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Abstract: Irrigated turfgrass is a major crop in urban areas of the drought-stricken Western United
States. A considerable proportion of irrigation water is wasted through the use of conventional
sprinkler systems. While smart sprinkler systems have made progress in reducing temporal mis-
applications, more research is needed to determine the most appropriate variables for accurately
and cost-effectively determining spatial zones for irrigation application. This research uses data
from ground and drone surveys of two large sports fields. Surveys were conducted pre-, within and
towards the end of the irrigation season to determine spatial irrigation zones. Principal components
analysis and k-means classification were used to develop zones using several variables individually
and combined. The errors associated with uniform irrigation and different configurations of spatial
zones are assessed to determine comparative improvements in irrigation efficiency afforded by spatial
irrigation zones. A determination is also made as to whether the spatial zones can be temporally static
or need to be re-determined periodically. Results suggest that zones based on spatial soil moisture
surveys and simple observations of whether the grass felt wet or dry are better than those based
on NDVI, other variables and several variables in combination. In addition, due to the temporal
variations observed in spatial patterns, ideally zones should be re-evaluated periodically. However, a
less labor-intensive solution is to determine temporally static zones based on patterns in soil moisture
averaged from several surveys. Of particular importance are the spatial patterns observed prior to
the start of the irrigation season as they reflect more temporally stable variation that relates to soil
texture and topography rather than irrigation management.

Keywords: turfgrass; irrigation; management zones; soil moisture; NDVI

1. Introduction

Urban development in the Southwest region of the USA has expanded significantly in
recent years, placing strain on the already limited freshwater supply [1]. This problem has
been exacerbated by recent drought, with over 30% of the Western USA experiencing “ex-
treme” or “exceptional” drought during 2022 (https://droughtmonitor.unl.edu/, accessed
20 September 2022). The conversion of land to urban areas throughout the USA has meant
that more acres of irrigated turfgrass (>40 million acres) are now grown in the USA than
irrigated corn, wheat and fruit trees combined [2]. Although turfgrass irrigation requires
substantial amounts of the scarce freshwater supply in the west, it also provides several
key ecosystem services in urban areas, such as cooling the air through evapotranspiration,
reducing energy consumption for building, cooling, reducing storm-water-related flood-
ing, increasing ground water recharge, reducing soil erosion, fixing carbon in the soil [3],
cleaning noxious gases from the air [4], and reducing wildfire hazard [5]. Furthermore,
grass can help combat global warming because it is particularly effective at taking carbon
from the atmosphere and fixing it in the soil as organic matter [6,7]. In soils where grass is
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grown, organic carbon levels are often twice as high as those in soils where other types of
vegetation are cultivated [8]. Therefore, healthy grass is a key asset in urban environments
and could help mitigate global warming effects.

Despite the advantages of turfgrass over other urban surfaces in terms of temperature
regulation, it has been estimated that in semi-arid areas, approximately 60% of household
water is used to irrigate lawns [9] and this proportion is likely to be higher for institutions
that do not have residential functions. Furthermore, up to 50% of turfgrass irrigation water
is estimated to be wasted [9] due to temporal and spatial mis-applications. The US EPA has
implemented the “WaterSense” program which addresses temporal mis-application issues
with irrigation controllers to tailor watering schedules based on local weather conditions.
This modification alone can reduce irrigation water use by 15% [9]. Orta et al. [10] reported
a 30% reduction in water use through sub-surface drip irrigation of turfgrass compared
to sprinkler irrigation. The EPA is considering developing irrigation scheduling that is
controlled by soil moisture sensors [9] like those being used with agricultural variable rate
irrigation systems such as that of Liakos and Vellidis [11]. In such systems, spatial zones
have been determined and there are soil moisture sensors in each zone which determine
irrigation scheduling and the amount that should be applied using a variable rate central
irrigation pivot. The approach implicitly assumes that there is no appreciable variation
in soil moisture within the zones and that the sensors are placed in locations that are
representative of the soil moisture for the whole zone. Canopy temperatures have been
measured by some to assess crop water stress in agricultural fields to determine VRI
zones [12]. In contrast to agricultural systems, turfgrass does not produce a crop that can
be sold to offset the cost of sensors and technology for precise irrigation. In addition, the
ability to irrigate more precisely in the urban turfgrass context has, until recently, been
largely lacking due to outdated and inefficient irrigation systems as well as the high cost
and complexity of sensor technology.

