

Article

Spatiotemporal Variations of Reference Evapotranspiration and Its Climatic Driving Factors in Guangdong, a Humid Subtropical Province of South China

Baoshan Zhao^{1,†}, Dongsheng An^{1,†}, Chengming Yan¹, Haofang Yan², Ran Kong¹ and Junbo Su^{1,*}

- ¹ South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524013, China; zhao_baoshan@outlook.com (B.Z.); dongshengan@catas.cn (D.A.); ycm628@catas.cn (C.Y.); kongran2008@126.com (R.K.)
- ² Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China; 1000004265@ujs.edu.cn
- * Correspondence: junbosu@catas.cn
- + These authors contributed equally to this work.

Abstract: It is of great importance to study the changes in reference evapotranspiration (ET_0) and the factors that influence it to ensure sustainable and efficient water resource utilization. Daily ET_0 data calculated using the Penman-Monteith method from 37 meteorological stations located within Guangdong Province in the humid zone of southern China from 1960 to 2020 were analyzed. The trend analysis and Mann–Kendall test were used to analyze the time series changes in ET_0 and major climatic factors (air temperature (*T*), relative humidity (*RH*), sunshine duration (*SD*), and wind speed (u_2)) for over 61 years. Sensitivity and contribution analyses were used to evaluate the driving factors of ET_0 . The main findings of the study are as follows: (1) the trend in average annual ET_0 time series in Guangdong slightly increased at a trend rate of 1.61 mm/10a over the past 61 years, with most stations experiencing an increase in ET_0 . During the same period, air temperature significantly increased, while RH and SD decreased; u_2 also decreased. (2) Sensitivity analysis showed that ET_0 was more sensitive to RH and T than SD and u_2 , with ET_0 being most sensitive to RH in spring and winter and T in summer and autumn. (3) The contribution analysis showed that T was the dominant factor for ET_0 variation in Guangdong, followed by SD. SD was found to be the dominant factor in ET_0 changes in areas where the "evaporation paradox" occurred, as well as in spring and summer. The study concludes that the climate in Guangdong became warmer and drier over the past 61 years, and if the current global warming trend continues, it will lead to higher evapotranspiration and drought occurrence in the future.

Keywords: climate change; evapotranspiration; meteorological factors; trend analysis; hydrological cycle

1. Introduction

Climate change characterized by global warming profoundly impacted agriculture, ecosystems, and human survival and development over the past few decades [1–3]. As a result, changes in the hydrological cycle and its other component processes can be expected worldwide, leading to a series of water resource-related problems [1,4].

Evapotranspiration (*ET*) is one of the most important components of the hydrological cycle and a key parameter in hydrological models and agricultural irrigation management [5,6]. It is a complex process that is not only controlled by climate variables but also influenced by underlying surface conditions, human activities, and other environmental conditions [7]. Therefore, estimating actual *ET* can be challenging [8]. As an alternative method, reference evapotranspiration (*ET*₀), also known as potential evapotranspiration

Citation: Zhao, B.; An, D.; Yan, C.; Yan, H.; Kong, R.; Su, J. Spatiotemporal Variations of Reference Evapotranspiration and Its Climatic Driving Factors in Guangdong, a Humid Subtropical Province of South China. *Agronomy* 2023, *13*, 1446. https://doi.org/ 10.3390/agronomy13061446

Academic Editors: Shicheng Yan, Yongzong Lu, Shengcai Qiang and Tiebiao Zhao

Received: 30 April 2023 Revised: 18 May 2023 Accepted: 22 May 2023 Published: 24 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). in hydrometeorology, is used to assess the effects of climate change on evapotranspiration and the hydrological cycle. ET_0 is only affected by climatic factors and can reflect the evaporation capacity of the surface atmosphere under specific meteorological conditions in an integrated manner, while excluding the interference of other environmental conditions [9,10].

 ET_0 is a basic parameter for regional water balance, irrigation scheduling, and water resource management [9,11]. Many past studies investigated the temporal and spatial patterns of ET_0 , most of which focused on its response to the combined effects of climate change and human activities in different regions [12–19]. Additional studies showed an increasing trend in ET_0 in most parts of the world in recent decades, including in the United States [12], China [13,14], India [15,16], and Iran [17]. Some studies reported increasing trends in ET_0 (e.g., Ghafouri-Azar et al. [18] in the Korean Peninsula and Liu et al. [19] in the Tibetan Plateau). According to the definition of ET_0 , the only factors that affect ET_0 are climatic variables [9]. Therefore, some studies focused on the relationship between ET_0 and influencing climatic variables [20–24]. On a global scale, a decrease in sunshine duration (SD) (or solar radiation) was the main cause of evaporation changes at the end of the 20th century [20]. However, due to the non-uniformity of the spatial and temporal distributions of climatic variables, the importance of climatic variables affecting ET_0 varies significantly from region to region. Vicente-Serrano et al. [21] analyzed changes in the annual ET_0 from 46 stations in Spain and reported increased values of ET_0 in the period 1961–2011. They also demonstrated that relative humidity (*RH*), wind speed (u_2) , and maximum temperature (T_{max}) had stronger effects on ET_0 than SD and minimum temperature (T_{min}). Patle et al. [22] reported that the most sensitive parameter affecting ET_0 estimation in the eastern Himalayan region of Sikkim, India, was T_{max} , followed by SD, whereas u_2 , T_{min} , and RH had a fluctuating effect on mean ET_0 . Chu et al. [23] studied the effects of climate change on ET_0 in Jiangsu, eastern China, finding that u_2 contributed the most to ET_0 , followed by SD. Liu et al. [19] reported that changes in ET_0 on the Qinghai–Tibet Plateau in the period 1961–2017 mainly depended on air temperature (*T*), followed by u_2 and *SD*, whereas RH had a negative effect. There is currently no consensus on the underlying causes of ET_0 variation. This issue exists because ET_0 is influenced by a combination of changes in climate variables, such as T, RH, u_2 , and SD, and there is a complex non-linear relationship between ET_0 and these parameters, with significant variability existing between these meteorological factors [13,24].

Guangdong, which is located in the south of mainland China, was one of the first regions in China to undergo reform and opening up and has the most outward-looking economy. Due to rapid socio-economic development and human activities, coupled with its proximity to the South China Sea and significant maritime climatic features, both the ocean and the continent have a significant influence on the climate of the region, and changes in ET_0 in the region are likely to be complex. In addition, seasonal droughts and urban water shortages were commonly reported in the region in recent years [25,26]. However, there is a lack of study on the spatial and temporal variability and drivers of ET_0 in Guangdong.

In this study, the objectives were to analyze the change trends of annual and seasonal ET_0 and major climatic factors through collecting meteorological data and calculating ET_0 for Guangdong from 1960 to 2020, and to identify the major climatic driving factors of ET_0 through quantifying the effects of meteorological variables on ET_0 . The results of this study can improve our understanding of the factors contributing to ET_0 changes and the impact of climate change on the hydrological cycle in Guangdong Province. It is anticipated that the outcomes of this study will improve guidance for agricultural production and economic development in this vitally important region.

