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Abstract: Ammonia volatilization (NH3) and nitrous oxide (N2O) emission are the main underliers
of nitrogen loss in farmlands, which can decrease nitrogen use efficiency and trigger environmental
problems regarding greenhouse effects. Previous studies have regional limitations and lack universal
guiding significance, as they are primarily based on individual experiments related to the effects
of applying nitrogen fertilizer on maize. In this study, we performed a meta-analysis on a regional
scale to investigate the overall impact of nitrogen fertilizer application on maize yield, N2O, and
NH3 in Northeast China. The database included 85 studies and 1147 pairs of experimental data that
were analyzed. The results showed that applying nitrogen fertilizer significantly increased maize
yield, N2O emissions, and NH3 volatilization effects, and the growth rates (E) were 50.64%, 64.39%,
and 69.25%, respectively. In Northeast China, the average emission factors of N2O and NH3 were
0.72% and 8.21%, respectively. The optimum nitrogen application rate for maize in Northeast China
was 205 kg ha−1, resulting in 8.37% nitrogen loss (through N2O and NH3). Soil texture, alkaline
nitrogen (AN) content in the soil, mean annual precipitation (MAP), nitrogen application rate, and
fertilizer type were the key influential factors affecting changes in maize yield and N loss (N2O and
NH3). Yield-scaled N2O and NH3 were found to be the significant emission reduction parameters
that ensured maize yield. However, there was a remarkable ‘seesaw effect’ between yield-scaled N2O
and NH3 under the same natural conditions (MAP and soil texture). Therefore, human activities such
as reducing N surplus in soil, and N fertilizer application rate, along with selecting suitable fertilizer
types should be given more attention to reduce yield-scaled N2O and NH3. Moreover, minimizing
NH3 and N2O dual emission should be the main objective for green agriculture in Northeast China,
rather than over-emphasizing on single emission reduction.

Keywords: nitrogen application; climate factors; soil properties; tillage measures; Northeast China

1. Introduction

Northeast China is situated in the “Golden Maize Belt” of the world [1], and comprises
Liaoning Province, Jilin Province, Heilongjiang Province, and five league cities in the
east of the Inner Mongolia Autonomous Region (which is composed of Hulunbuir City,
Tongliao City, Chifeng City, Xing’an League, and Xilingol League). It is a substantial grain
production base with excellent agricultural production conditions in China. The maize
planting area is 13.26 million hectares, accounting for 38% of the maize planting area, with
84.45 million tons yield, accounting for 41% of maize yield in China [2]. In Northeast China,
as the most significant food crop, maize has a crucial strategic position in ensuring China’s
food security. Its demand shows an increasing trend due to diversification in its purposes.
For this reason, applying nitrogen fertilizer as an effective measure to increase production
is the most important factor [3,4]. Its consumption in China is the largest globally, but its
utilization efficiency is only 30–35%. A study has shown that between 2002 and 2015, the
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excessive-fertilization degree of maize in China was 32.76%, while in Northeast China it
reached 38.62%, which has since become an excessive fertilization region in order to pursue
higher yield [5]. Although nitrogen fertilizer application helps meet human food demand,
it can also bring some negative environmental impacts. In particular, N is lost to the
environment in the form of nitrous oxide (N2O) which is a greenhouse gas, ammonia (NH3)
which causes air pollution, and N runoff and leaching, which causes groundwater pollution
and eutrophication [6–8]. However, the topography of the northeast region is dominated
by plains, while N runoff and leaching losses are relatively low [9]. Consequently, it is not
the primary focus of this study.

Fertilization can significantly increase maize yield. Nonetheless, farmers have gen-
erally applied excessive nitrogen fertilizers since the 1990s to achieve high yields [10]
resulting in soil nitrogen enrichment, which has led to the decrease of the yield-increasing
effect in recent years. Yang et al. (2017) recommended that the nitrogen application rate for
maize should be 180–200 kg ha−1 [11]. It has been observed that when the nitrogen fertilizer
application rate exceeds 240 kg ha−1, the yield tends to decrease, while nitrogen utilization
efficiency also decreases to 14.4% [12]. Chen et al. (2014) found that the NH3 and N2O
emissions in the maize field showed linear and exponential growth trends with increasing
nitrogen application rate [13]. Moreover, another study found that a threshold exists be-
tween the nitrogen application rate and the N2O emissions. When the nitrogen application
rate was lower than this threshold, N2O emissions increased slowly. Conversely, when
it exceeded the threshold, N2O emissions intensified, and exponential growth with the
nitrogen application increased [14]. Therefore, the rational application of nitrogen fertilizer
is of great significance for improving the nitrogen utilization efficiency and reducing the
emissions of NH3 and N2O, while simultaneously achieving a high maize yield [15,16].
In cases of heavy precipitation occurring after nitrogen fertilizer application, not only do
significantly higher N2O emissions arise as a result [17], an increased resistance to ammonia
emission also occurs, resulting in NH3 reduction [18]. Furthermore, it has also been shown
to produce lower N2O emissions in coarse-textured soils than in fine-textured soils [19].
However, the NH3 in fine-textured soils is less than that in coarse-textured soils [20].