Affordable technologies have emerged in recent years to address the urban water
crisis, including sprinkler heads that utilize “valve-in-sprinkler-head technology” such
as those produced by Hunter, Rainbird, and Toro. Unlike the conventional practice of
uniformly applying water across a zone with the rate determined by the driest part of the
zone, this technology provides individual control of each sprinkler head, so each sprinkler
head has its own zone of influence. Many residential customers completely ignore spatial
and temporal variability in soil moisture and turn on their sprinkler systems to water
every other day for 20 or 30 min in every zone at the beginning of the season, and never
adjust those levels until they turn the sprinklers off at the end of the season. Clearly, more
informed irrigation scheduling and zoning is needed. New-generation soil moisture tension
sensors improve accuracy and the simplicity of use of soil moisture sensors, and turfgrass
can be monitored using drones equipped with cameras that record wavelengths of light
that are sensitive to plant health. For applications that cover large areas of turfgrass, freely
available satellite imagery could be used to inform plant health; however, for applications
where the area is smaller such as a single sports field, these satellite images do not give
the spatial resolution necessary for effectively applying spatially variable rate irrigation.
Finally, smart controllers allow the incorporation of multiple information layers, with
weather data, to precisely control irrigation.

The main challenges in determining spatial zones for turfgrass irrigation revolve
around what variables should be measured to determine the zones. Being able to ob-
serve variables inexpensively and determine the zones in cost-effective ways, especially if
they need re-assessing periodically or before each irrigation event, is crucial. Straw and
Henry [13] showed for two turfgrass fields, that during a dry-down period, the zones that
identified similarities in volumetric water content (VWC), normalized difference vegetation
index (NDVI) and penetration resistance changed, so the potential change in zones over
time must be investigated. The current research uses data from ground and drone surveys
of two large sports fields on the Brigham Young University Campus. One field has sprin-
klers with traditional zones and the other has valve-in-head sprinkler technology so there



Agronomy 2023, 13, 1267 3 of 20

is more potential for spatially modifying zones. The surveys were conducted pre-, within
and towards the end of the irrigation season. The effectiveness of different variables from
the surveys for determining spatial zones to inform soil moisture applications was assessed.
Straw et al. [14] compared the data on soil moisture and grass health obtained from mobile
and handheld devices for monitoring turfgrass in sports fields. They showed that for NDVI
and soil moisture, mobile and handheld devices showed similar spatial patterns but for
penetration resistance they did not.

Large institutions are more likely to find developing spatial zones economically feasi-
ble in the first instance, as irrigation typically forms a larger proportion of their water bills
and they have a greater capacity to invest in expensive mobile equipment and sensors for
monitoring patterns of soil moisture and grass health. However, the methods developed
here should have the potential to be transferred to the residential turfgrass irrigation sector
in the future. This would mean a change in the scale of inquiry and decrease in the budget
for sensing, so the cost of the equipment needed to make various measurements on which to
base spatial zones is briefly considered here. We also investigate the utility of observations
that can be made without equipment but are instead based on human perceptions, such as
those investigated by Straw et al. [15].

The current research is unique and distinct from other research that has been published
in the MDPI journal Agronomy about turfgrass. There have been several special issues that
have looked at simulations for improving turfgrass performance during climate change [16],
stress biology [17] and genetics and breeding of different quality traits [18,19]. However,
this paper looks at applying principles of precision agriculture to the spatial irrigation
management of turfgrass to reduce wasted water. This issue is not addressed by other
papers in Agronomy special issues related to Turfgrass.

