wheat ears from canopy images by integrating the dilated convolution,
significantly improving the segmentation accuracy [36].

To address these issues and enhance the performance of in-field maize growth stage
recognition, this study proposed an improved U-net. Different from the original U-net, this
study first designed a backbone network replacement strategy to substitute the encoder of
the original U-net for enhancing the model’s generalization and feature extraction ability.
To encourage the network to focus on the important features, coordinate attention modules
were introduced to the decoder part. Subsequently, the dilation path was constructed
by integrating dilated convolution layers using a multi-scale feature fusion approach,
which preserved the detailed spatial information and considered the natural properties
of in-field maize. Finally, the adaptability of the model in different environments was
verified to outperform the state-of-the-art DeepLabv3+ [35], SegFormer [37], UperNet [38],
PSPNet [39], FCN [40] and original U-net in terms of the maize growth stage recognition
results on the test set. Other sections in this paper are organized as follows: The dataset
and methods are described in Section 2. The experiments conducted using the proposed
approach are described in Section 3. Discussions and conclusions are given in Section 4.

2. Materials and Methods
2.1. Data Acquisition

This study focused on recognizing the growth stages of maize, which aimed at growth
status monitoring and precision irrigation conducted in smart agriculture. All images used
in this study were acquired from Nongcuiyuan Experimental Station in Anhui Agricultural
University, which were photographed between 7:30–17:30 from 10 September to 28 October 2021.
The experimental station was set up with different cultivars, namely Zhengdan 958, Nongda
108, Jinhai No. 5 and Denghai 3662, each planted in separate plots. In each plot, the maize
plants were arranged in six rows with a row spacing of 60 cm and a within-row plant spacing of
25 cm. The planting density was 65,000 plants per hectare. Other field management measures
were implemented in accordance with local standards. During image collection, maize samples
were randomly selected from the experimental field and captured from one or more of the
following angles: horizontal, 45◦ inclination and vertical for each individual plant. To be more
specific, Figure 1 shows the schematic diagram of the image collection process in this study. The
experimenter stood at a distance of 0.5 m from the same maize plant and used a mobile phone
(HUAWEI or iPhone) to photograph it from three angles: horizontal, 45◦ inclination and vertical.
The phone was about 0.3 m away from the maize plant. This distance was employed to ensure
that each image contained a clear maize plant. Furthermore, this employed distance can help in
avoiding the incident of damaging the maize plant by the experimenter during data collection.
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Figure 1. Schematic diagram of the image collection process.

Maize growth stages are commonly recorded using international standards that define
both vegetative and reproductive stages [41]. The vegetative stages are further classified
into several sub-stages according to number of expanded leaves, including VE (germinal
sheath exposed to the ground), V1 (the first leaf fully expanded), V(n) (the nth leaf fully
expanded) and VT (tasseling stage), among others [42]. In this study, VE to V5 was
designated as the seedling stage [43], V6 to V8 was assigned the jointing stage label [44]
and V9 to V12 was classified as the small trumpet stage [45]. The subjects in this study
were maize and its seedling stage, jointing stage and small trumpet stage. We conducted
three data collection procedures at each growth stage, with 150 images collected at each
growth stage, resulting in a total of 450 images being collected.

2.2. Data Preprocessing

We resized the maize images into 512 × 512 pixels to improve the model inference speed.
LabelMe software was used to annotate all images manually. Figure 2 shows the annotated
images and the corresponding original images, and the annotated images were saved in the
format of png. The label color scheme was seedling stage maize RGB = (128,0,0), jointing stage
maize RGB = (0,128,0) and small trumpet maize RGB = (128,128,0).
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Data augmentation is a proven approach to constructing a robust deep-learning
model. [46,47]. In the field of smart agriculture, researchers often use geometric transfor-
mation and pixel intensity shift (color shift) for data augmentation [48–50]. As shown in
Figure 2, data augmentation processes were randomly performed by horizontal flip, con-
trast enhancement and brightness enhancement to all 450 images for simulating the effects
of different weather and light intensities, with the aim of improving the robustness and
the generalization ability of the recognition model. Additionally, the data augmentation
method utilized in this study can effectively augment the dataset with minimal cost. The
reason for this is that by simply flipping the label horizontally or leaving it unchanged, we
are able to generate the corresponding label for generated images. As a result, the number
of images was expanded to 900 by means of the aforementioned data augmentation op-
eration. Subsequently, all images were randomly divided into 70%, 20% and 10% as the
training set (630 images), validation set (180 images) and test set (90 images). Finally, the
maize dataset was generated according to the PASCAL VOC 2012 format.