2. Materials and Methods

2.1. Study Area and Meteorological Data

This study was conducted in Guangdong Province ($20^{\circ}09' \text{ N} \sim 25^{\circ}31' \text{ N}$, $109^{\circ}45' \text{ E} \sim 117^{\circ}20' \text{ E}$), which is located in the humid south of China and has a tropical and subtropical monsoon

climate; the province covers an area of approximately 179,700 km². The region has abundant sunshine, heat, and water resources, with an annual mean temperature of 22.3 °C; annual sunshine duration of 1745.8 h; and annual precipitation of 1789.3 mm, which varies between 1300 and 2500 mm. However, the region has unevenly distributed water resources, with frequent floods in summer and autumn, and droughts in winter and spring. In addition, the region experiences water shortages caused by population growth, climate change, and water pollution [27]. Understanding climate change and its impact on the hydrological cycle is crucial, as the area has strong evapotranspiration (more than half of the total precipitation) [28].

This study used daily meteorological data from 37 stations (Figure 1) located in Guangdong, including average temperature (T_{mean} , °C), maximum temperature (T_{max} , °C), minimum temperature (T_{min} , °C), relative humidity (RH, %), wind speed at 10m height (u_{10} , m/s), and sunshine duration (SD, h); these data were obtained from the China Meteorological Administration (CMA). The analysis period ranged from 1960 to 2020. Table 1 provides basic characteristics of the meteorological stations, such as latitude, longitude, and altitude. The FAO Penman–Monteith equation was used to calculate the daily ET_0 for each station. Some years were excluded from the analysis due to the missing data from several stations, including Station Zhuhai (years 1960 to 1964), Station Fengshun (years 2016 to 2020), and Station Jiexi (years 1965 to 1969). Furthermore, routine quality checks and error correction were performed on the meteorological data according to the methodology of Peterson et al. [29]. The four seasons were divided into spring (March–May), summer (June–August), autumn (September–November), and winter (December–February of the following year).

Figure 1. Distribution of meteorological stations and altitude map in Guangdong.

		I (1)				Р	ET_0
Station Name	Station Code	Latitude (°)	Longitude (°)	Elevation (m)	$T(^{\circ}C)$	(mm year $^{-1}$)	$(mm year^{-1})$
Nanxiong	57996	25.08	114.25	149.7	20.60	1516.93	1086.92
Lianzhou	59072	24.82	112.37	131.7	20.59	1630.72	1017.50
Shaoguan	59082	24.67	113.60	121.3	21.24	1598.76	1102.62
Fogang	59087	23.88	113.52	97.2	21.87	2185.18	1110.86
Yingde	59088	24.18	113.42	74.4	21.86	1875.78	1125.04
Lianping	59096	24.38	114.50	283.9	21.06	1761.46	1045.66
Xinfeng	59097	24.03	114.22	269.3	21.29	1902.73	1021.50
Longchuan	59107	24.12	115.28	179.6	21.75	1676.19	1113.47
Dabu	59116	24.35	116.70	80.1	22.29	1504.85	1063.31
Meixian	59117	24.28	116.07	116.0	22.34	1497.09	1125.14
Guangning	59271	23.63	112.42	92.7	22.05	1721.33	1048.16
Gaoyao	59278	22.98	112.48	60.0	22.96	1641.14	1132.58
Qingyuan	59280	23.72	113.08	79.2	22.48	2125.33	1150.73
Guangzhou	59287	23.22	113.48	70.7	22.81	1809.36	1123.41
Dongguan	59289	22.97	113.73	56.0	23.14	1826.26	1195.20
Heyuan	59293	23.80	114.73	71.1	22.41	1922.63	1154.25
Zengcheng	59294	23.33	113.83	30.7	22.67	1965.49	1155.53
Huiyang	59298	23.07	114.37	108.5	22.87	1751.19	1191.59
Wuhua	59303	23.92	115.75	135.9	22.18	1499.91	1151.35
Zijin	59304	23.63	115.18	176.6	21.86	1706.80	1066.10
Jiexi	59306	23.45	115.85	80.9	22.42	2063.74	1123.96
Fengshun	59310	23.77	116.18	45.3	22.43	1830.54	1147.24
Shantou	59316	23.38	116.68	2.3	22.39	1556.30	1186.02
Huilai	59317	22.98	116.30	42.0	22.68	1792.25	1210.90
Nan'ao	59324	23.43	117.03	8.0	22.13	1357.39	1284.52
Xinyi	59456	22.35	110.93	141.4	23.47	1790.40	1201.36
Luoding	59462	22.72	111.60	60.0	23.12	1373.51	1114.67
Taishan	59478	22.25	112.78	33.1	22.89	1965.12	1183.24
Zhongshan	59485	22.50	113.40	33.7	22.97	1859.13	1134.09
Zhuhai	59488	22.28	113.57	51.4	23.17	2031.49	1271.63
Shenzhen	59493	22.55	114.00	63.0	23.36	1911.09	1252.23
Shanwei	59501	22.80	115.37	16.7	22.85	1899.26	1229.55
Zhanjiang	59658	21.15	110.30	53.4	23.84	1675.38	1214.12
Yangjiang	59663	21.85	111.98	90.3	23.11	2353.95	1189.67
Dianbai	59664	21.55	110.98	31.8	23.82	1550.61	1220.74
Shangchuan Island	59673	21.73	112.77	21.9	23.20	2244.92	1271.17
Xuwen	59754	20.25	110.17	11.4	24.54	1393.28	1271.18

Table 1. Basic information of meteorological stations used in study area.

2.2. Reference Evapotranspiration Computation

As measured ET_0 values were unavailable, we calculated daily ET_0 using the FAO56 Penman-Monteith (PM) method, which is the most widely used and accurate method for estimating ET_0 across various climatic regions. The equation is expressed as follows [9]:

$$ET_0 = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$
(1)

where R_n is the net radiation (MJ m⁻² d⁻¹), *G* is the soil heat flux (MJ m⁻² d⁻¹), *T* is the mean daily air temperature at 2 m height (°C), e_s is the saturation vapor pressure (kPa), e_a is the actual vapor pressure (kPa), Δ is the slope of the vapor pressure curve (kPa °C⁻¹), and γ is the psychrometric constant (kPa °C⁻¹).

To convert the wind speed data observed at the meteorological station, which were measured at 10 m above ground level, to the corresponding value at 2 m height, we used Equation (2) [9]:

$$u_2 = u_z \frac{4.87}{\ln(68.7z - 5.42)} \tag{2}$$

where u_z is the wind speed at a height of z m above ground level (m s⁻¹).

2.3. Climatic Trend

Climate tendency refers to the changing trend of meteorological variables over time, which can be estimated using an ordinary linear regression equation, as given using the following equation [30,31]:

$$y(t) = at + b \tag{3}$$

where *t* represents the long-time series (year), y(t) is the ET_0 and other meteorological variables corresponding to *t*, *a* is the linear slope, and *b* is the intercept. In general, the climatic tendency rate (β) is equal to 10*a* with a unit of value per decade [30].

The significance of the trends in climatic series is evaluated using the Mann–Kendall trend test technique (MK test). The MK test is a rank-based non-parametric method that is widely applied for trend detection in hydro-climatic time series [32,33]. The MK test is described as follows:

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{sgn}(x_j - x_i)$$
(4)

where

$$\operatorname{sgn}(x_j - x_i) = \begin{cases} +1 & (x_j > x_i) \\ 0 & (x_j = x_i) \\ -1 & (x_j < x_i) \end{cases}$$
(5)

where x_i and x_j are the sequential data values, and n is the length of the data set. The mean and variance of the statistic *S* are given as:

$$E(S) = 0 \tag{6}$$

$$V(S) = \left[n(n-1)(2n+5) - \sum_{i=1}^{n} t_i i(i-1)(2i+5)\right]$$
(7)

where *t* is the extent of any given time.