The meta-analysis is a statistical method that quantitatively analyzes the statistical
results of several independent studies. Additionally, it can comprehensively evaluate
the statistical results and analyze the influencing factors [21]. Concerning the same field,
meta-analyzes can quantitatively merge the results of multiple independent studies, an-
alyze the differences between these studies, and obtain the comprehensive results of the
research [22]. Recently, this method has been used to evaluate the effects of the driving
factors underlying agricultural management practice on crop yield and gas emission. For
example, Rusinamhodzi et al. (2011) conducted a meta-analysis and found that conser-
vation agriculture practices require high inputs, especially N for improved yields [23].
Eagle et al. (2017) and Zhang et al. (2019) conducted a meta-analysis to assess the impacts
of fertilizer application on soil N2O emissions and maize yield [24,25]. Wu et al. (2021)
conducted a global meta-analysis to quantify the responses of NH3 volatilization to N fer-
tilizer [26]. Hu et al. (2019) found that N fertilizer application significantly stimulated soil
N2O emissions following residue returning through conducting their meta-analysis [27].
All of these studies are single studies exploring the effects of fertilizer application on maize
yield or gas emissions, and they are all extensive in their scope, and were either conducted
on a national or global scale. However, there are relatively few studies that performed a
meta-analysis to identify the effects of nitrogen fertilizer application on overall maize yield
and gas emissions in Northeast China. At the same time, the effect of nitrogen fertilizer is
highly dependent on management and environmental factors. Therefore, in this study, we
performed a meta-analysis to explore the effects of diverse nitrogen application measures
under different climatic conditions and human activities on increasing yield and nitrogen
emission reduction (NH3 and N2O) towards enhancing nitrogen utilization efficiency and
reducing environmental pollution.
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2. Materials and Methods
2.1. Data Source

This research conducted a search on Chinese and English databases including CNKI,
Google Scholar, and Web of Science, respectively. Using “maize yield”, “maize + nitrogen”,
and “maize + nitrous oxide/ammonia volatilization” as search keywords, studies published
from 1980 to 2021 were collected and screened. In order to reduce literature screening
bias, the following criteria were applied as follows: (1) Experimental site was confined
to Northeast China; (2) Experiments must be conducted in the field; (3) Experimental
treatments must simultaneously include the nitrogen application intervention and control
intervention (no nitrogen application). After applying these criteria, we extracted 1147
paired observations from 85 studies (Figure 1, Tables S1–S4).

Agronomy 2023, 13, x FOR PEER REVIEW 3 of 17 
 

 

on increasing yield and nitrogen emission reduction (NH3 and N2O) towards enhancing 
nitrogen utilization efficiency and reducing environmental pollution. 

2. Materials and Methods 
2.1. Data Source 

This research conducted a search on Chinese and English databases including CNKI, 
Google Scholar, and Web of Science, respectively. Using “maize yield”, “maize + 
nitrogen”, and “maize + nitrous oxide/ammonia volatilization” as search keywords, 
studies published from 1980 to 2021 were collected and screened. In order to reduce 
literature screening bias, the following criteria were applied as follows: (1) Experimental 
site was confined to Northeast China; (2) Experiments must be conducted in the field; (3) 
Experimental treatments must simultaneously include the nitrogen application 
intervention and control intervention (no nitrogen application). After applying these 
criteria, we extracted 1147 paired observations from 85 studies (Figure 1, Tables S1–S4). 

 
Figure 1. Distribution of the locations of the studies included in the meta-analysis. The map was 
generated using ArcGIS 10.2. 

We extracted the information that was closely related to the experimental research in 
the article: experimental background information (such as experiment region, climatic 
conditions, and soil physical and chemical properties), experimental design-related 
information (including the cultivation mode, nitrogen fertilizer application method, and 
application amount and type), and analysis indicators (including the mean, number of 
repetitions, standard deviation or standard error of the yield, or nitrogen loss of the 
experimental group and control group). The data displayed with the text and table in the 
articles were directly extracted, and the data displayed in the figures were extracted with 
the GetData (version 2.26) Graph Digitize software. In the case that the data provided in 
the literature was the standard error corresponding to each mean, the standard deviation 
was calculated as follows: 𝑆𝐷 = 𝑆𝐸 × √𝑛 (1)

Figure 1. Distribution of the locations of the studies included in the meta-analysis. The map was
generated using ArcGIS 10.2.

