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Abstract: Rice culture is one of the most important crops in the world, being the most consumed
cereal grain (755 million tons in 2020). Since rice is usually produced under flooding conditions and
water performs several essential functions for the crop, estimating its water needs is essential. Remote
sensing techniques have shown effectiveness in estimating and monitoring the water use in crop
fields. An estimation from satellite data is a challenge, but could be very useful, in order to spatialize
local estimates and operationalize production models. This study intended to derive an approach to
estimate the actual crop evapotranspiration (ETa) in rice paddies from a temporal series of satellite
images. The experimental data were obtained in the Lis Valley Irrigation District (central coast of
Portugal), during the 2019 to 2021 rice growing seasons. The average seasonal ETa (FAO56) resulted
586 ± 23 mm and the water productivity (WP) was 0.47 ± 0.03 kg m−3. Good correlations were
found between the crop coefficients (Kc) proposed by FAO and the NDVI evolution in the control rice
fields, with R2 ranging between 0.71 and 0.82 for stages II+III (development + middle) and between
0.76 and 0.82 for stage IV (late). The results from the derived RS-assisted method were compared
to the ETa values obtained from the surface energy balance model METRIC, showing an average
estimation error of ±0.8 mm d−1, with a negligible bias. The findings in this work are promising and
show the potential of the RS-assisted method for monitoring ETa and water productivity, capturing
the local and seasonal variability in rice growing, and then predicting the rice yield, being a useful
and free tool available to farmers.

Keywords: Lis Valley Irrigation District; remote sensing; rice monitoring; water management

1. Introduction

Rice is often recognized as the most important human food crop, as it is responsible
for feeding more than half of the human population, being the most consumed cereal
grain [1]. Its leading producer is China, whose average annual production was 210 million
tons between 2011 and 2020. In the last decade, the production of rice has grown nearly
61 million tons, from 694 million to 755 million tons, while its harvested area has increased
by 2 million ha [2]. In Portugal, rice is mainly grown in the lower valleys of the rivers
Sorraia, Tejo, Sado, and Mondego, but also in other regions on a smaller scale, such as the
Lis Valley Irrigation District (LVID). The national cultivated rice area exceeded 30,000 ha in
2021, with a production of nearly 173,000 tons [3]. A large amount of the rice produced in
Portugal is oblong grain, called carolino (Oryza sativa L. ssp. indica), but agulha rice (Oryza
sativa L. ssp. japonica) is also produced, with a characteristically elongated grain.

Water has a fundamental role in rice culture: (i) it allows the satisfaction of physiologi-
cal needs (the growth and development of the crop); (ii) it acts as a thermal regulator—it
is the most evident and important thermal protection in the initial phase of the cycle and
flowering; (iii) it assists in weed control; (iv) it facilitates the availability of nutrients; and
(v) it promotes the leaching of salts [4–6]. Traditional irrigation is performed by a continu-
ous flooding method in level basins, which is very demanding for water in comparison
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with most methods applied to other crops. Overall, rice crop needs about 1100–1500 mm
of water [7,8] during the growing period, which is considered high when compared to
other grain crops. The reason for this is that other components of water use besides evapo-
transpiration (water evaporation plus plant transpiration) are taken into account, such as
percolation (the vertical movement of water in the soil beyond the root zone), lateral flow
losses, and surface drainage. When only evapotranspiration is considered, the rice’s water
use efficiency is comparable to that of other cereals [9,10].

According to the methodology suggested by the Food and Agricultural Organiza-
tion of the United Nations (FAO), crop water requirements are commonly calculated by
multiplying the reference evapotranspiration (ETo) by the crop coefficient (Kc) to estimate
the actual evapotranspiration (ETa) of a particular crop [11]. At field scale, ETa is impor-
tant for planning efficient irrigation systems, being an integral part of field management
decision support tools. Additionally, the estimation of ETa allows for an understanding
of the hydrological cycle, which is directly affected by global climate change [12]. Some
studies have focused on the determination of Kc using the ET measured from crops with
experimental methods. Specifically, for rice, published studies include lysimeters [13],
Bowen ratio energy balance [14], and eddy covariance [15]. These alternative methods
can be used over relatively small areas but are difficult to extrapolate in time and space
given heterogeneous land surfaces [16] and crop, soil, and weather variations [17]. Due
to these limitations, several remote sensing (RS)-based models and algorithms have been
developed to quantify the ETa in rice, complementing the agrometeorological data ob-
served on the ground and providing more detailed spatial information. Most of them are
based on the surface energy balance, e.g., the Simplified Surface Energy Balance Index
(S-SEBI) [18], Surface Energy Balance Algorithm for Land (SEBAL) [19], and Mapping
Evapotranspiration at High Spatial Resolution with Internalized Calibration (METRIC) [20];
other models couple biophysical parameters and energy balance, e.g., the Breathing Earth
System Simulator (BESS) [21], while others combine carbon and vapor fluxes through the
response of the canopy conductance to the photosynthesis rate (PML-V2) [22], or integrate
earth observations (i.e., the MODIS surface reflectance, albedo, and daily ground surface
climate datasets) and numerical algorithms to calculate the ETa [23].

The Kc values represent the integrated effects of changes in the leaf area, plant height,
crop characteristics, irrigation method, rate of crop development, crop planting date,
degree of canopy cover, canopy resistance, soil and climate conditions, and management
practices [24]. Single and dual crop coefficient approaches have been widely used. The
single crop coefficient combines the impact of the transpiration from the crop with the
evaporation from the soil in a single coefficient [25], whereas the dual crop coefficient
represents Kc as the sum of the basal crop coefficient (Kcb) with the transpiration and soil
evaporation coefficient (Ke), representing the evaporation from the soil surface. According
to Allen et al. [11], the single crop coefficient is used for irrigation planning and design,
irrigation management, and the basic and real-time irrigation scheduling of less frequent
water applications, while the dual crop coefficient is mainly used in research and for real-
time irrigation scheduling, the irrigation scheduling of highly frequent water applications
such as daily irrigation, supplementary irrigation, and detailed soil and hydrologic water
balance studies. These authors presented the crop coefficients of various crops under
unlimited irrigation conditions, using both single and dual crop approaches, but explaining
that Kc can be affected by the evaporation from soil, crop type, weather conditions (i.e.,
precipitation, wind speed, and relative humidity), and crop growth [26]. Most of the
literature (e.g., [11,26]) calculates the rice ETa using the single crop coefficient approach
(ETa = Kc × ETo), an understanding shared by the authors of this paper. The dual crop
coefficient approach is better applied for crops that do not occupy the entire surface of the
soil (e.g., orchards, more spaced vegetables, or cover crops). For arable crops with a higher
density, the single crop coefficient approach is preferable. The added value of dual Kc is to
obtain details on the evaporative component, which is minimized if crops produce a high
soil shading (due to a higher density). Dual Kc makes it possible to value the evaporation
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that occurs right after rain or irrigation (mainly by sprinklers), where the surface is wet
and exposed to the sun. After a few days, the evaporation practically ceases, as soon as the
evaporative layer (about 10 cm deep) is free of water. None of this applies to rice, because
the surface is wet from sowing, and even in the intermediate breaks without flooding, the
soil surface remains very wet. Late in the cycle, the soil surface gets drier, but then the crop
shades the surface.