The standardized statistic Z for a one-tailed test is formulated as follows:

$$Z = \begin{cases} (S-1)/\sqrt{\operatorname{var}(S)}(S>0) \\ 0 & (S=0) \\ (S+1)/\sqrt{\operatorname{var}(S)}(S<0) \end{cases}$$
(8)

where a positive value of Z denotes an increasing trend, and a negative value indicates a decreasing trend. |Z| > 1.96 and 2.32 indicate passing the significance level test of 0.05 and 0.01, respectively.

2.4. Assessing the Impact of Climate Variables on ET_0

In this study, the impact of meteorological factors on ET_0 was assessed through combining the sensitivity analysis with the contribution rate of a single climate factor to ET_0 .

Sensitivity analysis is a widely used method to identify the changes in the dependent variable (ET_0) caused by the change in an independent meteorological variable [13,14,32], and the sensitivity coefficient is defined by [34]:

$$S_x = \lim_{\Delta x \to 0} \frac{\Delta E T_0 / E T_0}{\Delta x / x} = \frac{\partial E T_0}{\partial x} \cdot \frac{x}{E T_0}$$
(9)

where Δx is the relative change in the model input value x, x is the meteorological factors, ΔET_0 is the relative change in ET_0 induced by Δx , and S_x is the dimensionless sensitivity coefficient. A positive (negative) S_x means that ET_0 increases (decreases) with the increase in meteorological factors. Larger $|S_x|$ means higher sensitivity of ET_0 to meteorological factors. In order to quantitatively assess the sensitivity of ET_0 to different meteorological factors, the S_x was divided into four levels, as shown in Table 2 [35]. Table 2. Sensitivity coefficient level classification.

	Sensitivity Level
$ S_x < 0.05$	Negligible
$0.05 \le S_x < 0.20$	Moderate
$0.20 \le S_x < 1.00$	High
$ S_x \ge 1.00$	Very high

Sensitivity analysis cannot determine the actual contribution of each variable change to ET_0 . In order to quantify the contributions of meteorological variables to the change trend in ET_0 , we calculated the contribution rate (C_x) through multiplying the multi-year relative change rate of meteorological factors by its sensitivity coefficient, as shown in the following equation [36,37]:

$$C_x = S_x \cdot R_c \tag{10}$$

$$R_c = \frac{n \cdot a}{\overline{x}} \tag{11}$$

where R_c is the relative change rate of certain meteorological factors and ET_0 (%); *a* is the linear slope, as mentioned in Equation (3); and \overline{x} is the mean of the meteorological factor time series.

In this study, ArcGIS 10.8 was used to map the distribution of meteorological stations and spatial variation in ET_0 in the study area, Matlab 2018a was used for MK testing, IBM SPSS Statistics 26 was used for significance analysis, and Origin 2021 was used for other plots.

3. Results

3.1. Change Trends of Climatic Factors

The variations in climatic factors, which were averaged based on the 37 meteorological stations in Guangdong from 1960 to 2020, are shown in Figure 2 and Table 3. In line with the global warming trend, the *T* in the region exhibited a significant increase (p < 0.01) with a climate tendency rate of 0.19 °C/10a. The average annual *RH* was 78.51%, which declined significantly at a rate of -0.42%/10a, indicating a trend of drought in the atmosphere, with the most significant reduction occurring around 2010. Sunshine, which directly reflects solar radiation, is the energy source driving changes in other factors, such as *T*, *RH*, *u*₂, and *ET*₀. *SD* in Guangdong ranged from 4.26 to 6.34 h, with a multi-year average of 4.99 h, and showed a significant decreasing trend (p < 0.01) with a climate trend rate of -0.10 h/10a (Figure 2c). The decline in *SD* could be related to human activities and urbanization, which cause air pollution and an increase in aerosols in the air. In contrast, the multi-year average value of *u*₂ was 1.56 m/s, with a variation range of 1.39 m/s to 1.74 m/s, and showed a non-significant decreasing trend in spring, autumn, and winter (Figure 2d).

On the seasonal scale, *T* displayed a significant declining trend (p < 0.01) in all four seasons, and the increasing trend was stronger in cooler seasons than in warmer seasons. Autumn and winter warming rates were 0.24 °C/10a and 0.26 °C/10a, respectively, which were higher than the respective spring and summer warming rates of 0.15 °C/10a and 0.16 °C/10a. *RH* showed a decreasing trend in all seasons, with significant decreases in summer (p < 0.01), spring, and autumn (p < 0.05). Similarly, *SD* showed a decreasing trend in all seasons, with significant decreases in summer (p < 0.05). *u*₂ showed a non-significant decreasing trend in spring, autumn, and winter and a significant increasing trend in summer (p < 0.01), with a tendency rate of 0.02 m/(s·10a).

Figure 2. Annual variations and linear trends of meteorological variables in Guangdong in period 1960–2020: (**a**) temperature (*T*), (**b**) relative humidity (*RH*), (**c**) sunshine duration (*SD*), and (**d**) wind speed (u_2).

|--|

	N	Linear Reg	gression		MK Tes	it	
Climatic Factors	Mean value	Slope	Std	Ζ	<i>p</i> -Value	Change Point (Year)	
Spring							
$\hat{T}(^{\circ}C)$	22.25	0.015	0.74	2.41	0.008	2000, 2011	
RH (%)	82.20	-0.038	2.51	-2.38	0.046	1963, 1994	
SD (h)	3.50	-0.008	0.74	-0.94	0.132	1968	
$u_2 ({ m m \ s^{-1}})$	1.53	-0.001	0.09	-1.60	0.083	1964	
Summer							
<i>T</i> (°C)	28.65	0.016	0.30	5.63	0.000	1993	
RH (%)	82.03	-0.037	1.61	-3.30	0.003	1983	
SD (h)	6.28	-0.010	0.60	-2.30	0.027	1979	
$u_2 ({ m m \ s^{-1}})$	1.45	0.002	0.08	3.18	0.004	2010	
Autumn							
<i>T</i> (°C)	23.99	0.024	0.50	5.30	0.000	1995	
RH (%)	75.27	-0.057	3.04	-2.47	0.014	1966	
SD (h)	6.01	-0.009	0.69	-1.86	0.086	2011	
$u_2 ({ m m \ s^{-1}})$	1.58	-0.0006	0.12	-0.29	0.458	-	
Winter							
<i>T</i> (°C)	15.01	0.026	0.94	3.58	0.000	1991, 2011	
RH (%)	74.42	-0.036	3.31	-1.60	0.142	1997	
<i>SD</i> (h)	4.17	-0.012	0.74	-1.30	0.032	-	
$u_2 ({ m m \ s^{-1}})$	1.69	-0.001	0.13	-0.22	0.276	-	

	N	Linear Reg	gression		MK Tes	st
Climatic Factors	wiean value	Slope	Std	Z	<i>p</i> -Value	Change Point (Year)
Annual						
T (°C)	22.47	0.019	0.35	5.41	0.000	1999
RH (%)	78.48	-0.042	1.73	-3.33	0.002	1987
<i>SD</i> (h)	4.99	-0.010	0.37	-2.73	0.001	1973
$u_2 ({\rm m}{\rm s}^{-1})$	1.56	-0.0002	0.08	-0.38	0.702	-

Table 3. Cont.

