
Citation: Duan, X.; Lin, Y.; Li, L.;

Zhang, F.; Li, S.; Liao, Y. Hierarchical

Detection of Gastrodia elata Based on

Improved YOLOX. Agronomy 2023,

13, 1477. https://doi.org/10.3390/

agronomy13061477

Academic Editor: Silvia Arazuri

Received: 12 April 2023

Revised: 13 May 2023

Accepted: 24 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Hierarchical Detection of Gastrodia elata Based on
Improved YOLOX
Xingwei Duan 1, Yuhao Lin 1 , Lixia Li 1 , Fujie Zhang 1,*, Shanshan Li 1 and Yuxin Liao 2

1 Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming 650500, China; 20212214059@stu.kust.edu.cn (X.D.); 20202114016@stu.kust.edu.cn (Y.L.);
lilixia2012@kust.edu.cn (L.L.); 20212214014@stu.kust.edu.cn (S.L.)

2 Faculty of Electric Power Engineering, Kunming University of Science and Technology,
Kunming 650500, China; 20202205021@stu.kust.edu.cn

* Correspondence: 20030031@kust.edu.cn

Abstract: Identifying the grade of Gastrodia elata in the market has low efficiency and accuracy. To
address this issue, an I-YOLOX object detection algorithm based on deep learning and computer
vision is proposed in this paper. First, six types of Gastrodia elata images of different grades in the
Gastrodia elata planting cooperative were collected for image enhancement and labeling as the model
training dataset. Second, to improve feature information extraction, an ECA attention mechanism
module was inserted between the backbone network CSPDarknet and the neck enhancement feature
extraction network FPN in the YOLOX model. Then, the impact of the attention mechanism and
application position on model improvement was investigated. Third, the 3 × 3 convolution in the
neck enhancement feature extraction network FPN and the head network was replaced by depthwise
separable convolution (DS Conv) to reduce the model size and computation amount. Finally, the
EIoU loss function was used to predict boundary frame regression at the output prediction end to
improve the convergence speed of the model. The experimental results indicated that compared with
the original YOLOX model, the mean average precision of the improved I-YOLOX network model
was increased by 4.86% (97.83%), the model computation was reduced by 5.422 M (reaching 3.518 M),
the model size was reduced by 20.6 MB (reaching 13.7 MB), and the image frames detected per second
increased by 3 (reaching 69). Compared with other target detection algorithms, the improved model
outperformed Faster R-CNN, SSD-VGG, YOLOv3s, YOLOv4s, YOLOv5s, and YOLOv7 algorithms
in terms of mean average precision, model size, computation amount, and frames per second. The
lightweight model improved the detection accuracy and speed of different grades of Gastrodia elata
and provided a theoretical basis for the development of online identification systems of different
grades of Gastrodia elata in practical production.

Keywords: Gastrodia elata; YOLOX; target detection; ECA; DS Conv; EIoU

1. Introduction

As a geographical indication protection product of Yunnan, Gastrodia elata is a type of
rare Chinese medicinal material, and it is widely used in the treatment of spasms, vertigo,
paralysis, epilepsy, tetanus, asthma, and immune dysfunction [1]. At present, the market
classification of Gastrodia elata is only performed according to its size, which is a sign of
the quality of traditional Chinese medicine and the basis for commodity pricing. In the
market, different grades of Gastrodia elata have large price differentiation and component
content differences [2,3]. The weight and appearance of Gastrodia elata are the main factors
in market classification, and the classification methods mainly include manual sorting
and mechanical sorting. The former relies on experience and manual operation, with
strong subjective factors, low sorting efficiency, and high labor intensity, and it often causes
misclassification; the latter mainly adopts the way of weighing with a single classification
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standard. Therefore, it is of great significance to classify different grades of Gastrodia elata
quickly and accurately.

Currently, with the development of computer vision, deep learning has been widely
applied in agriculture [4–6], medicine [7–9], and other fields. Though the classification
of Gastrodia elata takes both weights and shape into consideration, it is only sorted by
manual experience or only considering weight, leading to low sorting accuracy and a heavy
workload. The application of computer vision technology based on deep learning to the
detection and classification of agricultural products, such as fruits [10,11], vegetables [12,13],
and Chinese medicinal materials [14,15], provides a reference for the visual classification of
Gastrodia elata.