2. Materials and Methods
2.1. Field and Drone Surveys

Two general-purpose sports fields that are used for almost daily general student
recreational use, rather than competitive sports, on BYU campus were the field sites
used for this work. Both fields have Kentucky bluegrass (Poa pratensis L.) turf. Harmon
field (40.256 N, 111.644 W) has a gentle N–S running slope and the field dimensions are
approximately 150 m (N–S) by 115 m (E–W), Figure 1c. Temple field (40.262 N, 111.644 W)
has a slightly steeper NE–SW running slope and the field dimensions are approximately
200 m (NW–SE) by 150 m (NE–SW) Figure 2c. The Harmon field is used for summer sports
camps during the irrigation season and this results in quite uniform traffic in all areas of
the field; however, in other months student activities tend to be concentrated in the west of
the field close to the building and a terrace where outdoor meals are served. In addition,
activities tend to occur in the south of the field which is closer to the parking area and halls
of residence. For the Temple field, activities and trampling tends to be concentrated in
central parts of the field, mostly close to the sports equipment shed indicated by a star in
Figure 2b.

Harmon field has traditional sprinkler zones installed which generally run E–W
across the field in parallel with the elevation (Figure 1c). However, at the edges of the
field, zones run N–S counter to the elevation patterns. In the 2021 irrigation season, field
managers applied 30% less water to the 3 zones at the bottom of the slope. The NRCS web
soil survey website (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx,
accessed, 30 May 2021) classified the soil in the Harmon field as 3 types: Taylorsville silty
clay loam with 1 to 3 percent slopes, Pleasant Grove gravelly loam with 3 to 6 percent slopes,
and Sterling gravelly fine sandy loam with 1 to 3 percent slopes covering 91.5, 5.5 and 3% of
the field area, respectively (see Figure 1a). The two less prevalent soil types are found only
in the NW and SE corners of the field. A survey of top-soil texture along two N–S running
transects towards the center of the field (Figure 1c) completed in September 2021 showed a
consistent sandy loam texture rather than silty clay loam. Silt content was, however, shown

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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to be greatest in the center and eastern portions of the field where the Taylorsville silty clay
loam was supposed to dominate.
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Figure 1. Maps of Harmon field showing (a) 15 m ground survey grid (15 m grid, ground survey
points, and soil series boundaries (black lines)), (b) September 2020 RGB Drone image degraded
to 1 m pixel size, (c) Sprinkler zones in relation to elevation (m) (Sprinkler zones (black lines) and
elevation from 1387 m (blue) to 1392 m (red). Black dots: transect survey points from September 2021
soil texture survey.).
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Figure 2. Maps of Temple field showing (a) ground survey grid (15 m grid, ground survey points),
(b) July 2021 RGB drone image, sports equipment shed indicated by star, and (c) Sprinkler heads
(black dots) and zones (black lines) in relation to elevation (m) from 1443 m (blue) to 1463 m (red)
and arrow indicates area of high density of sprinkler heads.

Temple field has new valve-in-head sprinklers where each sprinkler head can form
its own zone. Figure 2c shows the area covered by each sprinkler head as a black circle
with radius of approximately 27 m. The sprinkler heads are spaced at 20 m so that there is
overlap (Figure 2c) between the areas watered by each sprinkler head. The sprinkler heads
in temple field were installed in NW–SE running lines that are consistent with changes in
elevation running across the slope (Figure 2c). Due to a lack of detailed spatial information
to base spatial zones on in this field, in the 2021 irrigation season field managers applied
30% less water to the 3 rows of sprinkler heads at the bottom of the slope. The NRCS web
soil survey classified the soil in the Temple field as all of one type, the Pleasant Grove