Note: *T* is temperature, *RH* is relative humidity, *SD* is sunshine duration, u_2 is wind speed, slope is trend based on linear regression, *Std* is standard deviation of linear regression, and *Z* is Mann–Kendall test statistic.

3.2. Spatial and Temporal Variation Characteristics of ET₀

Due to the non-uniformity of the distribution of climatic factors, the spatial and temporal distribution of ET_0 in the study area is uneven. Figure 3a shows the spatial distribution and trend of annual average ET_0 in the study area, which shows that ET_0 gradually increased from north to south in spatial distribution. The differences in ET_0 among meteorological stations were evident, with higher ET_0 values found in coastal areas, such as western Guangdong and the Pearl River Delta (PRD). The three stations with the highest ET_0 values were Nan'ao (1284.52 mm), Zhuhai (1271.63 mm), and Xuwen (1271.18 mm), while the lowest three stations were Lianzhou (1017.50 mm), Xinfeng (1021.50 mm), and Lianping (1045.66 mm).

Figure 3. Spatial distribution and trend of annual ET_0 in study area. (a) Spatial variations, (b) Temporal variations.

Of the 37 meteorological stations in the study area, 25 stations showed an increasing trend in ET_0 , of which 9 stations showed a increasing trend with a selected significance level of 0.05. The stations with significant increases in ET_0 were found in Qingyuan, Gaoyao, Dongguan, Zhongshan, and Shangchuan Island in the PRD, as well as in Dabu, Jiexi, Shantou, and Longchuan in the east. On the other hand, 12 stations showed a decreasing trend in ET_0 , with 7 stations showing a significant decrease, including Luoding and Dianbai in the west; Guangzhou, Zengcheng, Zhuhai, and Huiyang in the PRD; and Nan'ao in the east.

In terms of interannual variations, the overall annual ET_0 in the study area showed a slightly increasing trend (Figure 3b), with a climatic tendency rate of 1.61 mm/10a and an insignificant decreasing trend (Table 4). The interannual ET_0 was unevenly distributed, with a variation range between 1069.27 and 1254.56 mm and a multi-year average of 1142.45 mm.

	NA 17.1	Linear Re	gression	MK Test				
Season	Mean Value	Slope	Std	Ζ	<i>p</i> -Value	Change Point (Year)		
Spring	3.00	-0.0239	22.29	0.24	0.885	2000		
Summer	4.32	0.0013	18.83	0.03	0.993	2003		
Autumn	3.29	0.1004	15.92	0.91	0.397	1990		
Winter	2.01	0.0828	12.97	1.23	0.392	2002		
Annual	3.15	0.1606	40.58	0.83	0.594	2003		

Table 4. Temporal trend analysis of seasonal ET_0 with linear regression and MK analysis.

Note: Slope is trend based on linear regression, Std is standard deviation, and Z is Mann-Kendall test statistic.

The spatial and temporal distribution of ET_0 in the study area varies across different seasons. Figure 4a–d show the spatial distribution characteristics and trends of multi-year average ET_0 at each station during the four seasons. During spring, the variation range of ET_0 is between 241.25 and 347.86 mm, and the highest ET_0 values are observed in Xuwen. Among the 37 stations in the study area, 23 stations show an increasing trend in ET_0 , with 4 stations, such as Shantou and Dongguan, showing a significant increase; only 1 of the remaining 14 stations showing a significant decrease. During summer, ET_0 variation range is 355.14-431.06 mm, with high ET_0 values occurring in regions such as Zhanjiang and Zhuhai. Within the study area, 20 stations have an increasing trend in ET_0 , while 17 stations have a decreasing trend. Among them, seven stations show a significant increase, while five stations show a significant decrease. The variation ranges of ET_0 in autumn and winter are 252.20 to 358.41 mm and 133.40 to 223.20 mm, respectively. The high ET_0 values are mainly concentrated in coastal areas, such as Zhuhai, Shenzhen, and Shanwei. In autumn, 24 stations show an increasing trend in ET_0 , while 13 stations show a decreasing trend, with 8 stations showing a significant increase and 5 stations showing a significant decrease. During winter, ET_0 at 26 stations show an increasing trend, with 8 stations showing a significant increase; however, 11 stations show a decreasing trend, and 2 stations showing a significant decrease. The trend in ET_0 changes in different seasons also show that the study area has the most stations with increasing ET_0 in winter, while there are relatively more stations with decreasing ET_0 trends in summer.

Figure 4. Cont.

Figure 4. Spatial distribution (**a**–**d**) and trend (**e**–**h**) of seasonal *ET*₀ in study area.

The annual ET_0 tends to increase in all seasons except spring, albeit not significantly. The climatic tendency rate of ET_0 is highest in autumn and winter, being 1.00 mm/10a and 0.83 mm/10a, respectively, and lowest in spring and summer, being -0.24 mm/10a and 0.01 mm/10a, respectively. ET_0 is unevenly distributed throughout the year in the study area, with the highest ET_0 in summer (34.5% of the year), followed by autumn (299.27 mm), which accounts for 25.9% of the year, and spring (276.10 mm), which accounts for 23.9% of the year. However, in some years, spring ET_0 is higher than autumn. Winter ET_0 is the smallest (80.87 mm), accounting for only 15.7% of the year.

3.3. Sensitivity Analysis of ET_0 to Climatic Factors

The spatial distributions of the sensitivity coefficients (S_x) of annual ET_0 for each climatic factor were analyzed and visualized in Figure 5. The S_x of ET_0 to T ranged from 0.49 to 0.75, with an average of 0.65, as well as an increasing trend from north to south. Moreover, the S_x values were higher in the southern coastal areas, with most regions having values greater than 0.70. The S_x of ET_0 to RH ranged from -1.53 to -0.36, with an average value of -0.74. The spatial distribution of $|S_x|$ showed an increasing trend from north to south, with $|S_x|$ in the southern coastal areas having values greater than 1.00. However, the spatial distribution difference of the Sx of ET_0 to SD and u_2 was not significant, ranging from 0.23 to 0.30 and 0.06 to 0.13, with an average of 0.26 and 0.09, respectively. The sensitivity coefficients of ET_0 in the study area increases with T, SD, and u_2 and negative for RH. Therefore, this result indicates that ET_0 in the study area increases with T, SD, and u_2 and have the ET_0 was highly sensitive to T, RH, and SD and moderately sensitive to u_2 .

Figure 5. Spatial distribution of annual sensitivity coefficient of ET_0 to climatic factors in study area: temperature (*T*), relative humidity (*RH*), sunshine duration (*SD*), and wind speed (u_2).

On the seasonal scale (Figure 6), ET_0 showed positive S_x for T, SD, and u_2 and negative S_x for RH in all seasons. The S_x of ET_0 to T was highest in summer and autumn, with an average of 0.73. The same measure was smaller in spring and winter, with values of 0.60 and 0.54, respectively. The S_x of ET_0 to RH varied significantly among different regions in all seasons, and the spatial distribution of $|S_x|$ increased from north to south. The S_x to RH was relatively high in winter and spring, with $|S_x|$ averages of 0.94 and 0.83, respectively, and smaller in autumn and summer, with $|S_x|$ averages of 0.63 and 0.55, respectively. The S_x of ET_0 to RH in different regions differed little between seasons, and the ranking of the S_x to SD was as follows: summer (0.35) > autumn (0.31) > spring (0.20) > winter (0.19). The S_x for u_2 were ranked as follows: winter (0.15) > autumn (0.13) > spring (0.05) > summer (0.04). Overall, ET_0 was highly sensitive to T and RH in different seasons, while being sensitive to SD in spring, summer, and autumn and moderately sensitive in winter. ET_0 was moderately sensitive to u_2 in winter, autumn, and spring, but negligibly sensitive in summer.