2.3. Construction and Improvement of U-Net Segmentation Model
2.3.1. Baseline U-Net Model

The original U-net model used the Encoder-Decoder structure, with the encoder on the
left and the decoder on the right. The encoder part was divided into five stages according
to four max pooling operations. Correspondingly, the decoder part was divided into five
stages according to four up-sampling operations as well. The encoder part consisted of
the repeated two convolution layers, each followed by a rectified linear unit (ReLU) and a
max-pooling layer for down-sampling. Each stage of the decoder included the up-sampling
process of the feature map, which was matched and fused with the feature map from the
corresponding stage of the encoder part. The shallower high-resolution layers in the U-net
network were used to solve the problem of pixel positioning, while the deeper layers were
used to solve the problem of pixel classification. This model was widely used in image
segmentation because it was trained in an end-to-end way and performed well with limited
amounts of data on a small dataset [25].

However, the in-field maize images acquired by smartphones were severely affected
by lighting variations, complex backgrounds, image noise and so on [51]. In this study,
one semantic segmentation model for maize growth stage based on the improved U-net
model was constructed by optimizing the existing U-net model to tackle such challenging
problems. Compared with the original U-net, three main improvements were made in the
encoder and the decoder: (1) the feature extraction ability of the U-net was enhanced by
replacing an outperformed backbone network loading pre-trained weights on the ImageNet
dataset according to our replacement strategy; (2) three coordinate attention blocks were
embedded in the decoder after the skip connection of stages 2, 3 and 4; and (3) the dilation
path was constructed by integrating four sub-paths and each sub-path consisting of many
dilated convolution layers, which preserved the detailed spatial information and considered
natural properties of in-field maize. In summary, the improved U-net comprehensively
considered the in-field environment and natural maize characteristics, enhancing the
performance of the model to recognize the maize growth stage in the field. The motivations
and details regarding the above three modifications were presented in detail.

2.3.2. Backbone Network Replacement Strategy

Due to the original aim for biomedical image segmentation, the encoder of the U-net
loaded with pre-trained weights on the medical dataset was not suitable for the recognition
of maize growth stage. Different from the single feature of the medical dataset, the in-
field image of maize was usually affected by factors such as background, light and maize
posture, which inherently led to the strong requirements of feature learning ability of
the backbone network. Hence, the backbone networks played a crucial role during the
processing of maize growth stage recognition, which resulted in the replacement operation
of the backbone with strong feature extraction ability. Additionally, in our case, backbone
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networks were initialized with pre-trained weights of ImageNet datasets for improving
model performance on semantic segmentation [52].

Previous studies showed that many backbone networks, such as VGG, Xception, DPN,
DenseNet, ResNet and EfficientNet, were worth considering for the task in this paper [26–30,33].
However, the U-net architecture offered a unique property (i.e., skip connections), which set it
apart from other encoder-decoder models. At each spatial resolution level of the U-net model,
the skip connection copies the activation outputs to the same resolution level in the decoder [28].
Therefore, the number of skip connections was equal to the number of down-sampling and
up-sampling. As we know, U-net had four skip connections, corresponding to four pairs
of up-sampling and down-sampling operations. This means that each backbone network
needed to be divided into five stages according to the down-sampling operation for fitting into
U-net. However, ResNet, DenseNet, EfficientNet, Xception and DPN had five down-sampling
operations; the division according to the down-sampling operations might result in six stages.
Therefore, these aforementioned backbone networks faced a common problem, which led to the
inability to be directly used as feature extraction networks of the original U-net.