The RS approach has been used as an alternative for the calculation of Kc, in particular
through the use of vegetation indices (VI’s) derived from satellite data. The Normalized
Difference Vegetation Index (NDVI) is one of the most widely used vegetation indices
in agriculture. Although the NDVI can be affected by the saturation effect and soil re-
flectance [27], the main reason for choosing this index is to give continuity to the previous
works reported in the literature [28,29]. This index benefits from the characteristics of two
spectral bands: the chlorophyll pigment absorptions in the red spectral band (0.62–0.69 µm)
and the high reflectance of plant materials in the NIR band (0.75–1.3 µm) [30]. The index is
calculated as the normalized ratio between the red and NIR wavelength bands, as (NIR −
RED)/(NIR + red) [31,32]. The NDVI ranges from −1 to 1, and, since high photosynthetic
activity leads to lower values of reflectance coefficients in the red region of the spectrum
and large values in the NIR region, the ratio between these indicators allows for a clear
separation of vegetation from other natural elements. A bare soil usually has an NDVI
value of 0.1 to 0.2, while the vegetation has indices between 0.2 and 1, because plants have
a low reflectance in the red band and a strong NIR reflectance [33]. The NDVI is directly
related to the plants’ photosynthetic capacity energy absorption of plant canopies and
allows for an observation of the vegetation dynamics throughout the growing season [34]
and an estimation of the crop yield, in combination with other parameters [35], detecting
problematic areas within the plot (related to soil, sowing, or irrigation issues, as well as
in terms of the presence of weeds, pests, or diseases). The onset of Kc(b)-VI approaches
for estimating crop coefficients relies on the similarities between the curves of Kc (and
Kcb) and the VI’s. Overall, wide acceptance of the Kc(b)-VI approaches for estimating crop
coefficients has occurred in recent decades. Regarding the studies applied to rice, some
authors have developed a satellite-based Kc for an estimation of ETa,, validating the results
using the latent heat flux observed from a flux tower. These authors concluded that the Kc
produced a reasonable estimation of the ETa [36]. In another study, the Kc was estimated
using four methods, including the linear relationship between Kc and VI, a calibrated model
of Kc-VI, the linear relationship between Kcb and VI, and a calibrated model of Kcb-VI
using Landsat 7 images. The results showed that the changes in Kc were well explained by
the changes in the NDVI in all the methods [37]. Other studies were performed on crops
such as wheat [38,39], maize [40], sorgum [41], and grapes [42]. The overall conclusion
of these studies was the great strength of the reflectance-based models from the point of
view of crop irrigation management. Within this scope, some operational tools have been
developed to integrate a time series of satellite information into an RS assistance of the FAO
56 methodology for a determination of the surface water availability of plants. For instance,
the HidroMORE© platform, developed by the University of Castilla-La Mancha, Spain,
implements the retrieval of the basal crop coefficients (Kcb) through the dependence of
NDVI-Kcb [43]. This operational tool has been applied in several studies [44,45], including
water accounting on the Water Users’ Association (WUA) management scales [46,47].

The main objective of this study was to derive an approach to determine the ETa in
rice paddies from a temporal series of satellite NDVI images, provided by SPIDERwebGIS©

from the University of Castilla-La Mancha, Spain, making possible to obtain a process that
can be extensively applied to improve irrigation and crop management. An assessment of
this approach was conducted, comparing these results with the ETa results from METRIC
in the study site in Lis Valley. To our knowledge, this is the first report of a study in which
the ETa provided by the METRIC platform was compared with the ETa calculated using
the FAO56 methodology, concluding the success of this tool for rice. Therefore, this paper
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also intends to demonstrate that both tools are reliable and allow for consulting the data
provided from RS in an accessible and user-friendly way.

2. Materials and Methods
2.1. Description of the Study Site and Agronomic Management of the Rice

This study was conducted in the Lis Valley Irrigation District (LVID) throughout
three growing seasons, from 2019 to 2021. LVID is a public irrigation district located in
the Administrative District of Leiria (Central Coast of Portugal). The climate is Cbs type
(Köppen climate classification) and characterized by temperate summers and winters with
mild temperatures. Its precipitation is concentrated mainly from October to March and the
average values of this decrease from the headwaters of the Lis Valley basin towards the
coastal region. Its annual average temperature is 15.9 ◦C and annual average precipitation
is 790 mm [48]. Rice represents 8.3% of the irrigated area [49] and is grown in traditional
rice paddies in an area of around 140 ha, cultivated by two familiar enterprises (Figure 1).

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 24 
 

 

study in which the ETa provided by the METRIC platform was compared with the ETa 

calculated using the FAO56 methodology, concluding the success of this tool for rice. 

Therefore, this paper also intends to demonstrate that both tools are reliable and allow for 

consulting the data provided from RS in an accessible and user-friendly way. 

2. Materials and Methods 

2.1. Description of the Study Site and Agronomic Management of the Rice 

This study was conducted in the Lis Valley Irrigation District (LVID) throughout 

three growing seasons, from 2019 to 2021. LVID is a public irrigation district located in the 

Administrative District of Leiria (Central Coast of Portugal). The climate is Cbs type (Kö-

ppen climate classification) and characterized by temperate summers and winters with 

mild temperatures. Its precipitation is concentrated mainly from October to March and 

the average values of this decrease from the headwaters of the Lis Valley basin towards 

the coastal region. Its annual average temperature is 15.9 °C and annual average precipi-

tation is 790 mm [48]. Rice represents 8.3% of the irrigated area [49] and is grown in tradi-

tional rice paddies in an area of around 140 ha, cultivated by two familiar enterprises (Fig-

ure 1). 

 

Figure 1. Areas cultivated with rice in LVID (map updated in June 2022). Red line represents the 

delimitation of LVID; blue line represents Lis river; and rose and yellow colors represent the plots 

cultivated with rice by two farmers: José Manuel (JM) and Nuno Guilherme (NG), respectively. 

(Source: LVID Water Users’ Association, 2022). In the lower left corner is shown the configuration 

of P1 (green line), P2 (blue line), P3 (red line), and P4 (orange line) (source: Google Earth, 

https://earth.google.com, accessed on 15 January 2023). 

Figure 1. Areas cultivated with rice in LVID (map updated in June 2022). Red line represents
the delimitation of LVID; blue line represents Lis river; and rose and yellow colors represent the
plots cultivated with rice by two farmers: José Manuel (JM) and Nuno Guilherme (NG), respec-
tively. (Source: LVID Water Users’ Association, 2022). In the lower left corner is shown the config-
uration ofP1 (green line), P2 (blue line), P3 (red line), and P4 (orange line) (source:
Google Earth, https://earth.google.com, accessed on 15 January 2023).