Figure 6. Box plots of sensitivity coefficient of ET_0 to climatic factors in study area: temperature (*T*), relative humidity (*RH*), sunshine duration (*SD*), and wind speed (u_2).

3.4. Contributions of Climatic Factors to the Trends in ET_0

We calculated the contribution rates of *T*, *SD*, *RH*, and u_2 to ET_0 using Equation (10), before adding them to obtain the total contribution rate of climatic factor changes to ET_0 , which were noted as $ET_{0-\text{estimated}}$. Next, the actual relative rate of change in ET_0 was calculated using Equation (11), which was noted as a $ET_{0-\text{actual}}$. A correlation analysis between $ET_{0-\text{estimated}}$ and $ET_{0-\text{actual}}$ for all stations showed that $ET_{0-\text{estimated}}$ was relatively close to $ET_{0-\text{actual}}$ (Figure 7). The fitting points were concentrated around the 1:1 line, and the R^2 values were greater than 0.90 in different seasons and annually. Therefore, it could be considered reliable to quantify ET_0 changes based on the contributions of *T*, *SD*, *RH*, and u_2 .

Figure 7. Relationship between estimated and actual relative variations in ET_0 in study area.

The spatial distribution of the contribution rate (C_x) of T, RH, SD, and u_2 to ET_0 variation in the study area is shown in Figure 8. The results indicate that the C_x of T to ET_0 variation is positive at all stations, with an average of 3.78% and a range in variation from 0.96% to 8.16% (Table 5), with high values occurring in the PRD and eastern coastal areas, while C_x is relatively small in the north and west. The C_x of RH to ET₀ variation ranged from -2.55% to 10.22%, with 31 stations having positive C_x and 6 stations having negative C_x . Negative values were found in stations such as Zhanjiang, Shaoguan, and Nan'ao, where RH showed an increasing trend during the study period. High values of C_x were found in the PRD, and low values were mainly found in the north and west. The C_x of SD to ET_0 change ranged from -7.67% to 1.84%. $|C_x|$ high values were mainly found in the PRD, Luoding, and Heyuan. C_x was negative in most regions and positive only in Huilai and Yingde, where C_x was 0.90% and 1.84%, respectively. SD showed an increasing trend in these two regions. The C_x of u_2 to ET_0 variation at different stations ranged from -5.70% to 10.91%, with 21 stations having positive C_x and 16 stations having negative C_x . Negative values were mainly found in coastal areas where u_2 decreased; however, in the remaining 21 stations, u_2 showed an increasing trend, resulting in an overall positive C_x on average.

Figure 8. Spatial distribution of contribution rate of meteorological factors to ET_0 variations: temperature (*T*), relative humidity (*RH*), sunshine duration (*SD*), and wind speed (u_2).

Table 5. Relative changes in climate variables for different seasons and their contributions to ET_0 change in study area.

C	Relative Change R_c (%)				Se	Sensitivity Coefficient S_x			Contribution Rate C_x (%)				
Season	Т	RH	SD	<i>u</i> ₂	ET_0	Т	RH	SD	<i>u</i> ₂	Т	RH	SD	<i>u</i> ₂
Spring	4.17	-2.93	-14.68	1.77	-0.27	0.60	-0.83	0.20	0.05	2.51	2.28	-2.88	0.12
Summer	3.49	-2.78	-9.73	13.07	0.07	0.73	-0.55	0.35	0.04	2.55	1.40	-3.37	0.73
Autumn	6.11	-4.61	-9.26	3.95	2.15	0.73	-0.63	0.31	0.13	4.47	2.61	-2.86	0.22
Winter	10.40	-3.15	-17.58	0.92	3.22	0.54	-0.94	0.19	0.15	5.59	2.67	-3.39	-0.22
Annual	6.04	-3.37	-12.81	4.93	1.29	0.65	-0.73	0.26	0.09	3.78	2.24	-3.12	0.21

Overall, the ranking of the contribution of each meteorological factor to ET_0 in the study area was $T(3.78\%) > SD(3.27\%) > u_2(2.73\%) > RH(2.58\%)$. The C_x of T, RH, and u_2 to ET_0 was positive on average, indicating that the temperature changes, RH, and u_2 in Guangdong over the last 61 years caused an increase in ET_0 . In contrast, the C_x of SD to ET_0 was negative on average, indicating that the changes in SD in Guangdong decreased ET_0 during the study period.

On the seasonal scale (Figure 9), the C_x of T to ET_0 change was positive in all seasons, with high C_x mainly found in the PRD and the eastern coastal region. The mean C_x gradually increased from spring (2.51%) to winter (5.59%) (Table 5), which is consistent with the ranking of T tendency rate in different seasons. The C_x of RH to ET_0 variation was the smallest in summer (1.40%) and the highest in winter (2.67%), mainly due to the negative tendency rate and negative S_x of RH in different seasons. High C_x was observed in the PRD in all seasons. The average C_x of RH to ET_0 changes in all seasons was negative, with the highest $|S_x|$ observed in winter (3.39%), followed by summer (3.37%), while the lowest was observed in autumn (2.86%). High $|S_x|$ values were mainly found in the PRD, Luoding, and Heyuan. The high value area of $|S_x|$ in winter was relatively lower than in other seasons. In conclusion, the contribution rate of T and SD to ET_0 change was higher in different seasons, followed by RH, while u_2 was very small. The C_x of SD was higher than T in spring and summer and was the dominant factor influencing ET_0 variation. However,

in autumn and winter, the C_x of T was higher than SD, and T became the dominant factor of ET_0 change in the study area.

Figure 9. Contribution rate of meteorological factors to annual and seasonal ET_0 : temperature (*T*), relative humidity (*RH*), sunshine duration (*SD*), and wind speed (u_2).

4. Discussion

4.1. Changing Trends of Meteorological Factors and ET₀

Over the past few decades, the air temperatures in most regions showed an unprecedented increasing trend, making global warming is indisputable. The overall T in Guangdong increased at a rate of $0.17 \,^{\circ}\text{C}/10a$ during the study period, and the main reason explaining the regional warming is the increase in greenhouse gas emissions due to global population growth and economic development. The decreasing trend of *RH* in the study area and the increase in T indicate that the climate became drier to some extent over the 61 years studied. SD in Guangdong is on a downward trend; in fact, most of the world, such as Asia and Europe, is experiencing a decrease in sunshine hours to varying degrees, i.e., global dimming [38-40]. It was previously reported that human activities can cause a reduction in SD because atmospheric pollution from human activities leads to an increase in aerosols in the air. The aerosols increase the reflection and absorption of sunlight by the atmosphere, which, in turn, reduces the solar radiation reaching the ground, causing the reduction in SD [41]. Moreover, the decrease in wind speed makes the pollutants in the atmosphere less diffusible, which increases the near-surface aerosol concentration and contributes to the decrease in SD to some extent. u_2 in the study area decreases along with the trend in global wind speeds [42]. In this study, the distribution of u_2 changes was irregular, with stronger declines in Nan'ao, Shanwei, Shantou, and Shenzhen; these declines were concentrated in the central-eastern coastal region. Changes in meteorological factors also showed different seasonal characteristics variation. For example, T increased in all seasons, and RH and SD decreased in different seasons. Meanwhile, u_2 increased only in summer and decreased in other seasons.