For instance, Wang et al. [16] proposed an improved object detection network I-
YOLOv4-Tiny based on YOLOv4-Tiny to realize precise and rapid identification of blue-
berry fruit maturity in the complex natural environment. The convolutional attention
module CBAM was added to the neck network FPN. Experimental results indicated that
the trained I-YOLOv4-Tiny target detection network achieved an average accuracy of
97.30% on a blueberry data set. By comparing YOLOv4-Tiny, YOLOv4, SSD-MobileNet,
and Faster R-CNN object detection networks, the average accuracy can reach 96.24% in
complex scenes with unequal occlusion and illumination. The average detection time
was 5.723 ms, and the memory occupation was only 24.20 M, which can meet the require-
ments of blueberry fruit recognition accuracy and velocity. Deng et al. [17] constructed
a lightweight object detection model (CDDNet) to identify carrots for classification, and
a carrot classification approach was proposed based on the smallest enclosing rectangle
(MBR) fitting and convex polygon approximation. The experimental results showed that
the precision of the proposed CDDNet was 99.82% for the two-category classification
(normal, flawed) and 93.01% for the four-category classification (normal, bad, abnormal,
and fibrous root). The classification precision of MBR fitting and convex polygon approxi-
mation were 92.8% and 95.1%, respectively, indicating that the method can detect carrot
defects quickly and precisely. Xu et al. [18] designed an improved YOLOv5 detection
network to identify jujube maturity by integrating Stem, RCC, Maxpool, CBS, SPPF, C3,
PANet, and CIoU loss networks, which improved the detection accuracy of jujube in com-
plex environments to 88.8% and frames per second (FPS) to 245. The improved network
model YOLO-Jujube was proven to be suitable for the identification of jujube maturity.
Wang et al. [19] proposed a maturity detection approach for millet spicy green pepper in a
complex orchard environment. Based on the improved YOLOv5s model, the convolutional
layer of the cross-phase part (CSP) in the backbone network was replaced by GhostConv,
the attention mechanism (CA) module was added, and the path aggregate network (PANet)
in the neck network was replaced by the bidirectional feature pyramid network (BiFPN) to
improve detection accuracy. The experimental results indicated that the maximum mAP of
the modified model was 85.1%, and the minimum model size was 13.8 MB. Li et al. [20]
proposed a modified YOLOX object detection model called YOLOX-EIoU-CBAM, which
was applied to identify the maturity category of sweet cherries quickly and accurately
in natural environments. The convolutional attention module (CBAM) was added to the
model to consider the different maturity characteristics of sweet cherries. Meanwhile, the
replacement of the loss function with an Efficient IoU loss makes the regression of the
prediction box more precise. The experimental results indicated that compared with the
YOLOX model, the mAP, recall rate, and F-score of this method were increased by 4.12%,
4.6%, and 2.34%, respectively, and the model size and single picture extrapolation time
were basically the same.

Studies have shown that deep learning can effectively solve difficult object recognition
problems in complex environments, attributed to its high robustness and generalization
ability [21,22]. Particularly, the YOLO model can be improved according to the target
characteristics and application scenarios to improve the model performance. Therefore, it
is necessary to realize efficient and accurate sorting of different grades of Gastrodia elata
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by the deep learning model, which is of great practical significance for promoting the
development of the whole Gastrodia elata industry.

At present, major target detection algorithms conduct target detection of large sample
sizes and multiple categories, and their network structure may not be suitable for all
projects. Two-stage detection algorithms [23,24] require a large amount of computation,
which is difficult to meet the requirement of real-time detection in an ordinary hardware
environment. The one-stage detection algorithm [25] has a fast detection speed and can
realize real-time detection, but its detection accuracy is slightly lower than that of two-stage
detection algorithms. The most classic algorithm in this category is YOLO (You only look
once) series [26], among which the YOLOX target detection algorithm is a relatively new
and widely used target detection algorithm at present [27]. However, due to its complex
network structure, it requires high computing power when applied to devices. To achieve
real-time detection and classification of Gastrodia elata in complex environments, it is crucial
to improve the model to reduce the number of parameters, improve the model accuracy,
and keep the model size small.

To date, no research has conducted research on Gastrodia elata grade detection model
based on deep learning and computer vision. To meet the requirements of rapid and
accurate detection of different grades of Gastrodia elata, a YOLOX-based target detection
algorithm I-YOLOX for different grades of Gastrodia elata was proposed in this study. To
enhance the feature expression and improve the detection performance of Gastrodia elata
grade, the ECA attention mechanism module [28] was introduced into the transmission
process of the feature layer between the backbone network and the neck enhancement
feature extraction network in the YOLOX model, and the improvement effect of different
attention mechanisms on the network was compared. In the neck enhancement feature
extraction network FPN [29] and the head network, depthwise separable convolution
was replaced to reduce the calculation of model parameters, and the improvement effects
of different replacement positions were analyzed. The EIoU loss function [30] was used
to improve the model convergence effect and make the prediction box regression more
precise. Finally, the feasibility and reliability of the proposed method were validated on the
Gastrodia elata data set.

By establishing the improved YOLOX target detection model of different grades of
Gastrodia elata, the problem of grade discrimination relying on manual experience and low
recognition efficiency was solved, which provided the foundation for the construction of
the sorting system of Gastrodia elata later.

The subsequent sections are structured as follows: Section 2 introduces the estab-
lishment of the Gastrodia elata image data set and the detailed content of the I-YOLOX
classification detection algorithm proposed in this study. Section 3 evaluates the perfor-
mance of the I-YOLOX network through experiments. Section 4 summarizes the work of
this study and points out the shortcomings and prospects of this study.

2. Materials and Methods

In order to identify different grades of Gastrodia elata quickly and effectively, the
image data set of Gastrodia elata was established, and the network model was improved by
different methods. An improved YOLOX target detection algorithm for different grades of
Gastrodia elata was proposed, which improved the detection effect of Gastrodia elata.