We extracted the information that was closely related to the experimental research
in the article: experimental background information (such as experiment region, climatic
conditions, and soil physical and chemical properties), experimental design-related in-
formation (including the cultivation mode, nitrogen fertilizer application method, and
application amount and type), and analysis indicators (including the mean, number of
repetitions, standard deviation or standard error of the yield, or nitrogen loss of the ex-
perimental group and control group). The data displayed with the text and table in the
articles were directly extracted, and the data displayed in the figures were extracted with
the GetData (version 2.26) Graph Digitize software. In the case that the data provided in
the literature was the standard error corresponding to each mean, the standard deviation
was calculated as follows:

SD = SE×
√

n (1)

where SD is the standard deviation, SE is the standard error, and n is the number of
observations. In the case where no standard deviations or any standard errors were
presented in these studies, we estimated the missing standard deviation according to the
method of Bracken et al. (1992) [28].
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2.2. Data Classification

The effect of yield and nitrogen gas loss by nitrogen fertilizer application may be
affected by other factors. Therefore, the relevant experimental information extracted
from the literature was summarized and grouped accordingly (Table 1), and the fol-
lowing influencing factors were sorted out as follows: experiment region; mean annual
precipitation; mean annual temperature; soil texture (determined by the USDA (source:
http://www.nrcs.usda.gov/ (accessed on 5 May 2021))); soil acidity and alkalinity; soil
organic matter content; soil total nitrogen and alkali hydrolyzable nitrogen content; tillage
method; straw returning method; nitrogen application rate, fertilizer type (traditional
solid fertilizer: urea, ammonium sulfate, ammonium nitrate, ammonium bicarbonate, and
compound fertilizer; liquid fertilizer: urea ammonium nitrate solution; slow/controlled
release fertilizer: coated fertilizer and addition of NBPT/DMPP; and organic fertilizer:
commercial organic fertilizers and manure), and fertilization method. The degree of influ-
ence of each factor on the yield and N2O and NH3 emission effects was examined with the
meta-analysis.

Table 1. Data grouping situation.

Influence Factor Subgroup Analysis

Experiment region Hei Longjiang; Liaoning; Jilin; and Inner Mongolia (Hulun Buir; Tongliao;
Chifeng; Hinggan League; and Xilingol League)

Mean annual precipitation (mm) ≤400; 400–800; >800
Mean annual temperature (◦C) ≤4; 4–8; >8
Soil texture Coarse; Medium; Fine
Soil pH pH ≤ 6.5; 6.5 < pH ≤ 7.5; pH > 7.5
Soil organic matter (g kg−1) SOM ≤ 10; 10 < SOM ≤ 30; SOM > 30
Soil total N (g kg−1) Total N ≤ 1.0; 1.0 < Total N ≤ 1.5; Total N > 1.5
Alk N (mg kg−1) Alk N ≤ 90; 90 < Alk N ≤ 120; Alk N > 120
Tillage method Conventional tillage; subsoiling; rotary tillage
Straw return to the field Straw return; no straw return
Nitrogen application rate (kg ha−1) <180; 180–240; >240

Nitrogen fertilizer type Traditional solid fertilizer; liquid fertilizer; slow/controlled release fertilizer;
organic fertilizer; organic+ inorganic fertilizer

Fertilization method Single; split

2.3. Data Calculation and Analysis

The N2O/NH3 emission factor (EF) represented the net N2O/NH3 emission per unit
N fertilizer. They were calculated using Equation (2):

EF =
Et − Ec

N
× 100% (2)

where Et is the total emissions of N2O/NH3 (kg ha−1) from fertilized treatments, Ec is the
control emission of N2O/NH3 (kg ha−1) without N fertilizer application, and N refers to
the applied fertilizer N rate (kg ha−1).

Yield-scaled N2O and NH3 emissions (kg kg−1) as indicators for evaluating N2O
and NH3 emission reductions had the advantage of considering the crop yield [29]. The
equation for this was as follows:

I =
FN
YN

(3)

where FN is cumulative N2O emissions/NH3 volatilization (kg ha−1), and YN is maize
yield (kg ha−1).

Response Ratios (RR) were used in this paper as a statistical indicator [30] and took the
natural logarithm of the response ratio as the effect size lnR. The equation was as follows:

lnR = ln(Xt/Xc) = lnXt − Xc (4)

http://www.nrcs.usda.gov/
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where the subscript of Xt and Xc represents the mean value of maize yield (incorporating
N2O emissions and NH3 volatilization) in the treatment and control groups, respectively.