Annual ET_0 in Guangdong is slightly increasing at a rate of 2.76 mm/10a; it appears that many regions around the globe significantly influenced by oceanic climate recorded an increasing trend in ET_0 , such as the Korean Peninsula, which is in a subtropical monsoon climate zone [43]; Paraíba, Brazil, and Madagascar, which are in tropical high-temperature climate zones [44]; and Austria, which is in a maritime temperate broad-leaved forest climate zone [45]. This trend is different from those recorded in other regions in China, such as the Yellow River Basin [46], North China Plain [47], Northwest China [36], and Beijing–Tianjin–Hebei regions [48], where ET_0 decreased since the 1960s, creating an "evaporation paradox". This paradox exists at about 62% of the stations across China, where ET_0 decreases at a rate of 5.2 mm/10a despite an increase in temperature [14]. However, this study showed some subtle differences in the spatial distribution in Guangdong: due to the influence of topography and geomorphology, ET_0 is higher in the southern lowelevation coastal areas than in the northern high-elevation areas. The evaporation paradox phenomenon was found at 12 of 37 stations in the study area, where ET_0 decreased with increasing temperature. Among these stations, Luoding and Dianbai in western Guangdong, Guangzhou, Zhuhai, Zengcheng, and Huiyang in the PRD, as well as 6 stations in Nan'ao in eastern Guangdong, showed significant decreasing trends in ET_0 . The study also revealed seasonal variations in ET_0 , with a decreasing trend in spring and an increasing trend in the other seasons, particularly autumn and winter. These results show that various factors affect ET_0 , with each factor having a different weight.

4.2. Climatic Factors Affecting the Variation in ET_0

Climate change is the key factor driving ET_0 variation; however, there are differences and uncertainties in the factors influencing ET_0 variation between global regions, mainly due to the interactions between meteorological elements. It is generally accepted that ET_0 is positively correlated with u_2 , T, and SD and negatively correlated with RH [49]. The sensitivity analysis conducted in this study shows that ET_0 in Guangdong is highly sensitive to RH, T, and SD and moderately sensitive to u_2 , which is consistent with the results recorded for the Poyang Lake catchment, China [32], and for the Korean Peninsula [43]. However, the sensitivity of ET_0 to climatic factors varies across different regions, and ET_0 was most sensitive to RH in Guizhou Province [50], Jiangsu Province [23], the Beijing-Tianjin–Hebei region [48], and the Huai River Basin [51]. In contrast, ET_0 was most sensitive to u_2 in the northwest inland region, followed by RH, T, and SD [36]. Although ET₀ was more sensitive to *RH* than to *T*, the contribution analysis showed that *RH* contributed less to the increase in ET_0 than T and SD. In the tropical high-temperature climate zone in Brazil, the main climatic factor driving ET_0 changes is temperature, while the most critical impact factor alternates between temperature and sunshine hours in the rainy and dry seasons. In Austria, which is located in a temperate broad-leaved forest climate zone, the main reason for ET_0 rise is the increase in solar radiation [45]. In this study, T was the main cause of ET_0 changes in Guangdong, and SD was the second main cause of ET_0 changes, while in spring and summer, SD was the dominant factor of ET_0 changes because SD decreased more significantly. It was reported that the drier the climate in China, the greater the contribution of wind speed to ET_0 , especially in the arid northwest, where u_2 is the main cause of ET_0 decrease [26,36]. The results of this study showed a relatively large contribution of u_2 to ET_0 variation in summer, and the same low RH and strong u_2 rise were found at these stations.

Overall, the increasing effect of rising *T* and falling *RH* on ET_0 in Guangdong during the study period exceeded the decreasing effect of falling *SD* on ET_0 , ultimately leading to an overall increasing trend of ET_0 . However, in regions where the evaporation paradox exists, i.e., *T* rise is accompanied by ET_0 decline, the contribution of *SD* to ET_0 is usually more significant than that of *T*. Moreover, in inland areas of Guangdong, such as Guangzhou, Zengcheng, Huiyang, and Luoding, the strong decreasing effect of *SD* on ET_0 masks the increasing effect of *T* and *RH*, while in coastal regions, such as Dianbai and Nan'ao, the decrease in *SD* and rise in *RH* offset the increase in ET_0 , suggesting that there are spatial differences and uncertainties in the weights of each factor affecting the variation in ET_0 .

4.3. Impact of Climate and ET₀ Changes on Agricultural Production

Guangdong belongs to the tropical and subtropical monsoon climate zone, with a humid climate, abundant heat, and abundant but unevenly distributed precipitation. This region is a significant producer of grain crops (e.g., rice, corn, and tubers) and tropical crops (e.g., sugarcane, rubber trees) in China [52,53]. Climate change may complexly impact agricultural production and water resource management in this region. In fact,

an increasing drought trend was consistently observed in recent years, which was both global and regional in scale, including in the Guangdong [54,55]. Climate warming will result in a richer agro-climatic heat resource, a longer crop growing season, and more heat in the growing season in Guangdong. This change, in turn, will push the existing agro-climatic zone and crop maturity boundaries northward and to higher elevations, which favors the cultivation of tropical crops in the region, while the northern boundary of the second and third maturity zones of crops also moves northward and the area is expanded. However, the increase in temperature may also lead to drought and summer heat disasters, which could reduce agricultural yield or affect the quality of crops. The decrease in sunshine duration will negatively impact the high and stable yield factors of tropical fruits in the region, such as fruit enlargement and sugar accumulation in sugarcane, as well as increase the late rice seed setting rate [53]. In addition, ET_0 increased in the province, particularly in eastern Guangdong and the Leizhou Peninsula. Crops' evapotranspiration water consumption in these agricultural areas increased, leading to an increase in demand for irrigation water. The contradiction between the supply of and demand for water resources in the future is prominent, which may aggravate the drought and water shortage situation in water-restricted areas, especially in spring and winter, when precipitation is at the lowest annual level. Corrective and preventive measures should be considered in water resources planning and agricultural production.

For a complete understanding of the mechanism driving changes in regional evapotranspiration responses to climate change, further attention should be paid to the feedback and quantitative relationship between actual evapotranspiration and ET_0 , as well as how this relationship affects regional hydrological cycles.