2.1. Image Data Acquisition of Gastrodia elata

The images of different grades of Gastrodia elata were taken and collected, and the
image data set of Gastrodia elata was established by image screening and enhancement.

2.1.1. Test Materials

Yunnan is one of the origins of Gastrodia elata, and Yiliang County, Zhaotong City, is
the representative and main producing area of Yunnan Xiaocaoba Gastrodia elata. Different
grades of Gastrodia have a large price difference. In this study, Xiaocaoba Gastrodia elata was
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taken as the research object, and data collection was conducted in Xiaocaoba Changtong
Gastrodia elata Cooperative. After measuring and weighing each Gastrodia, more than
200 Gastrodia elata of each grade were selected to collect image information, including
Grade S, Grade 1, Grade 2, Grade 3, Grade 4, and Bad Grade. The six grades of Gastrodia
elata are shown in Figure 1.

Figure 1. Various grades of Gastrodia elata.

2.1.2. Grading Standards of Gastrodia elata

According to the local standard of Gastrodia elata of Yunnan Province (DB53T1077-
2021), fresh Gastrodia elata was divided into five grades: Grade S, Grade 1, Grade 2, Grade 3,
and Grade 4. In the process of growth, digging, and storage of fresh Gastrodia elata, there
are Bad Gastrodia elata, such as mildew, moths, skin damage, etc. In this paper, to better
study the classification of fresh Gastrodia elata, Bad Gastrodia elata is added to the above five
grades as one grade, and there are six grades in total. The grading specifications of fresh
Gastrodia elata are listed in Table 1.

Table 1. The grading specifications of fresh Gastrodia elata.

Grade Number
(pcs/kg)

Weight
(g/pcs) Shape

S ≤4 ≥250 Length: 10–13.5 cm, width: 5.5–8 cm,
thickness: 4.5–6.5 cm, length-width ratio: 1.47–2.48

1 ≤5 ≥200 Length: 8.5–13 cm, width: 5–7 cm,
thickness: 4–6 cm, length-width ratio: 1.23–2.59

2 ≤7 ≥150 Length: 8–13 cm, width: 4.5–6.5 cm,
thickness: 3.5–6 cm, length-width ratio: 1.29–2.62

3 ≤10 ≥100 Length: 7.5–12.5 cm, width: 3.5–6 cm,
thickness: 3–5.5 cm, length-width ratio: 1.31–2.90

4 >10 <100 Gastrodia elata not belonging to Grade S, Grade 1, Grade 2, or Grade 3 are of this grade.
Bad \ \ mildew, moth-eaten, breakage

2.1.3. Data Collection

In this study, the Hikvision industrial camera (MV-CA050-20GC, 5 million pixels,
CMOS Gigabit Ethernet industrial array camera, resolution of 2592 × 2048, Hikvision,
Hikvision) was used for image acquisition. The camera was set up with an adjustable
bracket, and the camera was fixed 25 cm away from the horizontal plane to take pictures.
The model of the light source is JL-HAR-110W, the power is 5.9 W, and the installation
height is 25 cm away from the horizontal plane. Material surface brightness is about
2.3 × 104 Lux. All images were captured under the same camera height, the same white
background plate, and the same light source brightness.

As shown in Figure 2, industrial cameras were used in this study to take images of
Gastrodia elata of six grades, namely, Grade S, Grade 1, Grade 2, Grade 3, Grade 4, and Bad
Gastrodia elata, with more than 200 Gastrodia elata in each grade. A total of 800 images of
each grade were collected, and a total of 4800 images were saved in the .jpg format.
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2.2. Image Data Screening, Enhancement, and Dataset Establishment

The main purpose of this study is to improve the classification recognition accuracy
of Gastrodia elata. First, the collected image data were screened, and the images that were
not suitable for the detection algorithm caused by damaged image data files and image
blurring caused by external factors in the collection process were screened. As shown
in Table 2, more than 800 original images of each grade of Gastrodia elata were collected.
After screening, 800 images of each grade of Gastrodia elata were retained, and a total of
4800 images of six grades were collected. Then, the images of each grade in the data set
saved after screening were enhanced.

Figure 2. Image acquisition test bench. (1) Computers; (2) Image acquisition bracket; (3) Camera;
(4) Light source; (5) Fresh Gastrodia elata samples.

Table 2. Sample number of Gastrodia elata data set.

Grade
Number of

Original Pictures
Number of Pictures

after Screening
Number of

Expand Pictures
Data Set

Total
Training Set Verification Set Test Set

S 828 800 800 1280 160 160 1600
1 867 800 800 1280 160 160 1600
2 857 800 800 1280 160 160 1600
3 816 800 800 1280 160 160 1600
4 823 800 800 1280 160 160 1600

Bad 821 800 800 1280 160 160 1600
Total 5012 4800 4800 7680 960 960 9600

There was only a single Gastrodia elata in each image collected, and there were no other
types of targets. Therefore, Mosaic and MixUp data enhancement strategies for YOLOX
were not adopted in this study because they have good effects for detecting multi-target
and multi-type images. For the Gastrodia elata dataset in this study, it is more suitable
for random processing of the original image data through flipping, translation, rotation,
changing brightness, and adding noise, thus expanding the number of images, enhancing
the diversity of image information and samples, and avoiding overfitting in the training
process. The image after the sample image enhancement is shown in Figure 3.