Agronomy 2023, 13, 1267 5 of 20

gravelly loam with 3 to 6 percent slopes; however, a survey of top-soil texture along
two NW–SE running transects towards the center of the field (see Figure 4c) showed soil
textures varying between Clay loam, Loam and Sandy Loam. Some of the patterns of soil
texture observed seem to account for non-typical patterns of soil moisture in relation to
relative elevation. For example, there were some clayey soils and even gleiing observed
at the top of the slope and sandier soils near the bottom of the slope. The gleying also
happened to occur where a higher density of sprinkler heads has been installed at the
central eastern parts of the field due to the narrowing of the field in this area (see arrow in
Figure 2c). Figure 8c shows that some locations in this area of the field are receiving water
from as many as 6 or 7 sprinkler heads. Most evident in this field was sudden, unpredictable
changes in soil texture. This may have something to do with two pipelines that have been
installed under this field in recent years. Construction workers likely re-filled the areas
above the pipeline with sand rather than soil. In addition, this field is part of an alluvial fan
which could also account for some of the sudden changes in soil texture within the field.

Ground surveys of the fields were performed on a 15 m and 20 m grid for Harmon
and Temple fields, respectively (Figures 1a and 2a). This ensured, given the size of the
fields, that more than 100 sample locations were available for variogram computation and
kriging following the guidelines of Webster and Oliver [20]. However, for Temple field in
September 2021, the survey was linked to the collection of soil samples for texture analysis
which is expensive, so observations were only made along two transects and at sensor
locations (see Black dots in Figure 4c). Straw et al. [13] sampled sports fields comparing
several grids with smaller sampling intervals; however, their fields were smaller than those
used in this study and would not have had sufficient sampling points (>100) to compute
a reliable variogram at a 15 m interval. As irrigation was largely uniform during the
study period, the spatial field surveys were scheduled, pre-, mid- and towards the end of
the irrigation season. The pre-irrigation season sampling in March/April should capture
natural spatial patterns in soil moisture that relate to permanent features of the field such
as soil texture and topographic variations. The mid-irrigation season sampling should
help identify if any particular areas are being over-watered. Finally, the end of irrigation
season sampling in September should accentuate any patterns of grass health caused by
drought/over-watering during the season.

Harmon field was sampled pre-irrigation in March 2021, it was sampled twice (sur-
vey a and survey b) mid-irrigation-season in August 2021, (August 2021a+b) and was
sampled at the end of the irrigation season in September 2020 and September 2021. Temple
field was sampled pre-irrigation-season in April 2022, in the middle of the irrigation season
in July 2021 and the end of May 2022. Finally, at the end of the irrigation season Temple
field was surveyed in September 2021.

Figure 3 shows the monthly average temperatures and precipitation totals for Provo,
UT, USA compared to 30 year normals. This will allow evaluation of each survey time
as to whether it was wetter or dryer, hotter or cooler than normal. Table 1 summarizes
the observations that were made during each survey. Handheld sensors such as a Delta
T theta probe, Trimble GreenSeeker NDVI sensor and FieldScout greenindex+ Turf app
were used to measure soil volumetric water content (VWC) and normalized difference
vegetation index (NDVI), the greenness of grass, or grass health on the 15 m and 20 m grids
across both fields. Delta T theta probes currently cost about 1500 USD, Trimble GreenSeeker
handheld devices cost about 650 USD, and the FieldScout GreenIndex+ Turf app and board
costs 100 USD. There was no equipment cost for estimating % dead or discolored grass and
the wet/dry soil indicator. Such observations are similar to the athlete perceptions used
to characterize within-field variability by Straw et al. [15] that were shown to correspond
with measured properties.

A DJI Phantom 4 drone flown at 119 m above ground level equipped with a 12 mp
(4000 × 3000) camera and a Sentera Single Sensor NDVI was used to capture RGB and NDVI
imagery with pixel sizes of 2 cm and 6 cm, respectively, and a digital surface model (DSM)
of the fields (Table 1). The imagery was stitched together and processed in Drone Deploy
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(https://www.dronedeploy.com, accessed, 1 December 2022) to create image orthophoto
mosaics of each field. Visual Atmospheric Resistance Index (VARI) data, a vegetation index
which uses only the RGB wavelengths, was also calculated from the drone imagery. Several
derived topographic attributes were calculated in SAGA GIS from the DSM (Table 1).
The drone and camera equipment costs about 3000 USD as well as a subscription to the
data/image processing website (Drone Deploy). Drone surveys for research purposes also
require that the drone operator has a Federal Aviation Administration Part 107 Remote Pilot
Certificate. In addition, on a university campus and in some urban areas, health and safety
forms must be submitted and approved before each flight and flights are prohibited over
some fields that are too close to airports or hospitals that provide air ambulance services.