The experiments focused on a paddy field, identified as P1 (Plot 1) (N 39◦52′22.188′′,
W 8◦52′58.606′′), with an area of 3 ha (215 m × 140 m). The soil was clayey, with 7.11%

https://earth.google.com


Agronomy 2023, 13, 1357 5 of 23

sand, 37.32% silt, and 55.58% clay, and an average root zone depth of 40 cm. The soil had a
content of 2.7% of organic matter and a pH of 7.2. The soil electrical conductivity (EC) was
0.59 mS cm−1, which indicates a very low salinity. The field capacity was 0.385 cm3 cm−3

and the wilting point was 0.204 cm3 cm−3. The nitrogen, according to the Kjeldahl method,
was 0.16%. The farmer used a soil fertilization scheme supported by soil analyses. As a
reference, in 2020, the base fertilization of N-P-K was applied at 15-15-15% (190 kg/ha),
while the top dressing fertilization was 20-20-0% (200 kg/ha). Irrigation was applied via
continuous flooding, powered by derivation from a surface ditch. The water table varied
from 0.75–0.85 m from the ground surface. The drainage conditions were reasonable and
the infiltration conditions in the soil were low. Three additional rice plots, adjacent to P1
and owned by the same farmer, were also used for validation.

The frequency of the irrigation in the plots was variable, in a system that Portuguese
rice farmers call “ir às regas”, which means that the bed is completely filled, left, and only
filled again when the water table is very low. In terms of practical effects, this means that
the dry period is almost non-existent, except for the time when herbicides are applied
and when the harvest is close (usually between the last 22–25 days). The measurements
of the inflow and outflow discharges in P1 were measured using automatic water level
sensors, where the data were complemented with the measurement of the atmospheric
pressure through a barometer located nearby (Table 1), following the methodology used by
Gonçalves et al. [50] (Figure 2a). The sensors were inserted into a water tube consisting of
a PVC pipe and placed on soil at a 25 cm depth. The data were periodically downloaded
with a portable docking station.

Table 1. Sensors characteristics applied for the hydraulic monitoring system.

Parameter Brand and Model

Water level In-Situ Inc., model Rugged TROLL 100, Fort Collins, CO, USA
Atmospheric pressure In-Situ Inc., model Rugged Baro TROLL, Fort Collins, CO, USA

Water flow velocity VALEPORT, EM flow meter model 801 flat, Decon, UK
Adapted from [43].
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Figure 2. Tube installed in the experimental plot (P1); in the lower left corner, Rugged Troll
100 limnigraph (a), automatic agrometeorological station (b), view of an area where samples were
taken (c), and manual measures of NDVI with GreenSeeker Handheld Crop Sensor, with an extensor
coupled (d).

Before sowing, rice seeds go through a process called “plunging”, whereby the bags
are immersed in water for a period of 24 to 48 h. Because of their water absorption, the
seeds increase in volume and become heavier, which prevents them from floating after
being seeded in paddy fields. For the embryo to germinate, the water in the seedbeds must
be kept for about a week, allowing for the growth of rootlets to be able to “cling” to the
soil. At this point, the water is removed slowly via surface drainage to avoid dragging
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the seeds, thus promoting their rooting and the subsequent development of the plant. In
the sowing of this rice, the farmer used a combination of “Luna”, “Teti”, and “Lusitano”
seeds in varying amounts. To obtain the rice yield, 5 sampling points were chosen to
spatially represent the entire P1 plot, crosswise, from which a 0.5 m2 (100 cm × 50 cm)
sample was taken, following the methodology used by Gonçalves et al. [50] (Figure 2c) in
a procedure that is commonly used in rice experimentation in Portugal. All the sampled
plants were collected manually. The dry biomass measurement included the whole plant
(leaves, panicles, stems, and grain), excluding the roots. The parameters analyzed were the
entire grain at 14% humidity, the average grain weight (weight of 1000 grains), the straw,
and the total biomass. The same procedure was repeated from 2019 to 2021, which made it
possible to collect a total of 15 samples.

The availability of irrigation and crop yield data allow for a calculation of WP, which
is generally defined as the crop yield per cubic meter of water consumption, including
the effective precipitation and diverted water from water systems for irrigated areas. The
WP (kg m−3) was computed by dividing the yield (kg ha−1) by the amount of total water
applied (precipitation plus irrigation) (m3 ha−1).

During vegetative development, weeds compete with rice plants for water, light,
nutrients, and space, besides serving as hosts for pests and diseases. The treatments
were carried out with plant protection products, observing the principles of integrated
production. The active substances applied were aimed at combatting broad-leafed weeds
(e.g., Heteranthera limosa), but also cyperacae and grasses, such as Cyperus difformis and
Echinochloa spp. The more frequent diseases are caused by two fungi: Pyricularia oryzae and
Helminthosporium oryzae. Regarding the crop pests more often detected, the Lousiana red
crayfish (Procambarus clarkii) is the most worrisome, which, being an omnivorous freshwater
crustacean, is a consumer of rice plants in its adult stage, especially during the early stages
of the rice. The presence of aquatic birds, such as storks and herons, which feed on the
crayfish, brings benefits to its control, but causes irreparable damage to the growth of rice
plants, which become stunted.

2.2. Weather Station, Reference and Actual Evapotranspiration through the FAO56 Methodology

The weather conditions during the three study seasons were measured from an auto-
mated agrometeorological station (N 39◦52′37.66′′, W 8◦53′26.919′′), located at a distance
of 0.8 km from P1 (Figure 2b). All the sensors were installed at a height of 2 m above
the grass surface and meteorological data were registered hourly (Table 2). The variables
measured were: air temperature, relative humidity, wind speed, wind direction, daily
average incoming solar radiation, and precipitation.

Table 2. Sensors characteristics used in the automated agrometeorological station.

Parameter Brand and Model

Pluviometer Pronamic ApS, diam. 16 cm, Ringkøbing, Denmark
Data logger Campbell Scientific, Inc. CR300, Logan, UT, USA

Air temperature and humidity Campbell Scientific, Inc. EE181, Logan, UT, USA
Solar radiation Campbell Scientific, Inc. CS301, Logan, UT, USA

Wind speed Lambrecht meteo GmbH, ORA, Göttingen, Germany
Remote communication of weather station Cinterion, BGS2 Terminal RS232, Praha, Czech Republic

Adapted from [50].