In this paper, by image enhancement, the images of each grade of Gastrodia elata
were expanded at an equal ratio, the dataset was expanded to 9600, and the training set,
verification set, and test set were divided at a ratio of 8:1:1. The sample quantity of the
Gastrodia elata dataset is presented in Table 2. Additionally, LableImg software version 1.8.1
was used to annotate the image dataset, and XML files containing the dataset name, center
point (xc, yc) coordinate information, label name, and other information were obtained.
Then, the XML files were converted into annotation files in the txt format required by the
YOLO training model through Python programming. In this way, the image dataset of
Gastrodia elata was established.
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Figure 3. The image enhancement of the Gastrodia elata dataset.

2.3. Improved YOLOX Gastrodia Classification Recognition Model

By introducing the ECA attention mechanism, replacing the depthwise separable
convolution, and using the EIoU position regression function calculation to improve the
original YOLOX network structure, an improved YOLOX Gastrodia elata classification
recognition model was established.

2.3.1. I-YOLOX Network

At present, the main target detection algorithm network structure is diverse and
complex, with different applicability. YOLOX, as one of the most advanced real-time
object detection algorithms, has the advantages of high detection precision and flexible
deployment. Considering the problems of model deployment and cost control, the YOLOXs
target detection network is selected as the basic network model in this paper to reduce
model storage occupation and improve the identification speed.

The network structure of YOLOX consists of four parts: the input terminal, the
backbone feature extraction network, the enhanced feature extraction network, and the
head prediction network. Specifically, the input terminal performs data enhancement and
adaptive image scaling for the input image. The backbone feature extraction network
adopts residual convolution operation to extract feature maps at different levels [31] and
adopts the CSPDarknet53 structure for the main part. Then, the extracted features are fused
by jumping connections, which alleviates the problem of gradient disappearance caused by
adding depth in the deep learning network, reduces parameter redundancy, and improves
model accuracy. In the network structure, the feature pyramid network structure is used
to enhance the semantic features from top to bottom, and the path aggregation network
structure is used to enhance the positioning features from bottom to top. Then, feature
fusion is performed by combining the information of different scales to achieve a better
feature extraction effect. The head prediction network forgoes the coupled head method
of the YOLO series and uses the decoupled head as the detection head to support two
branches, classification and regression, where the former obtains category information,
and the latter obtains detection frame information and confidence information. Finally, the
information is integrated into the prediction stage. After decoupling, different branches
of the detection head have independent parameters, so directional reverse optimization
can be performed according to the loss function to accelerate the convergence speed and
improve the precision of the model.

YOLOX re-adopted the idea of Anchor free. Instead of using clustering algorithm
to obtain prior boxes, it used simOTA to flexibly match positive samples for objects of
different sizes. This method solves the problems that anchor-based detection method
requires artificial design of Anchor frames and a large number of anchor frames in the
training process cause huge computation. Since the shapes and sizes of different grades
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of Gastrodia elata vary, the model detection box needs to adapt to the target detection of
various scales of Gastrodia elata. Therefore, simOTA positive and negative samples in
YOLOX target detection algorithm are more suitable for hierarchical detection of different
grades of Gastrodia elata. The data enhancement strategy enhanced the image information
and sample diversity and improved the generalization ability of target detection model of
Gastrodia elata.

In this study, only the classification of Gastrodia elata was involved. To enhance the fea-
ture expression and improve the detection performance of Gastrodia elata grade, as shown in
Figure 4, the following improvements were made to YOLOX: the ECA attention mechanism
module is added to the basic YOLOX network to enhance image feature extraction; in
the YOLOX FPN network and head network, depthwise separable convolution is used
instead of normal convolution to further reduce the number model parameters. EIoU loss
is used to replace the boundary box loss function in the original YOLOX model to make
the regression of the prediction frame more precise.

Figure 4. I-YOLOX network structure.

2.3.2. The Network Structure Improvement of the ECA Attention Mechanism

The attention mechanism imitates the biological vision mechanism. By rapidly scan-
ning the global image, the regions of interest can be selected, more attention resources can
be invested, and other useless information can be suppressed, thus improving the efficiency
and accuracy of visual information processing.

The ECA attention mechanism module is a channel attention module, which is com-
monly used in visual detection models. It can enhance the channel feature of the input
feature graph, eliminate the full connection layer, avoid dimension reduction, and capture
cross-channel interactions effectively. The final output of the ECA module does not change
the size of the input characteristic pattern. It can be regarded as an improved version
of the SE attention module: it solves the problem that dimension reduction in the SE
attention module brings side effects to the channel attention mechanism, and captures the
dependency between all channels has low efficiency.

As shown in Figure 5, the ECA module performs global averaging pooling on input
feature graphs, making the feature graphs change from a matrix of size [H,W,C] to a vector
of size [1,1,C]. After the global averaging pooling layer, one-dimensional 1 × 1 convolution
is used to obtain a cross-channel mutual information. The size of the convolution kernel is
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adjusted by an adaptive function, which allows layers with a larger number of channels to
interact more across channels. The adaptive function is represented below:

k =

∣∣∣∣ log2(c)
γ

+
b
γ

∣∣∣∣ (1)

where, γ = 2 and b = 1.