Agronomy 2023, 13, x FOR PEER REVIEW  6  of  22 
 

 

were used  to measure soil volumetric water content  (VWC) and normalized difference 

vegetation index (NDVI), the greenness of grass, or grass health on the 15 m and 20 m 

grids  across both fields. Delta T  theta probes  currently  cost  about  1500 USD, Trimble 

GreenSeeker handheld devices cost about 650 USD, and the FieldScout GreenIndex+ Turf 

app and board costs 100 USD. There was no equipment cost  for estimating % dead or 

discolored grass and the wet/dry soil indicator. Such observations are similar to the athlete 

perceptions used  to  characterize within-field variability by  Straw  et  al.  [15]  that were 

shown to correspond with measured properties. 

 

Figure 3. Climograph for Provo, Utah showing 30-year normal and Actual Monthly Rainfall and 

Average Temperatures for 2020–2022. 

   

Figure 3. Climograph for Provo, Utah showing 30-year normal and Actual Monthly Rainfall and
Average Temperatures for 2020–2022.

Table 1. Summary of Variables Measured, Instruments Used and Dates Sampled for Field and
Drone Surveys of Harmon and Temple fields. (a and b refer to first and second of two surveys in
August 2021).

Variable Method or Instrument Used Harmon Sampling Dates Temple Sampling Dates

% dead or discolored grass Estimates using quadrats September 2020, March 2021,
August 2021a, September 2021 September 2021, April 2022

Soil Dry/Wet (0/1) Indicator Touch September 2020, March 2021,
August 2021a+b, September 2021 April 2022

NDVI meter Trimble GreenSeeker handheld September 2020, March 2021,
August 2021a+b, September 2021

July 2021, September 2021,
April 2022, May 2022

NDVI App FieldScout GreenIndex+ Turf app
and board [21] August 2021a+b, September 2021 July 2021, April 2022

Top-soil VWC (%) Delta T theta probe September 2020, March 2021,
August 2021a+b, September 2021

September 2021, July 2021,
April 2022, May 2022

Elevation (m) (6 cm pixels)
and Slope, Aspect, TWI

Drone DSM processed in Drone
Deploy, Pix4D then SAGA GIS [22]

September 2020, March 2021,
August 2021 July 2021, April 2022

R, G, B, NIR, NDVI, VARI
(2 cm and 6 cm pixels)

Drone images processed in Drone
Deploy and Pix4D

September 2020, March 2021,
August 2021 July 2021, April 2022

https://www.dronedeploy.com
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2.2. Statistical Methods

Ground survey data were kriged to a 1 m grid and drone data were resampled to a
1 m grid to aid in the speed of data processing. Pearson correlations and the bi-variate
local Moran’s I (LMI) [23] were used to investigate the consistency of patterns between soil
moisture and grass health from different surveys.

In precision agriculture, a common approach to define management zones is to use
several inexpensive, densely sampled variables that are related to the variable to be man-
aged and then determine zones from these data using principal components analysis (PCA)
and K-means classification [24]. Khosla et al. [25] recommended using multiple variables
to define management zones in agricultural crops, rather than relying on a single variable.
K-means was used to classify individual variables and composite variables from principal
components analysis (PCA) into different numbers of zones. The vegetation indices and
topographic attributes derived from drone surveys showed a lot of fine-scale detail that
would not be useful in determining management zones so their use was not considered as
the sole variable upon which to base a classification. Instead, they were only considered as
part of classifications that included all variables for Harmon field in September 2020 and
Temple field for the April 2022 survey. The number of zones associated with the greatest
break of slope in the associated scree plot (Figure 4b) was used as the optimum number of
zones. Zones were then defined using ESRI shapefiles (Figure 4c, black lines).
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number of zones, and (c) location of 3 optimal zones based on July 2021 VWC (Zone 1: blue, low
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survey and sensor locations).