The first approach to the rice actual evapotranspiration, ETa, was obtained following
the FAO-56 concept (ETa = Kc × ETo) [51]. The daily ETo values were calculated using the
FAO56 Penmann–Monteith reference ET equation for grass [11]:

ETo =
0.408∆(Rn −G) + γ 900

T+273 u2 (es − ea)

∆ + γ (1 + 0.34u2)
(1)
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where ETo is the reference evapotranspiration (mm d −1), Rn is the net radiation (MJ m−2 d −1),
G is the soil heat flux density (MJ m−2 d −1), T is the air temperature at a 2 m height (◦C),
u2 is the wind speed at a 2 m level (m s−1), es is the saturation vapor pressure of the air
(kPa), ea is the actual vapor pressure (kPa), ∆ is the slope vapor pressure curve (kPa ◦C−1),
and γ is the psychrometric constant (kPa ◦C−1).

The lengths of the rice growth stages were identified from Table 11 of the FAO-56
manual (reference) (I—initial, II—development, III—middle, and IV—late), choosing a
cycle of 150 days, sowed in May, corresponding to the rice agricultural management in
the LVID (Table 3). The crop coefficient for the initial stage (Kcini) was obtained from
the sub-section of the FAO-56 about paddy rice (Table 14, [11]), applying the value for a
sub-humid to humid climate, under a light to moderate wind speed. The crop coefficients
for the mid-season and late-season stages (Kcmid and Kclate, respectively) were adjusted to
the conditions of the local site, as the minimum relative humidity (RHmin) was higher than
45% and the average wind speed (u2) sometimes exceeded 2.0 ms−1 in 2020, as follows:

Kcmid = Kcmid(Tab) + [0.04(u2− 2)− 0.004 (RHmin − 45)]
(

h
3

)
0.3 (2)

Kcend = Kcend(Tab) + [0.04(u2 − 2)− 0.004(RHmin − 45)]
(

h
3

)
0.3 (3)

where Tab is the value in Table 12 [11] for the rice crop, u2 is the wind speed at a 2 m level
(m s−1), and h is the maximum height of the crop, also obtained from the same table.

Table 3. Crop development and irrigation practices and corresponding dates, with reference to 2019
rice growing season in LVID.

Crop Development and Irrigation Practices Days after Sowing (DAS)

Initial soil flooding −1
Wet sowing 0

Start tillering 34
Panicle differentiation 60

Flowering 85
Last irrigation event 140

Harvest 152
Adapted from [50].

2.3. Actual Evapotranspiration from METRIC

Twenty clear-sky Landsat 8 images (6 in 2019, 7 in 2020, and 7 in 2021) were available
for the study site (Table 4). Cloud-free images were selected to cover the period of time
between the sowing and harvest of each growing season. The images were processed on the
EEFlux platform version 0.20.4 (https://eeflux-level1.appspot.com, accessed on 15 January
2022). EEFlux is a fully automated framework for METRIC that operates on the Google
Earth Engine platform to derive RS-based ET estimates using the METRIC algorithm [52].
The application deploys Landsat’s thermal and shortwave bands to derive the ETa from
the albedo, vegetation index, land surface temperature, and other surface parameters [53].
The images in the METRIC-EEFlux were internally calibrated from the alfalfa ETo, using
gridded weather data to retrieve the fraction of the ETo (EToF). This fraction was used to
extrapolate the instantaneous ET (ETins), which represents the ET at each pixel at the time
of the satellite overpass, derived from the latent heat flux as:

ETins = 3600 × (LE/λ × ρ) (4)

https://eeflux-level1.appspot.com
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where ETins is the instantaneous ET (mm h−1), LE is the latent heat flux (W m−2), ‘λ’ is the
latent heat of vaporization (J kg−1), and ρ is the density of water (kg m−3). The fraction of
the reference ET is computed as:

EToF = ETinst/EToinst (5)

Table 4. Landsat 8 images acquisition date, available for this work, and the corresponding season
crop growth stage.

Image Acquisition Date Season Crop Growth Stages

2019
21 June I
07 July II
23 July III

24 August III
9 September III
11 October IV

2020
22 May I
7 June I
9 July II
25 July III

26 August III
11 September IV
27 September IV

2021
25 May I
10 June I
26 June II
28 July III

13 August III
29 August III

30 September IV
I—initial, II—development, III—middle, and IV—late (Table 11 of FAO-56 [11]).

The daily ETa at each pixel is derived as:

ETa = EToF × ETo (6)

Since the spatial resolution of 30 m allows for the allocation of several pixels within
the plots, the mean values for the 3 × 3 pixels were extracted using the QGis software
(version 3.18.3 Zurich) for image processing.

2.4. Satellite Acquisition and Ground Meaurements of NDVI

To obtain the NDVI, the satellite imagery from the constellation Landsat 8 (USGS)
and Sentinel-2A and 2B (UE Copernicus Program) was explored. Sentinel-2 has a revisit
frequency of 5 days at the Equator and provides VNIR data with a spatial resolution of
10–20 m. Landsat 8 has a temporal resolution of 16 days and its Operational Land Imager
(OLI) sensor provides images at a 30 m spatial resolution (visible, NIR, and SWIR), whereas
the TIRS sensor provides thermal data at a spatial resolution of 100 m in two thermal
bands. Landsat 9 was recently launched (September 2021), increasing the revisit time for
the Landsat data collection. The path/row for Landsat is 204/32 and for Sentinel-2 is
“TILE29TNE”.

The platform SPIDERwebGIS© (http://maps.spiderwebgis.org/webgis/, accessed
on 30 May 2022), henceforth SPIDER, developed by the University of Castilla-La Mancha
in Spain, was used for the management of the satellite image datasets. The Orthorectified
Surface Reflectance (Bottom-Of-Atmosphere: BOA) imagery was considered, i.e., the

http://maps.spiderwebgis.org/webgis/
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images were atmospherically corrected in order to eliminate or compensate for the effects
of atmospheric elements on the image, thus obtaining a comparable surface signal for the
areas and different acquisition dates.

The feature that differentiates this platform is its capability to graphically display the
temporal evolution of surface reflectance, VIs, or water requirements, among other options.
The data can be analyzed through both the time series of interactive charts that allow
for users to predefine query parameters and date ranges, or can be exported to standard
spreadsheet formats. The 4 rice plots were identified in SPIDER and a sample of 5 points
within each plot limits was chosen for the 2019–2021 growing seasons, covering the time
between sowing and harvesting. The average of the 5 sampling points was calculated for a
more reliable result. For the dates when satellite images were not available, the NDVI was
linearly interpolated between the time-adjacent satellite images to obtain the continuous
temporal evolution of the NDVI at a daily scale.

For the assessment of the satellite estimates of this key input, the field measurements
of the NDVI were conducted in the 2020 campaign in eight transects within P1 using a
GreenSeeker Handheld Crop Sensor (Figure 2d), and were used as ground truth. Since
most of the time the soil remained flooded, an extensor was needed to measure further
inside the field, minimizing the effect of the path on the satellite images and plant growth.
The sensor was handheld over the canopy at an average height of 1 m above the crop and
the existence of a remote switch allowed for capturing the NDVI measures with precision.