For the purpose of enhancing the feature extraction ability, we divided six backbone
networks into two categories according to the number of down-sampling operations and
proposed a replacement strategy to employ them to the encoder of the original U-net. In
Figure 3, the replacement strategy is divided into three distinct parts: A, B and C. These
three parts are, respectively, referred to as the input and pre-operations stage, the center
stage and the output and post-operation stage [12]. Each part of the replacement strategy
will be described in the following paragraph.
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ResNet, DPN, DenseNet and Xception, EfficientNet used 7 × 7 convolution operation
and 3 × 3 convolution operation for the first down-sampling. Therefore, as shown in
part (A) of Figure 3, we defined the first down-sampling operation of these five backbone
networks as Pre-Operation, including three options. To achieve consistency between the
input and output feature map resolutions, we introduced a Post-Operation step in part
(C) of our approach. Specifically, this step adjusts the feature map resolution following
the decoder output of the U-net [53]. The Post-Operation step contained two options; the
final feature vector mapping was mandatory, but the other one was optional. When the
number of down-sampling operations of the backbone network was greater than four, the
Post-Operation part used bilinear up-sampling and double 3 × 3 convolution operations,
which was similar to the decoder of the U-net, restoring the resolution of the feature map
to 512 × 512. At the mandatory option of the Post-Operation part, a 1 × 1 convolution was
employed to map feature vector to four [54], which indicated the seedling stage, jointing
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stage, small trumpet stage and background in this study. The U-net architecture, depicted
in Part (B), omits the Pre-Operation and divides the remaining backbone network into
five Encoder-Blocks based on four max pooling operations [55]. As a result, backbone
networks were able to be employed as the encoder for enhancing the feature extraction
ability of the original U-net. In summary, the proposed strategy in this study could allow
the feature maps generated by each stage in backbone networks to be concatenated with
the corresponding decoder stage using a skip connection. As a consequence, all of the
aforementioned six different backbone networks were adapted to the U-net and did not
change the original U-net structure.

2.3.3. Coordinate Attention Module

The feature maps obtained from the backbone network were transmitted to the decoder
to restore the original resolution and segment image. The objects of this study were maize
plants in the field, which had strongly different characteristics due to the surrounding
background. Extensive research has been devoted to attention mechanisms, which have
been widely implemented to enhance the performance of contemporary deep neural
networks [56,57]. Therefore, the coordinate attention mechanism was added to the decoder to
augment the feature representations of the model for the recognition of maize growth stage.

Figure 4 demonstrates that the coordinate attention mechanism serves as a computa-
tional unit with the objective of boosting the expressive capacity of network features [58].
By incorporating positional information into channel attention, this technique enhances
model performance by allowing networks to attend to interest regions without incurring
excessive computational costs [59].
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Figure 4. A stage in the decoder with coordinate attention mechanism.

For the incoming feature map X, firstly, the size of X by up-sampling operation was
doubled. Subsequently, the result of the up-sampling operation was contacted with the
feature map X′ output from corresponding stage in the encoder. Then, it was transferred
to the CA block for processing to obtain G, which allowed our improved U-net to locate
the exact position of the object of interest more accurately and hence helped the whole
model to recognize maize growth stage better. Finally, the output feature maps G were
processed by using two convolution layers with 3 × 3 kernels. The operation of the stage
of the decoder can be formulated as follows:

G = CA(Concat(X′ , Up(X))), X ∈ R(H,W,C), X′ ∈ R(2H,2W,C), G ∈ R(2H,2W,2C) (1)

G′ = DConv(G), G = [G1; G2; G3 ; . . . ; Gd] (2)
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where CA denoted the operation of CA block. Concat represented the processing of copy
and crop in U-net. DConv was an operation consisting of two convolution layers with 3 × 3
kernels. The G′ indicated output features of a stage in decoder.