The meta-analysis, for the purposes of this study, was a weighted calculation of the
effect values of each independent study to obtain the overall average effect size lnR++. It
was therefore necessary to calculate the variance (vi) and weight (wi) of each independent
study. The specific equations were follows:

vi =
SD2

t
NtXt

+
SD2

c
NcXc

, (5)

wi =
1
vi

, (6)

lnR++ =
∑(lnRi × wi)

∑ wi
. (7)

where Nt and Nc are the sample sizes for the treatment and control groups, while St and Sc
are the standard deviations for the treatment and control groups, respectively.

To reflect the variation of these effect values, this study calculated the 95% confidence
interval (95% CI) of the weighted comprehensive effect size lnR++, and its calculation was
based on the equation:

SlnR++
=

√
1

∑ wi
, (8)

95% CI = lnR++ ± 1.96SlnR++ . (9)

To better describe the impact of the experimental treatment group on a certain index,
this study converted the lnR++ of the index into a percentage change (E, %), as according to
Equation (10):

E = (elnR++ − 1)× 100% (10)

Generally, the analysis model utilized is determined by the result obtained from
the heterogeneity test. If the data analysis result was determined to be not significant
(PQ-val > 0.05), this indicates that there were no significant differences found between the
test results in the database, and the fixed effect model would be selected. Conversely,
if PQ-val < 0.05, this proves that there were significant differences present, and thus the
random effects model would be employed. The statistical results of this study revealed that
there is indeed significant heterogeneity between the different experimental results (Table 2).
Therefore, the mean effect sizes were estimated with the random effect model. The 95%
CI for each mean effect size were calculated using bootstrapping with 4999 iterations [31].
Treatment effects were considered not significant if the 95% CI overlapped with the line
lnR = 0. If the 95% CI did not overlap with the line lnR = 0 and was greater than (or less
than) 0, treatment effects were considered significant, and the treatment group increased
(or decreased) the value of this indicator. Meta-analysis was performed using R and
MetaWin2.1 software.

Table 2. Descriptive statistics of the sample size.

N Mean Q-val df PQ-val I2

Yield 993 0.4097 83,654.3622 992 <0.0001 98.91%
N2O 100 0.4971 1948.3468 99 <0.0001 97.04%
NH3 54 0.5262 140,006.8329 53 <0.0001 99.96%

Abbreviations: Q-val, statistic of heterogeneity; df, degree of freedom; PQ-val, significance test; and I2, the ratio of
the variance between the studies to the total variance.

The relative contributions of the explanatory variables, including the environmental
factors and management practices, to the maize yield-increasing and gas emission effects
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of the nitrogen fertilizer was predicted based on a random forest model using the “random
forest” package in the R software version 4.0.0 [32].

3. Results
3.1. The Effects of N Fertilizer Application on Maize Yield, N2O, and NH3
3.1.1. Natural Factors
Experiment Region and Climatic Factors

Several variances were observed in the effects of nitrogen application on maize yield,
NH3 volatilization, and N2O emissions in different provinces and cities in Northeast China.
Specifically, the yield-increasing effect on maize was higher in Inner Mongolia (E = 78.53%)
than in the other three provinces (Figure 2a(i)). The maximum growth rate of N2O emission
and NH3 volatilization appeared in the Jilin Province (E = 70.91%, 73.76%) (Figure 2a(ii,iii)).
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represent the mean effect sizes with 95% confidence intervals. Sample sizes are presented in parentheses.

The effects of nitrogen application on maize yield, NH3 volatilization, and N2O emission
varied with the different climatic conditions. When the mean annual precipitation rose, the
yield-increasing effect revealed a trend of initial growth followed by decline (Figure 2b(i)).
When the precipitation exceeded 400 mm, the yield-increasing effect was found to have
significantly increased. However, it then initiated a slight reduction after exceeding 800 mm.
The growth rate of N2O emission gradually increased as the mean annual precipitation also
increased (Figure 2b(ii)). The growth rate increased from 53.08% to 99.41%; the largest increase
appeared when the mean annual precipitation exceeded 800 mm. The change rule of the NH3
volatilization was opposite to the N2O emission (Figure 2b(iii)), and the NH3 volatilization
effect gradually decreased with the increase of the mean annual precipitation. As the
mean annual temperature increased, the yield-increasing effect exhibited a trend of initially
increasing and then decreasing (Figure 2c(i)). Nitrogen application was found to have the
highest yield-increasing effect at 4–8 ◦C (E = 55.81%). However, this effect then dropped
sharply after exceeding 8 ◦C. Additionally, there was a positive correlation found between
nitrogen loss and nitrogen fertilizer application (Figure 2c(ii,iii)), indicating that as the
temperature increased, the resulting nitrogen loss effect also increased.