3. Results
3.1. Meteorological Data

Table 5 shows the meteorological data for each month from the 2019 to 2021 rice
growing seasons (May–October). The monthly averages of the air temperature ranged
between 14.4 and 19.7 ◦C and the wind speed ranged between 1.4 and 2.7 m s−1. The
cumulative precipitation resulted 178.7 mm in 2019, 214.2 mm in 2020, and 258.8 mm
in 2021, mainly concentrated in September–October, although both May 2020 and 2021
were considerably rainy. Namely, in 2021, it is important to note that severe weather
phenomena were recorded between June 11 and June 20, including the occurrence of heavy
precipitation accompanied by hail, thunderstorms, and strong convective wind gusts.
Overall, both growing seasons in the site were typical of the average weather conditions
on the central coast of Portugal, although the precipitation in the three periods was below
normal records [54–56]. In terms of temperature, the summer of 2019 was cold and dry (the
average minimum air temperature was the lowest in the last 40 years, with June being the
coldest since 2000) [54]. In 2020, hot periods were registered in May, July (the hottest since
1931), and September (occurrence of a heatwave) [55]. The summer of 2021 was considered
to be normal in terms of air temperature and dry in terms of precipitation. The average
temperature for the month of May 2021, lower than that recorded in the corresponding
months of 2019 and 2020, reflected the very low minimum temperature values, which were
almost always lower than the average monthly values [56]. The monthly averages of the
relative humidity were especially high in May and June of 2020 and 2021 when compared
to the same period in 2019. As a consequence, the average evapotranspiration demand was
higher in 2020 and 2021 than in 2019, which was especially noticed in July.

Table 5. Summary of monthly meteorological variables during the rice growing seasons of 2019, 2020,
and 2021.

Season Month Tmean
(◦C)

RHmean
(%)

u2
(m s−1)

Rs
(MJ m−2 d−1)

Total Rainfall *
(mm)

ETo
(mm d−1)

2019
May 17.3 70.0 2.7 24.5 17.7 4.3
June 16.5 78.4 2.1 23.8 20.6 4.0
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Table 5. Cont.

Season Month Tmean
(◦C)

RHmean
(%)

u2
(m s−1)

Rs
(MJ m−2 d−1)

Total Rainfall *
(mm)

ETo
(mm d−1)

July 19.2 83.1 2.2 20.5 10.8 3.8
August 19.4 83.4 2.1 20.9 17.0 3.8

September 17.9 81.2 1.6 16.8 29.4 3.1
October 15.5 86.5 1.7 11.0 83.2 1.8

2020
May 17.4 84.2 1.8 22.1 45.8 3.8
June 17.6 83.0 2.1 23.7 10.2 3.9
July 19.7 82.6 2.0 26.0 0.2 4.6

August 19.5 86.4 2.1 21.4 18.4 3.7
September 18.4 84.3 1.6 16.9 49.8 3.1

October 14.4 87.8 1.6 12.0 89.8 1.8
2021
May 14.8 83.3 2.0 22.9 46.8 3.5
June 17.1 85.3 2.1 23.0 28.2 3.7
July 18.6 84.1 2.2 23.2 8.0 4.0

August 18.6 87.1 1.9 22.4 4.0 3.7
September 18.9 86.2 1.6 16.6 55.6 2.9

October 16.1 88.2 1.4 12.3 116.2 2.0

Tmean is the mean air temperature, RHmean is the mean relative humidity, u2 is the wind speed measured at 2 m,
Rs is the global solar radiation, * is the monthly total precipitation, and ETo is the reference evapotranspiration
calculated with the FAO56 PM equation.

3.2. Evapotranspiration, Crop Coefficients and Water Use

The rice campaign in 2019 occurred between 23 May and 22 October (153 days); in 2020
between 14 May and 10 October (149 days); and in 2021 between 19 May and 11 October
(146 days). These dates refer to sowing and harvest, respectively, without major differences
in the four selected plots. Although the 2019 rice growing season was longer, the ETo
was higher in 2020, mainly due to the higher evaporative demand and drier conditions
during the middle stage (Table 6). The 2021 campaign was the shortest, but with the lowest
evaporative demand.

Table 6. Season rice growth stages, irrigation (mm), precipitation (mm), reference evapotranspiration
(ETo), rice crop evapotranspiration (ETa), and crop coefficients (Kc) during the experimental season.

Season Crop
Growth Stages *

I (mm) P (mm)
ETo (mm) ETa (mm)

Kc
Daily Period Daily Period

2019
I 370 13.6 4.5 135 4.7 142 1.05
II 616 10.2 3.7 109 4.0 121 Na
III 305 24.6 3.7 223 4.3 256 1.15
IV 17 87.6 2.1 70 2.1 70 Na

End-season 0.85
Full crop season 1308 136 537 589 Na

2020
I 360 9.8 4.0 121 4.3 127 1.05
II 274 3.6 4.3 127 4.7 140 Na
III 595 18.6 4.0 241 4.6 274 1.14
IV 34 61.2 2.4 71 2.4 71 Na

End-season 0.84
Full crop season 1263 93.2 560 612 Na

2021
I 227 20.0 3.6 108 3.8 114 1.05
II 283 16.6 4.2 126 4.6 138 Na
III 662 36.2 3.5 209 4.0 238 1.14
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Table 6. Cont.

Season Crop
Growth Stages *

I (mm) P (mm)
ETo (mm) ETa (mm)

Kc
Daily Period Daily Period

IV 34 43.2 2.6 68 2.6 67 Na
End-season 0.84

Full crop season 1206 116 511 557 Na
Average 1259 115 536 586

* According to Table 11 of FAO-56 [11], the lengths for initial, development, mid-season, and end-seasons for rice
are 30, 30, 60, and 30 days, respectively. These data were observed in LVID, in agreement with the established
in FAO. I—total irrigation water in each stage in P1; P—total precipitation in the stage, daily ETo and ETa are
the average ETo and ETa values, respectively, for the period, and period ETo and ETa are the total accumulated
values of ETo and ETa, respectively, for the period. Average represents the average values of the three years for
the full crop season, regarding irrigation, precipitation, ETo, and ETa.

The results obtained in terms of the amount of irrigation, precipitation, evapotranspi-
ration, and crop coefficients matched the growth stages of the crop. Regarding irrigation,
which was only quantified in P1, the total values amounted to 1308 mm in 2019, 1263 mm
in 2020, and 1206 mm in 2021, from the date of sowing to that of the harvest. Figure 3 shows
the daily rice ETo and ETa data and the water input from the irrigation and precipitation
for all the seasons. The irrigation applied in the initial stage (the first 30 days after sowing)
was similar in 2019 and 2020 (370 and 360 mm, respectively). In 2021, the applied water
was considerably lower (40% less) due to the abnormal precipitation in mid-June, which
coincided in the initial phase [56]. The development stage (the next 30 days, which occurred
between the second half of June and the second half of July) was more abundantly irrigated
in 2019, with a total of 616 mm (more than double of that in 2020). In contrast, the middle
stage (the next 60 days, until the second half of September) received half as much water
in 2019 compared to 2020 and 2021, in response to the heat waves that occurred in both
years during this time interval. In the final stage (which lasted the remaining time until
harvest) the water application was drastically decreased and confined to the first 8–10 days,
as mentioned in Section 2.1, as the grain was physiologically mature and harvest was
being prepared.