2.3.4. The Dilation Path

Due to the maize’s narrow branching, plant connectivity, background complexity
and similarity to weeds, it is not only important to increase the receptive field of feature
points of the semantic segmentation model but also to keep the detailed information.
The receptive field of feature points could be multiply increased by using pooling layers.
However, pooling layers may reduce the resolution of center feature maps and drop
spatial information. Inspired by Zhou et al. [12], dilated convolution layer based on
multi-resolution features could be a desirable alternative to the pooling layer.

We constructed the dilation path to connect the encoder part and the decoder part and
the structure, as shown in Figure 5. The dilation path composited of four sub-paths, from
top to bottom, named {P1, P2, P3, P4}, and each path consists of stacked dilated convolution
layers with different dilation rates. The dilation rates of the top path were set to 1, 2 and 4,
respectively. From top to bottom path, the number of dilated convolution layers decreased
sequentially, causing the receptive field of each path to be different. Therefore, the semantic
segmentation model could combine features from different scales by adding results of
all paths. In this way, the receptive field was increased by cascading dilated convolution
layers, and the advantage of multi-resolution features was taken by the parallel mode of
the dilation path.
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2.3.5. The Improved U-Net

The structure of the improved U-net model for recognizing in-field maize growth
stage is shown in Figure 6, with the same encoder and decoder branches as original U-net.
The structure consisted of three parts: a backbone network with outperformed feature
extraction ability, a dilation path fusing multi-scale features and a decoder embedded with
three coordinate attention modules. The former different backbone networks were divided
into five stages according to our replacement strategy and represented by five encoder
blocks; each stage consisted of an encoder block and a down-sampling operation. The
feature maps obtained from the backbone network were transmitted to the decoder through
the dilation path to preserve the detailed spatial information of in-field maize. The latter
three coordinate attention blocks were embedded in the decoder after the skip connection
of stages 2, 3 and 4. In this way, accurate coordinate information and channel relationships
could be obtained, allowing the improved U-net to acquire knowledge over a larger area
and enhance feature information.
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2.4. Experimental Platform and Training Strategy

Transfer learning aims at eliminating the need for a vast number of labeled datasets by
transferring the weights of a pre-trained network and fine-tuning it for another task using
new image datasets. Fine-tuning the whole network with transfer learning is generally
much faster and easier than training the network from scratch with randomly initialized
weights [60].

As shown in Figure 7, the training process was divided into two stages: the freezing
stage and the unfreezing stage. The backbone networks were pre-trained on the ImageNet
dataset to achieve a relatively optimal parameter space. In this study, representative
hyperparameters batch size, learning rate and epoch were considered when training the
improved U-net. In the freezing stage, all parameters of the backbone network were frozen,
and the decoder of the improved U-net was trained. Adjusting fewer model parameters in
the freezing stage and the learning rate was set slightly larger to jump out of the optimal
local solution. Therefore, the learning rate was set to 1 × 10−4. The batch size of training
was set to 4, and epochs were set to 100. In the unfreezing stage, all parameters of the
backbone networks were unfrozen and participated in training. The learning rate was set
smaller to ensure the stability of the model training. The learning rate of the unfreezing
stage was set to 1 × 10−5, and other parameters were the same as in the freezing stage.
In this way, pre-trained backbone networks could be better adapted to maize datasets for
potentially achieving good performance and reducing the data demand.
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All models used in this study were compiled with GPU support. All experimental
studies were conducted on a Conda environment on Ubuntu Desktop 18.04.4 LTS operating
system running on Intel(R) Xeon (R) Gold 5118 CPU @2.30GHz CPU and Nvidia GeForce
RTX 2080Ti 11GB GPU.