Soil Factors

The impact of soil texture on maize yield increase and nitrogen gas loss were found to
have significant differences (Figure 3a(i), p < 0.01; Figure 3a(ii), p < 0.05; and Figure 3a(iii),
p < 0.05, respectively). Fertilization had a remarkable yield-increasing effect on medium-
textured soil (E = 39.25%), while on coarse-textured soil, nitrogen application had the lowest
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effect on N2O emissions (E = 38.51%). However, the NH3 volatilization losses (E = 64.1%)
were found to be the lowest on fine soil.
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The effects of nitrogen fertilizer on maize yield increase and nitrogen loss in different
soil pH were found to have significant differences (Figure 3b(i), p < 0.01; Figure 3b(ii),
p < 0.01; and Figure 3b(iii), p < 0.05, respectively). The yield-increasing effects were found
to be significantly higher in neutral soil (E = 77.22%) and alkaline soil (E = 72.2%) than that
in acidic soil (E = 39.14%). N2O emission and NH3 volatilization effects were also found to
be positively correlated with the soil pH, and the lowest emission effects appeared on acidic
soils (E = 36.59%, E = 49.09%). The maximal yield-increasing effect (E = 75.05%, 74.21%)
was observed at lower levels of total nitrogen and alkali-hydrolyzable nitrogen in the soil
(≤1g kg−1 and ≤90mg kg−1, respectively) (Figure 3c,d(i)). However, when they were at
the highest level (>1.5g kg−1 and >120mg kg−1, respectively), the emission effects of N2O
and NH3 were also at their highest, and their change rate were 85.1%, 88.14%, 84.21%, and
73.1%, respectively (Figure 3c,d(ii,iii)). Significant differences were also observed in the
effects of maize yield increasing under different soil organic matter contents (Figure 3e(i);
p < 0.01). The yield-increasing effect was at its highest when the soil organic matter content
was at a lower level (≤10 g kg−1) (E = 59.42%). However, the effects of the different soil
organic matter contents on NH3 and N2O emissions are still unclear due to the limited
existing data currently available (Figure 3e(ii), p = 0.50907; Figure 3e(iii), p = 0.96813).

3.1.2. Human Management Factors
Nitrogen Fertilizer Management

The second-degree quadratic polynomial function was used through regression analy-
sis to significantly fit the relationship between the nitrogen application rate and the maize
yield (Figure 4a). The curve of the fitting equation was y = −0.0921x2 + 37.782x + 7253.9.
The maximum yield (11,128.7 kg ha−1) was observed at the application rate of 205 kg ha−1.
The relationship between the nitrogen application rate and N2O emission and NH3 volatiliza-
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tion was fitted with the exponential model (Figure 4b,c), and the results were both found
to be significant (p < 0.01). With increasing the nitrogen application rate, both the N2O
emission and NH3 volatilization exhibited an exponential growth trend. The curves of the
fitting equation were y = e0.005x and y = e0.013x, respectively. As the maize yield reached its
maximum, the corresponding N2O emission and NH3 volatilization were found to be 2.78
and 14.37 kg ha−1, respectively. Furthermore, the nitrogen loss rate at this point was 8.37%.
In Northeast China, the average emission factors of N2O and NH3 were calculated to be
0.72% and 8.21%, respectively, based on our data.
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Figures 4a and 5a both indicate that the excessive application of N fertilizer not
only reduced the yield, but also caused significant nitrogen gas emissions. Furthermore,
both one-time and split applications were found to increase the maize yield (Figure 5b(i)).
However, by comparison, the yield-increasing effect of split application (E = 57.48%) was
found to be slightly higher than that of one-time application (E = 50.41%), which mitigated
soil N2O emissions (E = 72.6%) and NH3 volatilization (E = 82.65%) (Figure 5b(ii,iii)). For
different kinds of nitrogen fertilizers, combining organic and inorganic fertilizers was found
to be the best way to increase the yield effect (Figure 5c(i)). The slow and controlled release
fertilizer delivered a slow and gradual release of nutrients, which can significantly reduce
the emission of N2O (E = 44.6%) and NH3 (E = 65.78%), thereby making the emission effect
the lowest (Figure 5c(ii,iii)).