Figure 5. The schematic diagram of the ECA attention mechanism module.

The adaptive function is applied to one-dimensional 1 × 1 convolution to obtain the
weight of each channel of the characteristic pattern. Finally, the normalized weight is
multiplied by the initial input characteristic pattern channel by channel to generate the
weighted characteristic pattern with channel attention.

2.3.3. Structure Improvement of the Feature Fusion Network Based on Depthwise
Separable Convolution

The depthwise separable convolution is composed of depthwise (DW) convolution
and pointwise (PW) convolution. Similar to normal convolution, this configuration can
be used to extract characteristics, but it has a smaller parameter number and lower work
cost than normal convolution. The common convolution in YOLOX's enhanced feature
extraction network FPN and the head network was replaced by depthwise separable
convolution to further compress the model and improve its computational efficiency.

As shown in Figure 6, normal convolution is to perform convolution operation on
the input characteristic pattern and the corresponding convolution kernel of each channel,
then add them to output features. The calculation amount P1 is:

P1 = DkDk MNDwDh (2)

where Dk represents the size of the convolution kernel; M and N represent the number of
channels of input and output data, respectively; and Dw and Dh represent the width and
length of output data, respectively.

Figure 6. Normal convolution and Depthwise separable convolution.
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Depthwise separable convolution changes the one-step operation of ordinary convolu-
tion into 3 × 3 depthwise convolution and 1 × 1 pointwise convolution, and its calculation
amount P2 is:

P2 = (DkDk M + MN)DwDh (3)

Therefore, the arithmetical ratio of depth-wise separable convolution to normal
convolution is:

P2

P1
=

(MDwDh)
(

D2
k + N

)
D2

k MNDwDh
=

1
N

+
1

D2
k

(4)

Generally, Dk is set to 3, and the network computation amount and parameter
number are reduced by about 1/3 after replacing normal convolution with depthwise
separable convolution.

The lightweight improvement of the network structure can greatly reduce the parame-
ter number and calculation amount of the model; however, it will cause a loss of detection
accuracy. Therefore, it is necessary to further optimize the model to improve the detection
precision of the model.

2.3.4. Adopting the EIoU Position Regression Loss Function

The EIoU loss consists of three parts: IoU loss, distance loss, and height-width loss
(overlapping area, center distance, and height-width ratio). The height-width loss di-
rectly minimizes the difference between the height and width of the predicted object
boundary box and the real boundary box to achieve a faster convergence rate and better
positioning results.

As shown in Figure 7, the calculation formula for the EIoU loss is as follows:

LEIoU = LIoU + Ldis + Lasp = 1− IoU(A, B) +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)
(hc)2 (5)

where wc and hc are the width and height of the minimum enclosing rectangle of the
predicted boundary box and the real boundary box, respectively. ρ is the Euclidean
distance between two points.

Figure 7. The schematic diagram of the EIoU loss calculation.

EIoU loss is an improvement of the CIoU loss. Based on CIoU, the aspect ratio is
disassembled, and the loss item of the aspect ratio is divided into the difference between
the width and height of the predicted frame and the width and height of the real mini-
mum external frame, which improves the convergence effect and the regression precision.
Meanwhile, by adding focal focusing high-quality anchor frames, the sample imbalance
problem in the boundary box regression task is resolved, i.e., the contribution of many
anchor frames with little registration with the object frame to the optimization of B Box
regression is reduced, making the course of regression centered on superior anchor frames.



Agronomy 2023, 13, 1477 10 of 18

2.4. Transfer Learning

Since there is no public Gastrodia elata data set, there are few research on visual
classification of Gastrodia elata at home and abroad. In order to expedite model training and
improve model generalization, this study loaded the pre-training parameters of the model
in VOC2012 data sets based on the think of transfer learning. During the training, the
front-end pre-training weight network layer should be frozen first, and only the back-end
network should be retrained, and the parameters updated. After thawing this part of the
training layer, the weight can be effectively retained.

2.5. Test Environment and Parameter Setting

All tests in this paper were completed in the laboratory workstation; the workstation
model is DELL-P2419H. Hardware configuration: The CPU processor is Inter Core i7-9700F
CPU @ 3.70 GHz, the CPU processor core is 16, the multi-threading is 32, the running
memory is 64 GB, the GPU processor is Quadro P5000, 16 G video memory, 2560 CUDA
cores, and the operating system is Windows 10. Pytorch1.3.2 deep learning environment of
GPU version, compiled by Python3.8 version and CUDA11.0 version. All model training
and testing are worked in the same hardware environment.

The image input size is 640× 640. The model optimizer selected SGD, and the learning
rate was set to 0.01. The total number of iterations is set to 300. In the first 50 rounds of
training, the network trunk was frozen, the batch size was set to 32 times, and only the
later network layers were trained. In the last 250 rounds, the batch size was set to 16 times,
and the thread was set to 8.