2.5. Evaluation of the Performance of Semantic Segmentation Model

In this study, three standard semantic segmentation metrics were used to evaluate the
segmentation results [61]. The overall intersection over union (IoU), mIoU, pixel accuracy
(PA) and mPA were used to assess and compare the segmentation performance (Equations
(3)–(6)). The IoU and PA were averaged over all images in the test set to obtain mIoU and
mPA, respectively. Intuitively, the mIoU calculates the degree of spatial alignment between
segmentation results and ground truth, while the mPA measures the number of correctly
classified pixels relative to the total number of pixels [51]. The model parameters were also
measured to assess the complexity of segmentation network.

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
× 100% (3)

mPA =
1

k + 1∑k
i=0

pii

∑k
j=0 pij

× 100% (4)

IoU = ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
× 100% (5)

mIoU =
1

k + 1∑k
i=0

pii

∑k
j=0 pij+∑k

j=0 pji − pii
× 100% (6)

where pii was the number of pixels that were actually in category I and were predicted to
be in category I. pij was the number of pixels actually in category I but were predicted to
be in category J. pji was the number of pixels actually in category J but were predicted to
be in category I. k indicated the number of different categories in the dataset, which value
was 4 in this study.

3. Results and Discussion
3.1. Comparison with Different Network Architectures

To improve the feature extraction ability of the original U-net, the replacement strategy
(see Section 2.3.2) was used to employ different backbone networks and the training results
of U-net-VGG16, U-net-DenseNet, U-net-DPN92, U-net-EfficientNet-B5, U-net-ResNet34,
U-net-Xception and the original U-net were compared. The training set was applied
to conduct the training of maize growth stage recognition based on the above network
architectures. Additionally, the test set of 90 images was used to assess the performance of
the different backbone network architectures.

The loss of the original U-net with different backbone network compositions on the
maize image train data set in the field is shown in Figure 8. It could be seen that with the
increase in training iterations, the losses of the train set kept gradually decreasing from
the start and achieved stability in the end. Obviously, the training loss of the original
U-net was the highest and reached saturation around 45 epochs. In contrast, the losses
of the rest encoders reached saturation at a faster rate at approximately 30 epochs, which
was attributed to the overall learning distinguishability of features learned by the network
architectures used in the encoder. It is noteworthy that U-net-VGG16 demonstrated superior
performance compared to other models, as evidenced by the convergence of the loss curve
at approximately 20 epochs. This observation suggested that the feature extraction network
plays a crucial role in enhancing the ability of semantic segmentation for maize growth
stage recognition [62]. Moreover, the cascade convolutional structure of U-net-VGG16
exhibits higher efficiency and stability during the training process [47,63].
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Figure 8. Loss curve of different backbone networks.

Subsequently, the models were verified once every 20 iterations during training and
the validation results of the different encoders were analyzed, as shown in Figure 9. In
general, significant improvement of the mIoU and mPA among the encoders was found.
It could be seen that the U-net-ResNet34, U-net-DPN92 and original U-net generally kept
an upward trend until the peak was reached, in spite of some small fluctuations. For the
rest of the encoders, the trend of mIoU and mPA curves was almost identical. Specifically,
with the increase of training iterations, the mIoU and mPA gradually increased. The
U-net-VGG16 model exhibited exceptional performance in terms of mIoU. However, it
is important to acknowledge that U-net-EfficientNet-B5 outperformed U-net-VGG16 in
terms of mPA at 40 iterations. This discrepancy can be attributed to the limited number of
training iterations, which resulted in the instability of the training weights. Nonetheless,
it is crucial to recognize the overall advantages of U-net-VGG16, as this minor deviation
should not overshadow its strengths. As a result, the U-net-VGG16 model exhibited the
highest performance in terms of mPA among the backbone networks. This finding further
underscored the advantage of employing cascade convolution in the recognition of the
maize growth stage.
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Figure 9. Metrics of different backbone networks.