Tillage Management

The yield-increasing effect was found to be significant under the different tillage meth-
ods (Figure 6b, p < 0.01). After applying nitrogen fertilizer, the subsoiling exhibited a com-
paratively greater yield-increasing effect (E = 64%) compared to conventional (E = 32.14%)
and rotary tillage (E = 41.67%). The N2O (E = 65.15%) and the NH3 volatilization effects
(E = 70.93%) were both found to be at their highest in traditional tillage. Comparing the
two measures of straw returning and no straw returning, the effects on maize yield increase
and nitrogen loss were found to have significant differences (Figure 6a). After applying
nitrogen fertilizer, the maximum yield-increasing effect (E = 68.4%), and the minimum N2O
(E = 57.3%), and NH3 volatilization effects (E = 55.61%) were all achieved by returning the
straw to the field.
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3.1.3. Analysis of Explanatory Variables on Maize Yield and Nitrogen Loss

Overall, 93.78% of the variations in maize yield could be attributed to the thirteen
factors. Of these factors, the soil texture, organic matter content, nitrogen application
rate, mean annual temperature, and soil alkaline nitrogen content were the key influential
factors, which explained 22%, 19.2%, 19.11%, 9.35%, and 7.54% of the maize yield variations,
respectively. Regarding effects on nitrogen gas losses, 95.58% of the variations in N2O
emission could be explained by the thirteen factors. The soil texture, soil organic matter
content, mean annual precipitation, nitrogen application rate, and fertilizer type were
the key influential factors, which explained 25.92%, 15.49%, 15.22%, 11.4%, and 8.24% of
the variations in N2O emission, respectively. Additionally, these thirteen factors could
also explain 84.07% of the variations in NH3 volatilization, with the same key influencers
affecting NH3 volatilization as N2O emission, namely soil texture, soil organic matter
content, mean annual precipitation, nitrogen application rate, and fertilizer type, which
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respectively contributed to 9.17%, 5.54%, 18.33%, 16.26%, and 14.92% of the variation,
respectively (Figure 7).
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3.2. Driving Factors and the Relationships between Yield-Scaled N2O and NH3

In order to depict the relationship between the maize yield and nitrogen gas losses
with greater precision, we should pay more attention to yield-scaled N2O emissions and
NH3 volatilization. Therefore, we selected the five most influential factors on N2O and NH3
with nitrogen fertilizer application and divided them into two classifications: natural factors
(mean annual precipitation and soil texture) and human management factors (nitrogen
application rate, soil alkaline nitrogen content, and fertilizer type).

3.2.1. Natural Factors

Yield-scaled N2O and NH3 emissions were fitted separately to the natural factors
affecting their variation. Both of them displayed an exponential relationship with the
mean annual precipitation, with the difference being that while the yield-scaled N2O
emission showed a positive correlation with the mean annual precipitation, yield-scaled
NH3 displayed a negative correlation (Figure 8a). Consequently, we observed a “seesaw
effect”, meaning that increasing mean annual precipitation led to an increase in the yield-
scaled N2O emissions, while simultaneously causing a gradual reduction in the yield-scaled
NH3 emissions. The effects of different soil textures on yield-scaled N2O emission and NH3
followed the same trend when yield-scaled N2O emission was increased (or decreased) and
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yield-scaled NH3 volatilization was decreased (or increased) after applying the nitrogen
fertilizer in the same soil texture (Figure 8b,c).
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3.2.2. Human Management Factors

Yield-scaled N2O and NH3 emissions revealed an exponential relationship with the
nitrogen application rates (Figure 9a) and were linearly correlated with the soil alkaline
nitrogen content (Figure 9b), and all fits were found to be positively correlated. The
results revealed that both yield-scaled N2O emission and NH3 volatilization were below
the average level under the application of slow/controlled release fertilizers and the
combination of organic and inorganic fertilizers (Figure 9c,d).
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4. Discussion
4.1. Natural Factors

Moisture and temperature are integral factors affecting the effects of nitrogen fertilizer
application [33]. Yield-scaled N2O (NH3) emissions are closely related to maize yield and
cumulative N2O (NH3) emissions. When the precipitation is too high, the soil moisture
content increases, which leads to poor soil aeration, and as the soil is prone to an anaerobic
environment, this will promote denitrification, thus increasing N2O emissions from the
farmland [34]. Simultaneously, excessive precipitation will cause nitrogen to enter into
the deep soil under water infiltration, and NH4

+ produced by the hydrolysis of nitrogen
fertilizer will be retained in the deep soil layer following the nitrification reaction. It cannot
rise easily to the soil surface, which is more favorable to be absorbed by the maize root
system [35]. It has been shown that there is a significant positive correlation between
temperature and soil NH3 volatilization [36]. Under excessive temperatures, the NH4

+-N
in the soil will be improved by speeding up the hydrolysis of the nitrogen fertilizer, while
urease activity increases the ratio of NH3; and at the same time, the solubility of NH3 in the
soil will be reduced and promoting NH3 volatilization from the soil surface [37]. Under
conditions of high temperature, soil microbial activity is enhanced, which promotes the
circulation and turnover of soil nutrients, and enhances nitrification, denitrification, and
nitrogen mineralization in the soil [38].