5. Conclusions

In this study, we conducted a comprehensive analysis of the trends of ET_0 and major climatic factors (*T*, *RH*, *SD*, and u_2) in Guangdong from 1960 to 2020. Our findings provide important insights into the factors driving variations in ET_0 and implications for future regional water management. Based on the results, the following conclusions can be made:

- (1) The annual ET_0 in Guangdong increased at a rate of 1.61 mm/10a. ET_0 increased at most stations; only 6 stations had a decreasing trend for all 37 analyzed samples. ET_0 decreased in spring and increased in the other seasons, though these trends were not statistically significant. Meanwhile, *T* significantly increased during the study period, while *RH* and *SD* significantly decreased.
- (2) Sensitivity analysis showed that ET_0 was more sensitive to RH and T than SD and u_2 in Guangdong. ET_0 was most sensitive to RH in spring and winter and T in summer and autumn. Through considering the variation in variables and their sensitivity to ET_0 , the results showed that T was the dominant factor for ET_0 variation in Guangdong, followed by SD. In the areas where the "evaporation paradox" occurs, as well as in spring and summer, SD was the dominant factor in ET_0 variation. Therefore, the trend of climatic factors plays a critical role in analyzing the variation in ET_0 .
- (3) The increasing effect of rising *T* and decreasing *RH* on ET_0 masked the decreasing effect of *SD* on ET_0 , resulting in an overall increase in ET_0 in Guangdong. This result suggests that a potential future increase in *SD* combined with a decrease in *RH* may lead to higher evapotranspiration rates and drought events in Guangdong. Therefore, we recommend adopting long-term water management strategies for sustainable development to cope with regional climate change.

Author Contributions: Conceptualization, Formal analysis, B.Z. and D.A.; Data Curation, B.Z. and C.Y.; Validation, R.K.; supervision, J.S.; writing—original draft preparation, B.Z.; writing—review and editing, H.Y. project administration, J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Hainan Provincial Natural Science Foundation of China (grant number 322QN415), and the Central Public-Interest Scientific Institution Basal Research Fund (grant number 1630062023008, 1630102022002, 1630102022004).

Data Availability Statement: The data presented in this study are available upon request from the corresponding authors.

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their constructive comments and suggestions that helped us to improve the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Δ	Slope of the vapor pressure curve (kPa $^{\circ}C^{-1}$)
γ	Psychrometric constant (kPa $^{\circ}C^{-1}$).
β	Climatic tendency rate
a	Linear slope
b	Intercept
C_x	Contribution rate (%)
ea	Actual vapor pressure (kPa)
e_s	Saturation vapor pressure (kPa)
FAO56 PM method	FAO56 Penman-Monteith method
PRD	Pearl River Delta
ET	Evapotranspiration (mm d^{-1})
ET_0	Reference evapotranspiration (mm d^{-1})
G	Soil heat flux (MJ m ^{-2} d ^{-1})
п	Length of the data set
р	Significance test value
R_c	Relative change rate of certain meteorological factors (%)
RH	Relative humidity
R_n	Net radiation (MJ m ^{-2} d ^{-1})
S	Test statistic
SD	Sunshine duration (h)
S_x	Sensitivity coefficient
Т	Air temperature (°C)
T _{max}	Maximum temperature (°C)
T _{min}	Minimum temperature (°C)
<i>u</i> ₂	Wind speed at 2 m (m s ^{-1})
u_z	Wind speed at z m (m s ⁻¹)
x	Meteorological factors
\overline{x}	Mean of the meteorological factor time series.
Ζ	Standardized test statistic

References

- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021.
- 2. Camilo, M.; Tristan, M.; Isabella, M.G. Over half of known human pathogenic diseases can be aggravated by climate change. *Nat. Clim. Chang.* **2022**, *12*, 869–875.
- 3. Tiago, N.S.; Marcelo, S.S.; Manuela, M. Climate change and economic growth: A heterogeneous panel data approach. *Environ. Sci. Pollut. Res.* **2018**, *25*, 22725–22735.
- 4. Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. *Nature* **2005**, *438*, 303–309. [CrossRef] [PubMed]

- Seo, K.W.; Waliser, D.E.; Tian, B.; Kim, B.M.; Park, S.C.; Cocke, S.; Sohn, B.J.; Ishii, M. Evidence of the recent decade change in global fresh water discharge and evapotranspiration revealed by reanalysis and satellite observations. *Asia-Pac. J. Atmos. Sci.* 2012, 48, 153–158. [CrossRef]
- 6. Vadeboncoeur, M.A.; Green, M.B.; Asbjornsen, H.; Campbell, J.L.; Adams, M.B.; Boyer, E.W. Systematic variation in evapotranspiration trends and drivers across the northeastern United States. *Hydrol. Process.* **2018**, *32*, 3547–3560. [CrossRef]
- 7. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. *Science* **2006**, *313*, 1068–1072. [CrossRef]
- 8. Liu, X.; Zhang, D. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed and surface air temperature. *Hydrol. Process.* **2013**, *27*, 3941–3948. [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109.
- 10. Urška, M.; Nejc, B.; Mojca, Š. Reference evapotranspiration changes in Slovenia, Europe. *Agric. For. Meteorol.* **2018**, 260–261, 183–192.
- 11. Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K. Estimation of Reference Crop Evapotranspiration with Three Different Machine Learning Models and Limited Meteorological Variables. *Agronomy* **2023**, *13*, 1048. [CrossRef]
- Feng, G.; Cobb, S.; Abdo, Z.; Fisher, D.K.; Ouyang, Y.; Adeli, A.; Jenkins, J.N. Trend analysis and forecast of precipitation, reference evapotranspiration, and rainfall deficit in the blackland prairie of Eastern Mississippi. *J. Appl. Meteorol. Climatol.* 2016, 55, 1425–1439. [CrossRef]
- 13. Yin, Y.; Wu, S.; Gang, C.; Dai, E. Attribution analyses of potential evapotranspiration changes in China since the 1960s. *Theor. Appl. Climatol.* **2010**, *101*, 19–28. [CrossRef]
- 14. Hu, Q.; Dong, B.; Pan, X.; Jiang, H.; Pan, Z.; Qiao, Y.; Shao, C.; Ding, M.; Yin, Z.; Hu, L. Spatiotemporal variation and causes analysis of dry-wet climate over period of 1961–2014 in China. *Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)* **2017**, *33*, 124–132.
- 15. Bandyopadhyay, A.; Bhadra, A.; Raghuwanshi, N.S.; Singh, R. Temporal trends in estimates of reference evapotranspiration over India. J. Hydrol. Eng. 2009, 14, 508–515. [CrossRef]
- 16. Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. *Hydrol. Process.* **2012**, *26*, 421–435. [CrossRef]
- 17. Mosaedi, A.; Ghabaei Sough, M.; Sadeghi, S.H.; Mooshakhian, Y.; Bannayan, M. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: A qualitative approach. *Theor. Appl. Climatol.* **2016**, *128*, 857–873. [CrossRef]
- Ghafouri-Azar, M.; Bae, D.; Kang, S. Trend Analysis of Long-Term Reference Evapotranspiration and Its Components over the Korean Peninsula. *Water* 2018, 10, 1373. [CrossRef]
- 19. Liu, Y.; Wang, Q.; Yao, X.; Jiang, W. Variation in Reference Evapotranspiration over the Tibetan Plateau during 1961–2017: Spatiotemporal Variations, Future Trends and Links to Other Climatic Factors. *Water* **2020**, *12*, 3178. [CrossRef]
- 20. Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. *Science* **2002**, *298*, 1410–1411. [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; Morán-Tejeda, E.; López-Moreno, J.; Espejo, F. Sensitivity of Reference Evapotranspiration to Changes in Meteorological Parameters in Spain (1961–2011); John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014.
- 22. Patle, G.T. Trends in major climatic parameters and sensitivity of evapotranspiration to climatic parameters in the eastern Himalayan region of Sikkim, India. *J. Water Clim. Chang.* **2019**, *11*, 491–502. [CrossRef]
- 23. Chu, R.; Li, M.; Shen, S.; Abu, R.M.; Towfiqul, I.; Cao, W.; Tao, S.; Gao, P. Changes in Reference Evapotranspiration and Its Contributing Factors in Jiangsu, a Major Economic and Agricultural Province of Eastern China. *Water* **2017**, *9*, 486. [CrossRef]
- 24. Liu, T.; Li, L.; Lai, J.; Liu, C.; Zhuang, W. Reference evapotranspiration change and its sensitivity to climate variables in southwest China. *Theor. Appl. Climatol.* **2016**, *125*, 499–508. [CrossRef]
- 25. An, D.; Dou, M. Progress and prospect of the application of water saving agriculture in seasonal drought in South China. *Guangdong Agric. Sci.* **2015**, *42*, 130–135.
- Wang, C.; Zou, J.; Mai, B.; Chen, H.; Tang, L.; Duan, H. Temporal-spatial characteristics and its variation trend of meteorological drought in recent 50 years, South China. *Acta Ecol. Sin.* 2015, 35, 595–602.
- 27. Wang, H.; Zheng, J. Assessing the effects of surface conditions on potential evapotranspiration in a humid subtropical region of China. *Front. Clim.* **2022**, *4*, 813787. [CrossRef]
- Liu, Y.; Tang, G.; Wu, L.; Wu, Y.; Yang, M. Variations in reference evapotranspiration and associated driving forces in the Pearl River Delta of China during 1960–2016. *J. Meteorol. Soc. Jpn.* 2019, *97*, 467–479. [CrossRef]
- 29. Peterson, T.C.; Easterling, D.R.; Karl, T.R.; Groisman, P.; Nicholls, N.; Plummer, N.; Torok, S.; Auer, I.; Boehm, R.; Gullett, D.; et al. Homogeneity adjustments of in situ atmospheric climate data: A review. *Int. J. Climatol.* **1998**, *18*, 1493–1517. [CrossRef]
- Hu, Q.; Pan, F.; Pan, X. Dry-wet variations and cause analysis in Northeast China at multi-time scales. *Theor. Appl. Climatol.* 2018, 133, 775–786. [CrossRef]
- Zhang, F.; Liu, Z.; Zhang, Z.; Yu, J.; Shi, K.; Yao, L. Spatiotemporal Distribution Characteristics of Reference Evapotranspiration in Shandong Province from 1980 to 2019. Water 2020, 12, 3495. [CrossRef]
- 32. Ye, X.; Li, X.; Liu, J.; Xu, C.; Zhang, Q. Variation of reference evapotranspiration and its contributing climatic factors in the Poyang Lake catchment, China. *Hydrol. Process.* **2014**, *28*, 6151–6162. [CrossRef]