The mIoU, mPA and parameters of the maize growth stage recognition model with
different encoders on the test set were presented in Table 1. It could be observed U-net-
Densenet201, U-net-Xception and U-net-VGG16 achieved mIoU and mPA both of over 85%,
and they reached high accuracy in the testing phase. Among them, U-net-VGG16 performed
best among all models, and the number of parameters in U-net-VGG16 was 24.89 M, which
was lower than the average of several encoders. Moreover, compared with the original
U-net, the U-net-VGG16 increased in mIoU by 10.89% and 8.1% in mPA, which proved the
effectiveness of U-net-VGG16 in improving the ability of feature extraction of the maize.
For the maize dataset used in this study, the position of maize in the image was obvious
but with the interference of environmental factors. VGG16 enhanced accuracy through
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the utilization of smaller convolution kernels, appropriate network depth, and a reduced
parameter count [64]. These design choices contributed to the stability of feature extraction
for maize images and alleviated the computational burden during network training [65].
As the results mentioned before, when using the CNN model to extract confused features
of images through transfer learning, the VGG network performed better than convolutional
networks represented by residual and inception structures [66]. The U-net-VGG16 network
basically met the requirements of primary segmentation of the recognition of the maize
growth stage. Therefore, the VGG16 was employed as the backbone network of the maize
growth stage recognition model, and the U-net-VGG16 was used as a further improved
baseline model.

Table 1. The mIoU and mPA of different backbone networks.

Backbone mIoU (%) mPA (%) Parameters (M)

U-net-Densenet201 88.43 92.35 28.58
U-net-Resnet34 82.84 88.18 24.43
U-net-Xception 87.86 91.82 28.76
U-net-VGG16 91.15 94.99 24.89

U-net-EfficientNet-B5 84.53 91.6 31.21
U-net-DPN-92 84.52 87.98 46.95
Original-U-net 80.26 86.89 38.02

3.2. Performance Comparison of Different Attention Mechanisms

Based on the U-net-VGG16 model employed by the backbone network replacement
strategy, a comparative experiment was conducted to assess the performance of maize growth
stage recognition models using different attention mechanisms (CA, CBAM and SE). In this
study, we embedded attention mechanisms after skipping the connection of stages 2, 3 and
4 of the decoder and analyzed its impact on the recognition results. The trends of training
loss over 200 epochs for all three attention blocks are illustrated in Figure 10. As inferred from
Figure 10, the loss values decreased as the number of epochs increased and were generally
stable when the number of epochs reached 25, which indicated that all models achieved low
loss values in the training phase. Note that the loss of the U-net-VGG16-CA network was the
lowest among all three attention blocks, and the model quickly reached its optimum point.
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Figure 10. Loss curve of different attention mechanisms.

After completion of the training processes, the experiment results in the validation
set were obtained, as shown in Figure 11. All models could recognize the growth stage of
maize with the mIoU and the mPA, both of around 90%. The performance of segmenta-
tion localization can be enhanced through the utilization of attention mechanisms when
compared to the U-net-VGG16 model. However, both U-net-VGG16-SE and U-net-VGG16-
CBAM demonstrated comparable mPA values to that of U-net-VGG16, indicating that the
integration of SE and CBAM attention blocks did not contribute to the enhancement of
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pixel classification accuracy in the model. In summary, U-net-VGG16-CA generally offered
the best localization ability and growth stage recognition accuracy among the three models.
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Figure 11. Metrics of different attention mechanisms.