Applying nitrogen fertilizer on different soil textures can increase yields, but the most
significant yield-increasing effects observed were on medium texture. It can be seen from
Figure 8 how the reduction of one gas emission was followed by an increase of another
gas emission after applying N fertilizer in the same soil texture, where neither yield-scaled
N2O emission nor NH3 volatilization were reduced. The soil with fine texture (clay soil)
has poor aeration and a strong water retention capacity, and its soil moisture content is
higher than that of coarse texture soils. Similarly, due to the slow decomposition rate of
organic matter which results in a higher microbial activity, denitrification is prone to occur,
which thereby enhances N2O emission [39,40]. Clay particles also have an adsorption effect
on NH4

+, which can effectively reduce the concentration of NH4
+, meaning the effect of

NH3 volatilization with fine texture is less than that of coarse texture. In addition, the
high clay grain content is less porous, which is not conducive to NH3 diffusion to the soil
surface [41]. Soil pH is one of the most important factors affecting soil nitrification, soil
nutrient conversion, and microbial community structure. Soil pH also affects the dynamic
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balance of the NH4
+-N and NH3 conversion. The higher the soil pH, the higher the NH4

+-N
content in the liquid phase of the soil, which increases the rate of NH3 conversion and
thus accelerates soil ammonia emission [42]. Soil pH significantly affects the rate of the
denitrification process and product composition. Nitrogen fertilizer is quickly converted
into ammonium nitrogen after being applied to alkaline soil, and then into nitrate nitrogen,
which is converted into N2O by denitrifying microorganisms and subsequently discharged
into the atmosphere. The optimum pH range of the denitrification rate is 7–8 [43]. This is
consistent with the results of this study, where N2O emissions are higher in neutral and
alkaline soils than in acidic soils.

In summary, it can be observed that under the same mean annual precipitation or soil
texture conditions, a ‘seesaw effect’ of yield-scaled N2O emission and NH3 volatilization
occurs, and the simultaneous reduction of both gas emissions cannot be achieved. Therefore,
it has been recommended that in the future, considering the significant differences in the soil
conditions and climate in China, we cannot overly focus on single gas emission (N2O/NH3)
reduction from natural factors, but rather should focus on the impact of human factors
as we continue to explore the best measures to increase yield and reduce emissions in
Northeast China.

4.2. Human Factors
4.2.1. Nitrogen Fertilizer Type

The type of nitrogen fertilizer affects the impacts of nitrogen fertilizer application [44,45].
In this study, combining organic fertilizers and inorganic fertilizers has the highest yield-
increasing effect on maize, followed by slow/controlled release fertilizers (Figure 5c).
Yield-scaled N2O emission and NH3 volatilization, with the application of slow/controlled
release fertilizers and the combined application of organic and inorganic fertilizers, are
less than those of traditional solid fertilizers, and also less than the average of all data
(Figure 9b,c). Applying slow/controlled release fertilizers can simultaneously increase the
maize yield while mitigating N2O emissions and NH3 volatilization, resulting in lower
yield-scaled N2O and NH3 emissions. The main reason is that slow/controlled release
fertilizers increase the maize yield and reduce gas emissions probably involving NUE.
Slow/controlled release fertilizers match the N requirement of maize over the growing
season [46]. More specifically, it can minimize early season N availability when the maize
uptake is low, thereby reducing the early season loss of N [47].

There is controversy over the emission reduction effect of organic fertilizers. In this
study, the combined application of organic and inorganic fertilizers reduced yield-scaled
N2O emission and NH3 volatilization, while maintaining maize yield. These results were
consistent with the results published by Lv et al. (2020) and Akiyama et al. (2004) [48,49].
Conversely, Thangarajan et al. (2013) found that organic fertilizers could increase N2O
emissions. This may be attributed to carbon input promoting the consumption of oxygen
by microorganisms, which is conducive to the formation of anaerobic conditions and aggra-
vates denitrification [50]. The C/N ratios of the different types of organic fertilizers vary
considerably, and the different application methods can also cause significant differences
in gas emissions [51]. The C/N ratios of pig manure and chicken manure is 35.18 and
11.67, respectively, while the N2O emissions are 1.52 kg ha−1 and 2.56 kg ha−1, respectively,
meaning there is an inverse ratio between the C/N ratios and gas emissions [52]. As
such, there is still uncertainty regarding the impact of applying organic fertilizers on gas
emissions, and further research is therefore needed.