The accumulated ETo during the rice growing seasons resulted 537 mm in 2019,
560 mm in 2020, and 511 mm in 2021. A higher average value (4.5 mm d−1) was denoted in
the early phase of 2019 when compared to the same periods in 2020 and 2021 (4 mm d−1

and 3.6 mm d−1, respectively). In the development stage, the demand was higher in 2020
and 2021, which was related to the high relative humidity recorded in this period. In the
middle stage, the average ETo tended to be similar to (2019) or lower than that in the
previous phase (2020 and 2021). The drop in evaporative demand was specially noticed in
the final phase, with values of around 2.1 mm d−1 (2019)–2.6 mm d−1 (2021).
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Figure 3. Daily reference evapotranspiration (ETo) and daily actual evapotranspiration (ETa) values
calculated during 2019 (a), 2020 (b), and 2021 (c) rice growing seasons in the study site. Irrigation
and precipitation in P1 are depicted with vertical bars.

Following the FAO56 methodology and the suggested values of Kc, as described in
Section 2.2, the accumulated ETa during the rice growing seasons resulted 589 mm in 2019,
612 mm in 2020, and 557 mm in 2021. The difference between the total water applied
and the ETa needs ranged between 719 mm (2019), 651 mm (2020), and 649 mm (2021);
in practical terms, about half of the water applied to the rice crop was used for other
components of irrigation water use, such as infiltration or percolation into the soil. The
ETa values were higher than those obtained with ETo, because of the positive contribution
given by Kc. The cultural practice of flooding in rice culture increases the challenge of
quantifying the water requirements of this crop. The maximum tillering occurred about
34 days after sowing; this time interval corresponded to the initial stage, where the paddy
fields were continuously covered with water, so the water losses via evaporation were
high. The transpiration component of the rice plants was small during the early stages and
was mainly due to the contribution from the leaf surface of the weeds, which established
themselves rapidly.

3.3. NDVI

Figure 4 shows a comparison of the NDVIs obtained for the experimental plot (P1)
and control plots (P2, P3, and P4) during the three campaigns. Each point represents the
data of a single date from SPIDER, as explained in Section 2.4.
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Figure 4. NDVI evolution in P1 (experimental plot), and P2, P3, and P4 (control plots), from the
constellation Sentinel 2+Landsat for seasons 2019 (a), 2020 (b), and 2021 (c).

In 2019, the difference between the four plots was more noticeable for the first two
phases. At the end of July (the development phase), the NDVI values ranged between 0.4
(P1 and P2) and 0.6 (P3 and P4). At the beginning of August, the four curves intersected,
showing a homogeneous distribution. The NDVI peaked in mid-August (about 0.85). In
2020, the start was similar for the four plots. P3 showed a decrease in the NDVI at the end
of June (initial phase). The curves for P1 and P3 remained superposed, reaching peaks at
the end of August (about 0.8), while the same values were obtained about 15 days earlier
for P2 and P4. The NDVI descent was homogeneous in the four plots. In 2021, P1, P2, and
P3 remained practically overlapping throughout the cultural cycle. In turn, P4 showed a
greater vegetative vigor until the end of June (the entire initial phase). The NDVI peak
(between 0.78 and 0.85) was reached at the end of August for all the plots.
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The results obtained show that the four plots followed similar NDVI value trends,
especially from the development stage onwards. As their cultural management was the
same, the differences may be due to a slight delay in the dates of sowing, treatments, and
harvest, or even due to other issues concerning the plant health or soil characteristics. In the
initial phase, there was some heterogeneity, which may be due to the rapid development
of weeds in some plots. The effectiveness of the herbicide (applied about 35–40 days after
sowing) translated into a lowering of the NDVI, which was quickly compensated for in the
following phases. The use of four plots instead of only P1 increased the applicability of the
methodology and allows us to reinforce and validate the results obtained. Focusing on P1,
the NDVI evolution for the three rice growing seasons is plotted in Figure 5. For the 2020
campaign, the field measurements and values extracted from EEFlux were also superposed.
Overall, the three NDVI sources show consistency for the 2020 trend.
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Figure 5. NDVI extracted from SPIDER (graph lines, for 2019, 2020, and 2021), ground field measure-
ments (2020), and METRIC EEFlux (2020). Error bars represent the standard deviation in the field
measurements or the 3 × 3 pixel averages from METRIC, in each case.

The NDVI obtained from METRIC reflected a slight overestimation when compared to
the SPIDER and field measurements. However, few Landsat 8 images were available (only
five cloud-free images for this period), and the standard deviation, expressed in error bars,
mitigated this difference. It should be also noted that the spatial resolution of the images
considered in EEFlux (30 m) was lower than that provided by SPIDER (most images from
Sentinel-2, with a resolution of 10 m).

The ground field measurements of the NDVIs in 2020 reproduced similar values
to those of SPIDER. Nevertheless, from the end of July, all the registered values were
lower. An explanation for this is that the plants closer to the berms of the field intended to
develop less than the plants in the central area of the plot, having smaller foliar surfaces
and consequently lower NDVIs, as a result of the passage of tractors and heavy vehicles.
Despite the use of the extender, the reach of the vegetation further into the plot was limited.
This method was important and useful for the calibration of the satellite images, but in
the case of rice, where the fields were flooded most of the time, it only proved useful until
the development phase, with limitations from the middle stage onwards, with the plants
tapered and the plot covered.

The lowest NDVI values (less than 0.2), were identified in the initial phase of the
rice crop cultivation and were due to the flooding of the plot. The highest NDVI values,
of approximately 0.85 (2019), 0.80 (2020), and 0.83 (2021), were reached in mid-August,
the end of August, and the beginning of September, respectively, corresponding to the
middle phase, which also reflects the different sowing dates. Towards the end of the
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cultivation period, the NDVI values decreased until the plant reached full maturation and
was harvested in the middle of October.

Figure 5 also shows, for the years of 2020 and 2021, the drop in the NDVI 40–45 days
after the sowing date, as explained above.

3.4. Calibration of the RS-Assisted Kc-NDVI Relationship

Figures 4 and 5 show that there was variability in the rice conditions among the
different plots for a specific year and for the same plots in different years. This variability is
clearly captured by the NDVI data from the satellite. However, the FAO56 methodology
for deriving the ETa does not account for this, assigning the same crop coefficients for
all the plots or surface conditions, with no distinction between the sowing dates. In this
work, we introduce a technique based on the calibration of a Kc = Kc(NDVI) equation,
adapted for our specific rice crop and local conditions, with the aim of further applying it
to a temporal series of satellite images and reproducing the range of crop conditions under
different management practices, leading to a variety of ETa values. This is the essence of
the well-known RS-assisted FAO56 methodology, which has been successfully applied to a
large variety of crops, but rarely seen for rice.