The results from the different attention mechanisms are summarized in Table 2. It could
be found from Table 2 that the U-net-VGG16 with CA reached the mIoU (94.11%) and mPA
(96.8%) on the test dataset, which of both was higher than that of CBAM and SE. Compared
with the U-net-VGG16, the U-net-VGG16-CA had a 2.96% increase in mIoU and a 1.81%
increase in mPA, which proved the effectiveness of coordinate attention block in improving
the recognition of the maize growth stage. Moreover, with the integration of coordinate
attention blocks, there was a mere increase of 0.03M in the model parameters. This indicated
that the performance of the U-net-VGG16 model was enhanced with little additional
training and inference overhead. Compared to SE and CBAM attention mechanisms,
the CA mechanism could increase the model applicability to recognize the growth stage
of maize, and other models did not hold a satisfying performance based on the result.
It was because the coordinate attention embedded positional information into channel
attention to enable the maize growth stage recognition model to focus on the maize-
connected area [67], which enhanced the representation of maize location information
while suppressing feature extraction of background area in images [68]. In summary, the
U-net-VGG16 model introducing the CA mechanism yielded the highest mIoU and mPA,
providing empirical validation for the effectiveness of integrating spatial and channel
dimensions within the attention mechanism for maize growth stage recognition [69].

Table 2. Comparisons of different attention methods when taking VGG16 as the baseline.

Model mIoU (%) mPA (%) Parameters (M)

U-net-VGG16 91.15 94.99 24.89
+CBAM 92.01+0.86 95.05+0.06 24.97+0.08

+SE 93.22+2.07 96.19+1.2 24.93+0.04
+CA 94.11+2.96 96.8+1.81 24.92+0.03

3.3. Effects of Multi-Scale Dilation Path

In this study, the dilation path of the improved U-net was constructed by integrating
four sub-paths, named {P1, P2, P3, P4}. While the utilization of dilated convolution was
advantageous, it resulted in an increase in the number of model parameters [70]. Therefore,
we performed ablation experiments to verify the effectiveness of the proposed dilation path.
Additionally, the balance between accuracy and the number of parameters was discussed.

As shown in Figure 5, the dilation rates of P2 were set to 1, 2 and 4, respectively. In
this section, P2 was used as a basis to ensure the receptive field and discussed the effect
of different structures on the dilation path. The experiment results of different dilation
path structures on the testing set are shown in Table 3. It could be seen that expanding the
receptive field using a dilation path could really enhance the model’s ability to preserve
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spatial information and improve segmentation accuracy [71]. However, the achieved
improvements by {P1, P2} and {P1, P2, P3} were very limited because of the semantic gap
between feature maps with different scales of the receptive field [72]. In addition, the
{P1, P2, P3} increased the number of parameters, while mIoU and mPA did not effectively
improve. The maize growth stage recognition performance of the improved U-net was
the best among the different dilation path structures and U-net-VGG16-CA. Although the
number of parameters was increased, a considerable improvement in maize growth stage
recognition was achieved. Finally, we named the improved U-net for the U-net-VGG16-CA
model with the dilation path.

Table 3. Comparisons of different dilation path structures.

Model mIoU% mPA% Parameters (M)

U-net-VGG16-CA 94.11 96.8 24.89
+{P1, P2} 94.21+0.1 96.87+0.07 32.00+7.11

+{P1, P2, P3} 94.20+0.03 96.85+0.02 36.72+11.83
+{P1, P2, P3, P4}(improved U-net) 94.51+0.4 96.93+0.13 39.08+14.19

3.4. Comparison with Other Semantic Segmentation Models

The performance of the improved U-net model was evaluated through a comparative
analysis with state-of-the-art semantic segmentation models, including FCN, PSPNet,
UperNet and DeepLabv3+ and PSPNet, as well as the original U-net. Table 4 shows
the comparative results based on performance metrics mIoU, mPA and the number of
parameters. Moreover, the prediction results of different segmentation models are shown
in Figure 12, and the differences between the effect of each model were highlighted with
red rectangles.

Table 4. Metrics of different semantic segmentation models.