4.2.2. Nitrogen Fertilizer Rate and N Surplus

Excessive nitrogen application and redundant soil nitrogen surplus have resulted in a
significant N2O and NH3 loss. Fitted curves showed that with the increase of the nitrogen
application rate, maize yield first demonstrated an increasing trend, and then after reaching
its maximum point gradually declined. At the same time, N2O and NH3 kept showing
an increasing trend (Figure 4). The present agricultural development trend emphasizes
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increasing yield while simultaneously minimizing emissions, and it is therefore necessary
to configure an optimal nitrogen application rate. Therefore, from conducting a quadratic
polynomial function, we found that the maize yield was the largest when the nitrogen
application rate was 205 kg ha−1. This is comparable with the currently recommended
nitrogen rate of 150–240 kg ha−1 for maize in Northeast China [53]. Previous research
data have indicated that over-application would result in an 18% N fertilizer loss through
N2O emissions and NH3 volatilization [54,55], and therefore it is not surprising that the
contribution of nitrogen application rates to yield-scaled N2O and NH3 changes were more
significant. However, the nitrogen loss rate (N2O and NH3) calculated in this article was
only 8.37%, with the optimal nitrogen application rate of 205 kg ha−1. At present, the
average emission factors of N2O and NH3 in China are about 14.84% [56,57], meaning that
the N2O and NH3 emission factors in Northeast China uncovered in this study were much
smaller than at the national level.

Nitrogen surplus is the most effective indicator of judging nitrogen inputs, environ-
mental impacts, and soil fertility changes. To some extent, it reflects the nitrogen use
efficiency [58]. Therefore, clarifying the N surplus in an agricultural system is critical for
controlling N losses [59]. It has been shown that a positive correlation does exist between
nitrogen surplus and soil alkaline nitrogen content [60], indicating that the higher the
alkaline nitrogen content, the higher the soil nitrogen surplus, along with a correspond-
ingly increased potential risk of surface source pollution. In this study, soil alkaline N
content was found to be significantly and positively correlated with yield-scaled N2O and
NH3. Additionally, it is crucial to consider nitrogen surplus as an essential indicator when
analyzing strategies pertaining to nitrogen fertilizer application and emission reduction
measures [61].

4.2.3. Tillage Management

The tillage method and the addition of organic materials significantly affect yield-
increasing and mitigate gas emissions. The subsoiling mitigates the disturbance to the
soil, and makes it loosen in the deep soil without destroying the original structure, which
effectively breaks the plow pan, adds the soil porosity, increases the water infiltration
rate, and promotes the absorption of water and nutrients by the maize root system. At
the same time, returning straw to the field also significantly impacts yield-increasing and
gas emission reduction. After straw has been returned to the field, it will be humified
and mineralized to release nutrients, increase the soil organic matter content, enhance soil
aggregates and porosity, and improve the soil moisture retention capacity to ultimately
grow and develop a maize root and improve the yield-increasing effect. Moreover, after
applying nitrogen, a large amount of NH4

+ can be adsorbed by soil organic matter and
aggregate through nitrogen fixation and remineralization, consequently reducing NH3
volatilization and N2O emission [62].

5. Conclusions

Applying nitrogen fertilizer significantly increased the maize yield by 50.64%, N2O
emissions by 64.39%, and NH3 volatilizations by 69.25%, respectively. There was a ‘seesaw
effect’ observed between yield-scaled N2O and NH3 under the same natural conditions
(mean annual precipitation and soil texture), and therefore it was deemed to be particularly
necessary to consider the effects of human factors in this context. Overall, the alkaline
nitrogen content, nitrogen application rate, and fertilizer type were found to be the key
influential factors affecting the N2O and NH3 emission changes. In Northeast China, the
average emission factors for N2O and NH3 were 0.72% and 8.21%, respectively, and the
optimum nitrogen application rate for maize was 205 kg ha−1 through regression analysis,
with the nitrogen loss (N2O and NH3) rate accounting for 8.37%, respectively. Overall,
applying slow/controlled release fertilizers could obtain a higher yield-increasing rate and
lower N2O and NH3 emissions.
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Therefore, precise fertilization based on the specific soil fertility level of each region,
choosing the appropriate nitrogen fertilizer types, and reduction of N surplus are deemed
important strategies to increase maize yield and reduce emission in Northeast China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13061479/s1, Table S1: Data related to maize yield;
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References cited in the data.
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