Using existing zones (Figures 1c and 2c) and the optimal zones determined using
individual variables and combinations of variables, average VWC per zone and per field
were calculated from the 1 m kriged VWC data. The mean absolute errors, and summary
statistics of the errors, associated with irrigating to field and zone average VWC, were
calculated with reference to the 1 m kriged VWC data. The errors for zones defined using
different variables and for VWC zones from different times were compared.

3. Results and Discussion
3.1. Harmon Field—Spatial and Temporal Patterns

Harmon field had similarities in the patterns shown in the maps produced from
interpolated ground survey variables and these values had moderate correlations with each
other (±0.3–0.7, Figure 5). For example, there are similarities in the location of the areas
with a high percentage of dead or discolored grass, and VWC. There are also similarities
between the patterns in these maps and those shown for NDVI (Figure 5). Previous studies
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have shown links between lack of soil moisture and grass health or the presence of dead
or discolored grass [26,27]. Maps (Figure 5) also showed similarities in the patterns of the
variables that do not need expensive equipment to measure them (e.g., % dead grass and
wet/dry IND) and patterns of variables that require expensive equipment for measurement.
This shows promise for the potential to transfer the approaches developed here to the
residential context and also agrees with previous findings of Straw et al. [15] that showed
that athlete perceptions of soil status could be relatively accurate for some variables.
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Figure 5. Maps of Harmon Field for: (a) % VWC (March 2021), (b) NDVI (March 2021), (c) Dead
grass (March 2021), (d) % VWC (August 2021a), (e) NDVI (August 2021a), (f) Wet/Dry Indicator
(IND) (August 2021a), (g) % VWC (September 2020), (h) NDVI (September 2020), (i) Dead grass
(September 2020), (j) % VWC (September 2021), (k) NDVI (September 2021), and (l) Wet/Dry Indicator
(September 2021).
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Each of the variables shown in Figure 5 seems to show a dominant E–W pattern in the
Harmon field with high values of VWC and NDVI and low values for dead grass in the east
of the field, and the reverse in the west of the field. These patterns show consistency with
the patterns of degree of slope (Figure 6d). There is also a N–S pattern for VWC (March
2021) and the wet/dry indicator (August 2021a). Others have found similar links between
small topographic variations and changes in soil moisture and NDVI or other indications
of plant health [28,29]. Indeed, such variations account for the importance of derived
topographic attributes and vegetation indices in the digital soil mapping approach [30–33].
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Figure 6. Maps showing the configuration of zones for Harmon Field (a–c) based on different
variables: (a) Harmon field VWC zones (September 2020), (b) Harmon field all variables zones (March
2021), (c) Harmon field all dates VWC zones, and maps of (d) slope (◦) from drone DSM, (e) LMI for
VWC and dead grass (September 2020), and (f) LMI for VWC and NDVI meter (September 2020).