- 33. Nouri, M.; Bannayan, M. Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: Trend, cause, and sensitivity analyses. *Theor. Appl. Climatol.* **2019**, *136*, 1073–1084. [CrossRef]
- 34. McCuen, R.H. A sensitivity and error analysis of procedures used for estimating evapotranspiration. *Water Res. Bull.* **1974**, 10, 486–498. [CrossRef]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.G. Comparison of two different approaches of sensitivity analysis. *Phys. Chem. Earth* 2002, 27, 645–654. [CrossRef]
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 2013, 492, 24–34. [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Li, W.; Chen, H.; Deng, C. Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation. *Agric. Water Manag.* 2020, 231, 105958. [CrossRef]
- 38. Urban, G.; Migała, K.; Pawliczek. Sunshine duration and its variability in the main ridge of the Karkonosze Mountains in relation to with atmospheric circulation. *Theor. Appl. Climatol.* **2018**, *131*, 1173. [CrossRef]
- Kitsara, G.; Georgia, P. Dimming brightening in Athens: Trends in sunshine duration, cloud cover and reference evapotranspiration. *Water Resour. Manag.* 2013, 27, 1623–1633.
- 40. Matzarakis, A.; Katsoulis, V. Sunshine duration hours over the Greek region. Theor. Appl. Climatol. 2006, 83, 107–120. [CrossRef]
- Yang, Y.; Zhao, N.; Hao, X.; Li, C. Decreasing trend of sunshine hours and related driving forces in North China. *Theor. Appl. Climatol.* 2009, 97, 91. [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Niel, T.G.V.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [CrossRef]
- Ghafouri-Azar, M.; Lee, S.-I. Meteorological Influences on reference evapotranspiration in different geographical Regions. *Water* 2023, 15, 454. [CrossRef]
- 44. Nascimento, R.; Brito, J.; Borges, V.P.; Farias, P.B.D.; Araújo, L.D.S. Reference Evapotranspiration in the State of Paraíba, Brazil: Climatic Trends and Influencing Factors. *Rev. Bras. Geogr. Física* **2020**, *13*, 1024. [CrossRef]
- 45. Duethmann, D.; Blschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. *Hydrol. Earth Syst. Sci.* 2018, 22, 5143–5158. [CrossRef]
- 46. Liu, Q.; Yan, C.; Zhao, C.; Yang, J.; Zhen, W. Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River basin. *Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)* **2014**, *30*, 157–166.
- 47. Wang, P.; Yan, J.; Jiang, C.; Liu, X. Spatial and temporal variations of reference crop evapotranspiration and its influencing factors in the North China Plain. *Acta Ecol. Sin.* **2014**, *34*, 5589–5599.
- 48. Bi, Y.; Zhao, J.; Zhao, Y.; Xiao, W.; Meng, F. Spatial-temporal variation characteristics and attribution analysis of potential evapotranspiration in Beijing-Tianjin-Hebei region. *Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)* **2020**, *36*, 130–140.
- Oliveira, R.D.; Junior, L.V.C.; Silva, J.B.; Espíndola, D.A.L.F.; Rodrigues, R.D.; Nogueira, J.S.; Curado, L.F.A.; Rodrigues, T.R. Temporal trend changes in reference evapotranspiration contrasting different land uses in southern Amazon basin. *Agric. Water Manag.* 2021, 250, 106815. [CrossRef]
- 50. Gao, X.; Peng, S.; Wang, W.; Xu, J.; Yang, S. Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: A case study in Guizhou province, China. *Meteorol. Atmos. Phys.* **2016**, *128*, 677–688. [CrossRef]
- 51. Li, M.; Chu, R.; Shen, S.; Islam, A.R.M.T. Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China. *Water* **2018**, *10*, 144. [CrossRef]
- 52. Li, Y.; Yang, X.; Wang, W.; Liu, Z. Changes of China agricultural climate resources under the background of climate change. I. Spatiotemporal change characteristics of agricultural climate resources in South China. *Chin. J. Appl. Ecol.* **2010**, *21*, 2605–2614.
- 53. Dai, S.; Li, H.; Liu, H.; Liu, E. The spatio-temporal change characteristics of agriculture climate resources in southern china under the background of global warming. *Chin. J. Agric. Resour. Reg. Plan.* **2014**, *35*, 52–60.
- Venkataraman, K.; Tummuri, S.; Medina, A.; Perry, J. 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. J. Hydrol. 2016, 534, 300–316. [CrossRef]
- 55. Wang, Z.L.; Zhong, R.D.; Lai, C.G.; Zeng, Z.Y.; Lian, Y.Q.; Bai, X.Y. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. *Agric. For. Meteorol.* **2018**, 249, 149–162. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.