The NDVIs measured in the beginning of stage II were 0.43 (2019), 0.46 (2020), and
0.30 (2021); in stage III were 0.68 (2019), 0.66 (2020), and 0.57 (2021); and in stage IV were
0.74 (2019), 0.60 (2020), and 0.80 (2021). Upon relating the NDVI to the phenological
phase of the rice, it was observed in the plot that: (i) the rice maximum tillering was at
34 DAS, (ii) panicle differentiation occurred at around 60 DAS, and (iii) flowering occurred
at around 85 DAS. The average NDVIs measured in the maximum tillering were 0.43 (2019),
0.45 (2020), and 0.30 (2021); in the panicle differentiation were 0.67 (2019), 0.65 (2020), and
0.57 (2021); and at flowering, were 0.87 (2019), 0.77 (2020), and 0.74 (2021).

Using the data from 2019 as a basis, as this was a typical year in terms of meteorological
circumstances, weed management, and crop yield, Kc was parametrized as a linear function
of NDVI. Table 7 lists the coefficients for the linear regressions Kc-NDVI. These were only
explored for stages II+III and IV because the high values of KCini in stage I were due to the
presence of water (and its subsequent evaporation), while the NDVI values remain low in
this case. A good correlation between the rice Kc and NDVIs in stages II+III was observed
with an R2 of 0.82, RMSE of 0.000013, and BIAS value of 0.012. These results were even
better for the regression corresponding to stage IV, with an R2 of 0.94, RMSE of 0.00002,
and BIAS value of 0.020.

Table 7. Equations and coefficient of determination (R2) obtained through the correlation between
average NDVI and Kc, for stages II+III and IV, for all rice growing seasons.

Stages II+III Stage IV

Kc = Kc (NDVI) R2 RMSE BIAS Kc = Kc (NDVI) R2 RMSE BIAS

0.168(NDVI) + 1.01 0.82 0.000013 0.012 1.099 (NDVI) + 0.28 0.94 0.00002 0.020

The Kc values suggested by the FAO56 for stages II+III and IV, in the three crop
seasons, were replaced by those obtained from the Kc = Kc (NDVI) equations. The ETa was
then recalculated for the full dataset to highlight the effect of considering this RS method in
the variability of the results. The results are shown in Figure 6 for all the plots and show a
good match among them for the three seasons, with some differences arising in P4 for 2020,
from mid-phase III until the harvest.
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Figure 6. ETa from RS-assisted FAO56 evolution in P1 (experimental plot), and P2, P3, and P4 (control
plots), for stages II-IV, for seasons 2019 (a), 2020 (b), and 2021 (c).

3.5. Assessment of the ETa from RS-Assisted FAO56

The independent ETa values provided by the surface energy balance model METRIC
were used for the assessment of the established RS-assisted FAO56 technique. The maps in
Figure 7 show two examples of the spatial distributions of ETa from both the METRIC and
RS-assisted FAO56 approaches.
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Figure 7. Examples of ETa maps obtained from METRIC (left) and RS-assisted FAO56 approach
(right) for two different dates: 11 October 2019 (upper) and 24 August 2019 (lower). The rice plots
are delimited with green (P1), blue (P2), red (P3), and orange (P4) lines.

Figure 8 shows a comparison between the daily ETa values estimated from both
methodologies, for the dates with availabilities of Landsat 8 images, for the three campaigns.
The number of satellite images available was limited, due to the characteristic cloudiness
of the LVID combined with the 16-day temporal resolution of Landsat 8. Note that the
assessment was focused on stages II, III, and IV because of the reasons given in 3.4.
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Figure 8. Linear regression between mean values of ETa provided by METRIC and ETa calculated
from the Kc = Kc(NDVI) relationship derived. Dotted line represents the 1:1 agreement. Error bars
indicate the spatial variability, representing the standard deviation in ETa values from METRIC in
the x axis, and in the ETa resulting from the Kc = Kc(NDVI) approach in the y axis.
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An average estimation error of ±0.8 mm d−1 with a negligible bias of −0.1 mm d−1

were obtained. The error bars in x translate the standard deviation of the ETa values
obtained by METRIC.

3.6. Crop Yield and Irrigation Water Productivity

Table 8 shows a comparison between the rice ETa in P1, calculated by the FAO56 and
obtained with the “RS-assisted” Kc. It also relates the yield results to the water consumption
in P1 (the only plot where the amount of irrigation water was quantified) for the three
experimental years. Once the samples of the mature plants were collected and analyzed,
it was possible to relate both parameters to obtain the WP. The ETa, estimated from the
FAO56, was very well matched with the results obtained using the RS approach for all
the rice growing seasons. When the average ETa of the three years was compared, the
results matched almost perfectly (586 mm and 585 mm from the FAO56 and RS approaches,
respectively). The rice grain yield was higher in 2019 (7.5 t/ha), whereas in 2020 and 2021,
it reached around 6 t/ha. The WP was slightly higher in 2019 (0.52 kg m−3) than in the
following years (0.44–0.46 kg m−3). The season with the lowest WP corresponded to the
highest ETa (2020). The WUE was higher in 2020 (0.45 kg m−3), while in 2019 and 2021, it
remained at 0.41–0.42, respectively. The G was lower in 2021 (24 t/ha, when the ETa was
also lower) than in the previous seasons (31.2 and 32 t/ha in 2019 and 2020, respectively).
The rice straw was higher in 2019 (7.2 t/ha) and similar in 2020 and 2021 (4.1 and 4.2 t/ha).

Table 8. Rice ETa (FAO56 and RS-assisted), rice grain yield, Y (t ha−1), rice straw dry matter (kg ha−1),
and water productivity (kg m−3) obtained in P1, during the three experimental seasons.

Rice Crop Season ETa FAO56 (mm) ETa RS Assisted (mm) Y WP WUE G RS

2019 589 ± 1 589 ± 3 7.5 ± 1.1 0.52 0.41 31.2 ± 1.3 7.2 ± 0.8
2020 612 ± 0 606 ± 8 6.0 ± 1.3 0.44 0.45 32.0 ± 1.9 4.1 ± 1.0
2021 557 ± 0 559 ± 1 6.0 ± 0.9 0.46 0.42 24.0 ± 1.3 4.2 ± 0.2

Average 586 585 6.5 0.47 0.43 29 5.2

Y—Yield (total whole rice grain, 14% of humidity, t ha−1); WP—Water Productivity (Y(kg/ha)/(I + P, m3 ha−1),
kg m−3); WUE—Water Use Efficiency (ETa, mm)/(I + P, m3 ha−1), kg m−3); G—Weight of 1000 grains, with
14% of humidity (g); and RS—Rice Straw (dry matter, t ha−1). The 3-year average was also calculated. Errors
correspond to the standard deviation obtained for the 5 samples of each year.