2.6. Model Evaluation Index

In this paper, precision rate (P), recall rate (R), harmonic mean (F1), Average Precision
(AP), and Mean Average Precision (mAP) were used to evaluate the detection precision
of the proposed Gastrodia elata grade detection model and the lightweight degree of the
model and the number of frames per second (FPS) were used to judge the real-time
capability of the model. The calculation formulas of P, R, F1, AP, and mAP are shown in
Equations (6)–(10).

P =
TP

TP + FP
× 100% (6)

R =
TP

TP + FN
× 100% (7)

F1 =
2P·R
P + R

× 100% (8)

AP =
∫ 1

0
P·Rd(R)× 100% (9)

mAP =
∑C

C=1 AP(C)
C

× 100% (10)

where TP, FP, and FN represent the number of true cases, false positive cases, and false
negative cases, respectively; true cases represent the actual positive cases that are divided
into positive cases by model classification; false positive cases represent the actual negative
cases that are divided into positive cases by model classification; false negative cases repre-
sent the actual positive cases that are divided into negative cases by model classification;
and C is the number of detection categories. This study needs to identify the Grade S,
Grade 1, Grade 2, Grade 3, Grade 4, and Bad Gastrodia elata, i.e., C = 6.
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3. Results and Analysis

The effect of different improvement methods on model detection was verified by
experiments, and the optimal classification recognition model of Gastrodia elata was obtained
by analyzing the test results.

3.1. The Influence of Attention Mechanism Applied to Different Positions on Model Detection Effect

Based on the original YOLOX network model, the ECA attention mechanism is applied
to different positions in the feature fusion network, as shown in Figure 8, and its influence
on the model detection ability was analyzed. Position 1 is in the middle of the process
in which the three effective feature layers 80 × 80 × 256 (feature layer 1), 40 × 40 × 512
(feature layer 2), and 20 × 20 × 1024 (feature layer 3) obtained from the backbone feature
extraction network CSPDarknet are separately input into the enhanced feature extraction
network FPN for feature fusion. In the enhanced feature extraction network FPN, the
obtained valid feature layer is used for further characteristic extraction. Then, feature
fusion is performed on the extracted characteristics through the adaptive bidirectional
fusion channel with up-sampling and down-sampling methods. Position 2 is the connection
position after each up-sampling and down-sampling.

Figure 8. The feature fusion network applies coordinate attention mechanism.

The results are listed in Table 3. It can be seen that the attention mechanism ECA
improves the mAP of the model by 2.84% at position 1 and 2.23% at position 2, indicating
that ECA can improve the model detection performance to varying degrees at different
positions in the feature fusion. Since position 1 is at the intersection of different scale
information of the backbone network and the feature extraction network, compared with
position 2, adding ECA to the feature extraction network after each up-sampling and down-
sampling operation can enable the attention mechanism to obtain richer feature information
in the information embedding stage. Meanwhile, ECA is added to both position 1 and
position 2. In this case, the amount of model computation is slightly increased, and the
mAP of the model is increased by 1.1%. The improvement of model detection performance
is not as good as that of adding an attention mechanism in a single location. Additionally,
as shown in Table 2, ECA applied to different positions occupied a smaller size of the
model, and the model had basically the same size as the original YOLOX model.



Agronomy 2023, 13, 1477 12 of 18

Table 3. Comparison of detection ability to apply attention mechanism to different positions.

Applied Position mAP (%) Parameters (M) Model Size (MB)

None 92.97% 8.94 34.3
Position 1 95.81% 8.94 34.3
Position 2 95.20% 8.94 34.3

All 94.07% 8.95 34.3

3.2. Influences of Different Attention Mechanisms on Model Detection Effects

Based on the original YOLOX network model, different attention mechanisms were
applied to position 1, as shown in Figure 2, to compare the influence of different attention
mechanisms on the model detection ability. It can be seen from Table 4 that, when ECA
was applied to the model, compared with SE, CBAM, and no attention mechanism, the
mAP obtained was the highest, which was 95.81%. After applying the SE, CBAM, and ECA
attention mechanisms, the mAP increased by 0.63%, 0.48%, and 2.8%, respectively, indi-
cating that applying different attention mechanisms in the model feature fusion network
improved detection accuracy to varying degrees, so the attention mechanism should be
selected according to different objects and tasks. The ECA attention mechanism module
introduced in this paper can enhance channel features in the input feature graph, and
the use of 1 × 1 convolution learning channel attention information helped to avoid the
dimension reduction problem and effectively capture cross-channel interactions. Mean-
while, only a few parameters can be involved to effectively improve the model for image
feature extraction of Gastrodia elata, obtain better detection results, and achieve a good effect
even when there are water stains in the Gastrodia elata image. Additionally, as shown in
Table 4, the increase in the model size caused by applying different attention mechanisms
in the feature network was relatively small. SE and CBAM increased the model by 0.2 MB
compared with the original model size without applying attention mechanisms, while the
ECA maintained the same model size as the original one. After applying different attention
mechanisms, SE and ECA increased the model’s image detection speed, i.e., the FPS, by 1,
while CBAM reduced the FPS by 5. Combined with Table 4, the following observations
can be obtained: when the model size and computing power are constrained, the detection
performance of the model can be improved by inserting appropriate attention mechanism
into the model. The ECA attention mechanism module contributes to the optimal detection
ability of the model.