Models mIoU (%) mPA (%) Parameters (M)

Improved U-net 94.51 96.93 39.08
DeepLabv3+ 89.97 93.31 54.71
SegFormer 83.06 86.98 39.89

Original U-net 80.26 86.89 38.02
UperNet 78.35 88.87 126.07
PSPNet 74.19 84.44 49.07

FCN 72.61 81.91 134.28

The results from Table 4 revealed that both FCN and PSPNet exhibited the worst
performance, with their mIoU values falling below 75%. Figure 12h illustrates their de-
ficiency in segmenting densely distributed and intertwined maize plants, leading to the
significant omission of maize regions and severely impacting the model’s effectiveness.
Moreover, Figure 12d demonstrated the difficulty of PSPNet dealing with seeding maize
images that contained a lot of weeds in the background. UperNet and original U-net also
exhibited subpar performance, as evidenced by a significant number of misclassified pixels,
even in scenarios with a simple background (refer to Figure 12a,c). The SegFormer model
achieved an mIoU of 83.06% and an mPA of 86.98%, demonstrating its superior accuracy in
maize morphology segmentation and indicating fewer misclassification errors compared to
the previous four models. However, Figure 12c revealed the presence of certain misclas-
sifications, suggesting that further improvement is needed in the classification accuracy.
Additionally, Figure 12a,b indicated that there was still much room for improvement in
the delineation of maize segmentation results. We noticed that the DeepLabv3+ obtained a
good result, even though it did not make any improvements. However, this architecture
exhibited certain limitations, the most prominent being its increased complexity compared
to other networks such as DeepLabv3+. Although DeepLabv3+ demonstrated superior
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segmentation results and excelled in handling complex segmentation tasks, it necessitated
a larger volume of training data to achieve optimal performance [25]. Furthermore, as
depicted in Figure 12f, all previous models, including DeepLabv3+, exhibited limited ro-
bustness to variations in lighting conditions. Specifically, under strong illumination, these
models demonstrated suboptimal performance in segmenting maize plant leaves.
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As for the improved U-net, the mIoU and mPA were 94.51% and 96.93%, respectively,
and both were better than the other six models. The mIoU and mPA increased by 4.54%, by
3.62%, respectively, compared with DeepLabv3+. Meanwhile, the simple network structure
also made a small number of parameters for improved U-net [73], which was 39.08 MB. As
depicted in Figure 12, it became evident that the improved U-net model effectively achieved
precise maize segmentation across diverse backgrounds, exhibiting an accurate classification
of nearly all pixels. This notable achievement serves to underscore the model’s efficacy in
accurately recognizing maize growth stages. It could be observed that the segmentation
accuracy of the original U-net model showed significant improvement due to the stable and
efficient feature extraction ability of the cascaded convolutional structure [74]; the upgraded
decoder with embedded CA module that focuses on connected regions while suppressing
background feature expression [75]; and the dilation path that effectively preserves spatial
information [76]. This finding indicated that the improved U-net model achieved optimal ac-
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curacy in recognition of the maize growth stage and obtained a satisfactory result, successfully
recognizing the maize growth stage in most cases.

4. Conclusions

Due to the characteristics of the field environment and natural properties of maize,
the original U-net was unable to efficiently extract maize features because of the lack
of efficiency in utilizing channel and spatial information. Therefore, the performance
of U-net was still limited when dealing with the recognition of the maize growth stage.
Based on the Encoder-Decoder architecture, this study proposed the improved U-net by
means of enhancing feature extraction ability and optimizing the model representation
of channel and spatial information. Through experiments, it was demonstrated that the
backbone networks with different structures had great potential for optimizing maize
extraction features in maize growth stage recognition. The upgraded decoder, integrated
with coordinate attention modules, had a good ability to focus on maize-connected areas by
means of reducing the interference of complex backgrounds. Moreover, the dilation path
further contributed to the improvement of maize growth stage recognition performance
by fusing preserved spatial information. It was found that the improved U-net could not
only effectively and accurately recognize the growth stage of maize with different sizes,
maize with interlaced and uneven illuminations on the leaves but also outperforms other
state-of-the-art segmentation models under different conditions, demonstrating a high
degree of robustness to illumination, weeds and debris.

In the future, we will collect different varieties and growth stages of maize images
under various conditions to expand the dataset and explore the methods to further simplify
the network structure and improve the segmentation accuracy.
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