4. Discussion
4.1. Evapotranspiration and Irrigation Water Applied

Rice is one of the largest cereal users of the world’s water resources. The evapotran-
spiration in flooded rice fields has been calculated in several studies, with results ranging
from 4–7 mm d−1 [57,58]. In our study, the results of the ET ranged from 2.1 to 4.7 mm d−1.
For the full crop season, the measured rice ETa was between 700 and 800 mm in Italy [59].
Sudhir-Yadav et al. [60] reported a rice ETa ranging between 749 and 811 mm under a
semiarid climate in India, and Choudhury and Singh [61] found an ETa ranging from 781
to 899 mm in the semiarid climate of the Indo-Gangetic Plains in India. In California, the
observed ETa ranged from 681 to 813 mm [62], and a significantly higher value of 1350 mm
was reported in northern Greece [63].

The amount of irrigation water in rice, applied using the continuous flooding method,
explains the concerns about water as a limited resource, both in terms of quality and
quantity. The major identified problems are related to: (i) the water scarcity in several areas,
exacerbated by drought events and the consequent deterioration of water quality; (ii) soil
salinization and pollution in general, which have encouraged water policies leading to the
rational use of this resource; and (iii) the effects of climate change [64]. In our study, the
average irrigation water applied in the three seasons was 1259 mm, which is in line with
the results obtained by other studies (e.g., 1208 mm [65] and 1291 mm [66]).
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4.2. Crop Coefficient

In previous works, Allen et al. [11,51] reported rice Kc values adjusted to standard
climate conditions (RHmin = 45% and u2 = 2 m s−1) of: KCini = 1.05, KCmid = 1.20, and
KCend = 0.90–0.60. Several studies have been developed for the estimation of Kc in rice
crops. In Zaragoza, Spain, for sprinkled irrigated rice, Moratiel and Martínez [13] indicated
values of 0.92, 1.6, and 1.03 for KCini, KCmid, and KCend, respectively; in Sardinia, Italy, for
those same stages and also using sprinkler irrigation, Spanu et al. [66] indicated coefficients
of 0.9, 1.07, and 0.97. In this work, we accepted the Kc applicable to rice cultivation as
proposed by FAO, but introduced a dependence on NDVI, which was provided by RS.
The correlation between these two parameters allowed us to obtain an equation for the
calculation of an “RS-assisted” Kc, applicable to stages II, III, and IV. The FAO56 suggests
that the Kc remains the same during the initial phase, so we understand that the Kc—NDVI
relationship could not be applied to this stage, because in the periods where the plots were
flooded and the rice plants were not dense enough, the NDVI values became negative.
This is the reason why some authors prefer to combine the NDVI with the Normalized
Difference Water Index (NDWI), in order to depict the differences between rice paddies
and non-rice paddy areas [67].

The FAO56 approach has been largely applied for crop water requirement estimations
at a field plot spatial scale [11]. Both in the cases of dual Kc and single Kc, the FAO56
offers equations or tabulated values for Kc and Kcb at different crop stages. Following the
recommendations of the authors themselves, in many countries, the Irrigation Advisory
Services have adapted these tabulated values to crop varieties under specific climatic
conditions. However, when large irrigated surface areas are monitored, the challenge of
integrating crops, sowing dates, varieties, and local adaptations is higher. Nevertheless, the
use of RS data has become a powerful link to applying the FAO56 approach, showing that
RS products offer the capacity for monitoring crop growth over large and diverse areas [68].
As an example, in Spain, the software HidroMORE® has been tested over irrigation surface
areas at different spatial and water resource scales, such as the aquifer [45] or Spanish
mainland river basins [46], and at two water and agricultural management scales: the plot
and the WUA scale [47]. Therefore, RS techniques have been sufficiently established for
use, as required and requested by water managers [69], and the existence of global-free
platforms that allow public access to satellite data products encourages their use.

4.3. Water Productivity and Crop Yield

Some researchers have reported a WP of rice at around 0.4 kg/m3 based on the total
water input (irrigation plus rainfall) [70]. These data are in agreement with those obtained
in the present study (an average value of 0.47 kg/m3 for the three seasons). Increasing this
WP is a challenge that can be reached by: (i) improving the water use efficiency by reducing
the applied water but maintaining the same yield, or (ii) improving the productivity
(increasing the crop yield) with the same amount of consumed water. At the basin scale,
with water being the first priority, the first approach is more desirable for establishing
methods for reducing water consumption while maintaining food production, as suggested
by Blatchford et al. [71]. If the goal aims to reduce the applied water, farmers should
be encouraged to save this resource. However, farmers, especially smallholders with
unfavorable financial conditions, typically have a tendency to prioritize yields rather than
water consumption, regardless of the environmental consequences, as Pouladi et al. [72]
perceived it. In the LVID, this issue is even more critical, since the rate of water use due
to the WUA users is calculated according to the area of the plot and not the consumption,
so cases of improper and irrational use are common. This situation is being mitigated by
the rehabilitation works started in 2021, promoted by the National Irrigation Programme
of Portugal [73], a governmental initiative that provides for the reconversion of irrigation
systems. The original system is being replaced by pressure pipes, with meters being
installed in the plots. In a recent study by Wei [74], a regional water-saving potential
calculation method for paddy rice based on remote sensing (RWSP-RS) was proposed.
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5. Conclusions

This study aimed to estimate the water requirements in rice paddy fields irrigated by
the continuous flooding method, applying the FAO56 methodology to estimate the ETa,
which was complemented by an RS approach using a temporal series of satellite NDVI
images as its basis. Good correlations were found between the Kc proposed by the FAO
and the NDVI evolution in the control rice fields, with an R2 ranging between 0.71 and
0.82 for stages II+III, and between 0.76 and 0.82 for stage IV. The results from the derived
RS-assisted method were compared to the ETa values obtained from the surface energy
balance model METRIC, showing an average estimation error of ±0.8 mm d−1 with a
negligible bias. The findings in this work are promising and show the potential of the
RS-assisted method for monitoring ETa and water productivity, capturing the local and
seasonal variability in rice growing, and predicting rice yield, being a useful and free tool
available to farmers. To our knowledge, this is the first report of a study in which the ETa
provided by the METRIC platform is compared with the ETa calculated by the FAO56
methodology. The reach of this study also fulfills the requirements from basin-scale water
managers, and so can be integrated into large-scale irrigation networks to improve the
water management of continuous flooded rice production.

Some final considerations about this study may guide further work, namely: (1) the
characteristic cloudiness in the study site limited the acquisition of satellite images. Ad-
ditionally, depending on the field size, the Landsat spatial resolution might not be ap-
propriate. Further studies should integrate higher resolution platforms such as Planet
scope; (2) the NDVI saturates for dense full vegetated covers. Further studies may ex-
plore the use of additional VIs; and (3) it will be interesting to expand the assessment
of the calibrated Kc = Kc(NDVI) equation to other rice production areas with a similar
agronomic management.
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