Table 4. Comparison of the detection abilities of different attention mechanisms.

Attention Mechanism mAP (%) FPS Model Size (MB)

None 92.97% 66 34.3
SE 93.60% 67 34.5

CBAM 93.45% 61 34.5
ECA 95.81% 67 34.3

3.3. Structure Improvement of Feature Fusion Network Based on Depthwise Separable Convolution

In the structure of the YOLOX object detection network, the effective feature layer
obtained by the enhanced feature extraction network FPN is used for further feature
extraction, and feature fusion is performed on the extracted features through the adaptive
bidirectional fusion channel of up-sampling and down-sampling. The head network is
the final prediction structure of the target detection network. Different from other YOLO
versions, the head network of YOLOX has decoupled detection heads. Classification and
regression are divided into two parts for processing, then the results are integrated into the
final prediction stage, which can greatly improve the convergence speed of the network.

To further reduce the number of parameters of the model, as shown in Figure 7, in
the FPN and head networks of the YOLOX target detection network structure, the normal
convolution with a convolution kernel size of 3 × 3 in the CSP_2 module, downsampling
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module, and YoloHead module is replaced by depthwise convolution with a convolution
kernel size of 3 × 3 and point by pointwise convolution with a convolution kernel size of
1 × 1, which can reduce the number of parameters and the operation cost and improve
the target detection accuracy. As shown in Table 5, when the normal convolution of the
FPN network and head network was replaced by depthwise separable convolution, the
mAP of the model decreased by 3.79% and 1.77%, respectively, compared with the original
model. The number of parameters was reduced by 1.556 M and 3.866 M, and the model
size was reduced by 14.7 MB and 5.9 MB, respectively. When the normal convolution in
both the FPN and head network was replaced by the depthwise separable convolution, the
mAP of the model decreased by 1.33%, which was the least. Meanwhile, the calculation
amount and the model size were reduced the most, which were reduced by 5.422 M and
20.6 MB, respectively. In addition, the size of the network structure occupied by adding the
alternative depthwise separable convolution is basically the same as that of the original
model. Combined with Table 5, the following observations can be drawn: when the
3 × 3 normal convolution in the FPN and head networks were replaced by the depthwise
separable convolution at the same time, the improved model had the least loss of detection
accuracy and the best lightweight degree.

Table 5. Comparison of the detection ability of the network structure in different parts by alternative
depthwise separable convolution.

Alternate Position mAP (%) Parameters (M) Model Size (MB)

None 92.97% 8.940 34.3
FPN 89.18 7.384 19.6
Head 91.20 5.074 28.4

All 91.31 3.518 13.7

3.4. Ablation Test of the Improved YOLOX Model

Ablation experiments were conducted to verify the effect of combining improved
mechanisms or strategies on model performance. By using the improved model to identify
the grade of Gastrodia elata, the effectiveness of different improved models was verified.

As shown in Table 6, the ECA attention mechanism was added to the YOLOX network,
the normal convolution was replaced by depthwise separable convolution, and the EIoU
loss function was used to perform an ablation experiment analysis. When only one type of
improvement was carried out on the original network, only the replacement of depthwise
separable convolution among the three improvement methods reduced the mAP of the
model by 1.33%, the number of parameters was greatly reduced by 5.422 M, and the model
size was reduced by 20.6 MB. The addition of the ECA attention mechanism and the use of
the EIoU loss function improved the mAP of the model by 2.84% and 1.18%, respectively,
while the number of parameters and the model size did not increase. When the three
improved methods were combined in pairs, the I-YOLOX network model with the three
improved methods achieved the highest mAP, which increased by 4.86%. Moreover, the
speed of model detection, i.e., the FPS, was the highest, which was 69. Compared with
other models, it had the smallest model size, which was 13.7 MB. The ablation test showed
that the improvement of the grade detection model of Gastrodia elata had positive effects,
and the improved I-YOLOX network model achieved the best effect in identifying the grade
of Gastrodia elata. As shown in Figure 9, the loss curve of the improved I-YOLOX network
model converged faster and decreased more gently than that of the original YOLOX model.
Meanwhile, the mAP curves rose faster and had higher values. The detection accuracy of
each grade of Gastrodia elata is shown in Figure 10. It can be seen that the detection effect of
the improved network model was improved at all levels of Gastrodia elata, among which the
detection accuracy of Grade 2 Gastrodia elata was significantly improved by 23% compared
with the original model. It was verified that the improved model enhanced the extraction
of important features of Gastrodia elata and efficiently improved the detection accuracy of
the model.
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Table 6. Ablation test.

Models ECA DS Conv EIoU mAP (%) Parameters (M) FPS Model Size (MB)

The improved YOLOX

92.97 8.940 66 34.3√
95.81 8.940 67 34.3√
91.31 3.518 65 13.7√
94.15 8.940 66 34.3√ √
93.07 3.518 66 13.7√ √
95.44 8.940 68 34.3√ √
89.70 3.518 65 13.7√ √ √
97.83 3.518 69 13.7

3.5. Comparative Test of Different Target Detection Algorithms

To evaluate the effect of the improved I-YOLOX network model in identifying
Gastrodia elata grade, the same dataset was used. The target detection algorithms Fast-
R-CNN, SSD, YOLOv3s, YOLOv4s, YOLOv5s, YOLOXs, and YOLOv7 were trained, re-
spectively, under the same test conditions. The training rounds were set to 300. After the
optimal weight was obtained, the tests were carried out on the same test set. Finally, the
detection performance of seven target detection network models was compared.

Figure 9. Comparison of the training results of the model before and after improvement. (a) Loss
curve, (b) mAP curve.

Figure 10. The mAP of the model for identifying each grade of Gastrodia elata. (a) YOLOX,
(b) I-YOLOX.

As shown in Table 7, compared with other detection networks, the improved I-YOLOX
network model achieved better performance in terms of P, R, and F1. It can be seen from
Figure 11a that the improved network model improved the mAP compared with other
detection networks. Compared with YOLOv5s, the improved network model improved
the mAP by 9.95%, reaching 97.83%. It can be seen from Figure 11b that the improved



Agronomy 2023, 13, 1477 15 of 18

network model obtained greater FPS than other detection networks. The FPS of the
single-object detection algorithm was significantly improved than that of the dual-object
detection algorithm. Compared with Fast-R-CNN, the maximum improvement was 60.
The improved network model achieved the highest FPS of 69. It can be seen from Figure 11c
that the improved network model reduced the number of parameters compared with other
detection networks. Compared with Fast-R-CNN, it was reduced by 133.273 M, and the
number of parameters of the improved network model was the least, which was 3.518 M.
Moreover, Figure 11d indicates that compared with other detection networks, the model
size of the improved network model was reduced by the most (230.3 MB) compared to
YOLOv4s. The number of parameters of the improved network model was the least, which
was 13.7 M.

A comprehensive analysis of the above results shows that the improved I-YOLOX
network model can not only improve the detection precision but also reduce the number of
parameters and model size, thus obtaining a lightweight model. As shown in Figure 12,
the improved I-YOLOX network model can be used to identify and detect the six grades of
Gastrodia elata.

Table 7. The evaluation indexes of different target detection models.

Models

Dataset of Fresh Gastrodia elata

P
(%)

R
(%)

F1
(%)

mAP
(%)

Parameters
(M) FPS Model Size

(MB)

Fast R-CNN 84.69 98.33 90.70 97.58% 136.791 9 108
SSD-VGG 92.89 96.05 94.20 97.80% 24.280 60 93.1
YOLOv3s 95.12 96.36 95.30 95.91% 61.535 41 235
YOLOv4s 91.91 92.71 91.80 91.74% 63.949 32 244
YOLOv5s 91.66 88.22 88.30 87.88% 7.077 67 27.2
YOLOXs 91.56 91.87 90.20 92.97% 8.940 66 34.3
YOLOv7 90.62 91.77 90.30 93.38% 37.222 28 142
I-YOLOX 93.98 94.69 93.80 97.83% 3.518 69 13.7

Figure 11. The training effect of the improved target detection algorithm compared with other target
detection algorithms. (a) mAP, (b) FPS, (c) Parameters, (d) Model size.
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Figure 12. Target detection results of six grades of Gastrodia elata.

4. Conclusions

At present, there are few studies on the visual classification of Gastrodia elata. To fill
this research gap and provide technical support for the classification of Gastrodia elata,
this paper collected and established the Gastrodia elata image dataset and improved the
detection accuracy and efficiency of different grades of Gastrodia elata by improving the
deep learning network model.

In this study, an improved YOLOX network target detection model called I-YOLOX
was proposed for the recognition and detection of different grades of Gastrodia elata. By
analyzing the influence of model improvement and transfer learning on the model perfor-
mance, the conclusions are as follows.

By adding the ECA attention mechanism module between the backbone network
and the neck network to enhance feature extraction of image information and improve
model characterization ability, depthwise separable convolution was used to replace nor-
mal convolution in the FPN network and the head network to reduce the number of
parameters and model size, and a better EIoU loss function was adopted. The model can
obtain faster convergence speed and better prediction frame regression accuracy. Mean-
while, the modeling effects of different attention mechanisms, improved positions, im-
proved modules, and different typical target detection networks were explored on the
Gastrodia elata dataset. The results indicate that compared with the original YOLOX model,
the mAP of the improved I-YOLOX model increased by 4.86%, the number of parameters
was reduced by 5.422 M, the FPS per increased by 3, and the model size was reduced by
20.6 MB. It shows that the improvement enhanced the detection precision and speed while
reducing the calculation amount.

In this study, an improved Gastrodia elata grade detection model called I-YOLOX was
proposed to identify and detect the six grades of Gastrodia elata, which was improved
from the aspects of detection accuracy, model complexity, detection speed, etc. This study
provides a reference for the deployment and application of the model in the complex
environment of Gastrodia elata sorting devices in the later stage and extends the use of deep
learning models in other fields of Chinese medicinal materials. It promotes the development
of the Gastrodia elata sorting standards and processing industry and lays a theoretical foundation
for the subsequent establishment of automatic Gastrodia elata sorting systems.
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