The N–S pattern of VWC (Figure 5) is logical given the main direction of the slope
of the field and the consistency in soil texture within the field. However, at first glance
at the field, one would expect the N–S topographic pattern to be the dominant feature of
variation in the field rather than the E–W variation as the downhill slope N–S is far more
pronounced than the W–E downhill slope. The E–W variation in grass health, with poorer
health in the west, may partially be a function of greater foot traffic in the west of the field
close to the pavilion/terrace area of the building. Indeed, symptoms of severe compaction,
such as standing water at the surface which percolated away following insertion of a
theta probe, were observed in the western parts of the field and previous studies have
shown the detrimental effects of soil compaction on plant health [34,35]. This suggests
that penetrometer resistance should be measured and mapped in this field and perhaps
aeration should be performed more frequently in the western side of the field. Another
variable that changes from W to E in this field is increasing silt content which increases the
water-holding capacity of the soil in the E of the field. Finally, the west of the field also
receives the sun’s rays more directly in the evening, a hotter part of the day, rather than
the morning.
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When the temporal patterns in VWC are examined for the Harmon field, the pre-season
map for March 2021 VWC (Figure 5a) shows the strongest north-south spatial pattern which
reflects the main trends in elevation. This suggests that under rainfed conditions, elevation
is a major influence on VWC patterns in this field. In Figure 5, the map for VWC with the
greatest range in values (15–55% VWC) is Figure 5g for September 2020. Figure 3 shows
that September 2020 had higher-than-normal temperatures in July, August and September
with the biggest difference from normal being for August 2020. Rainfall was also markedly
below normal for these three months and there was no rainfall at all in August. The large
range of values for VWC in this map seems to show the large differences in VWC that
develop spatially under uniform irrigation when temperatures are high and precipitation
is low. The maps for August 2021a VWC (Figure 5d) and September 2021 (Figure 5j) both
show ranges of values of about 20%, but the VWCs are about 10% higher (27–48%) for
the mid-season survey (August 2021a). May–July 2021 were markedly drier and hotter
than normal (Figure 3), but August was markedly wetter and slightly cooler than normal,
followed by a hotter and drier-than-normal September. These weather patterns might
explain the higher VWCs for August 2021a than September 2021.

The bivariate LMI map for % VWC and % dead grass (Figure 6e) shows the expected
negative relationship between these two variables in the pink and pale blue areas. The
high–low (pink) and low–high (blue) areas show significant spatial clusters with high
VWC associated with low % dead grass, or low VWC associated with high % dead grass,
respectively. However, the red and dark blue areas show significant spatial clusters with
high VWC and high % dead grass and low VWC and low % dead grass, respectively. This
suggests that over-watering is occurring in these locations which leads to poor grass health
and nutrient uptake [36]. Indeed, Ruiz et al. [37] have used low NDVI values to indicate
areas of over-watering in Eucalyptus plantations.

In these areas, it is clear that it might be possible to reduce the amount of water
received. Unfortunately, these features are not consistent across the existing irrigation
zones for the field (Figure 1c). In Figure 6f, the bivariate LMI between VWC and NDVI
meter data suggests that more water may be needed in the low–low (dark blue) areas, and
less in the high–low (pink) areas. It was observed during the irrigation season that mowing
in some areas that were very wet was damaging/tearing the turf mat. These areas likely
correspond with the pink areas in Figure 6f and should receive less water. Another issue
that needs addressing is what rate of watering is needed to avoid overland flow on this
sloping field as there was clear evidence of overland flow with micro-channels forming in
the sand of the volleyball court (rectangle cut-out of the SW of the field—Figure 5).

3.2. Temple Field—Spatial and Temporal Patterns

Typically, one would expect patterns of soil moisture in a field to be a function of
patterns in topography and soil type or texture. The patterns of variation in the Temple
field (Figure 7) do not seem to relate to patterns of variation in elevation (Figure 2c) which
is not particularly surprising, given the unpredictable patterns of soil texture within this
field. Straw et al. [38] also found that the strength of relationships between soil moisture
and grass health patterns can vary between fields and with different soil types. Given the
elevation patterns of the field, the unexpected dry areas at the base of the slope (western
side of the field Figure 7d,g) could be related to the combination of the soil texture and the
management practice of applying 30% less water to the three rows of sprinklers at the base
of the slope in the 2021 growing season. Figure 7a shows that pre-season there are some wet
and dry areas at the base of the slope, but by the mid- and end of the season (Figure 7d,f),
the dry areas at the base of the slope become more pronounced due to management practice.
The western edge of the field is next to the side-walk of a major road and pipes have been
installed next to the sidewalk in the southern end of the field, with the soil probably being
replaced by sand in these areas. This all suggests that managing the irrigation zones based
on topography is not a good idea in this field.
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There are some similarities in the patterns shown by the various variables observed
for Temple field, but the similarities are generally a little less well defined than for Harmon
field which is reflected in a slightly lower correlation coefficient between the variables
(±0.1–0.6). The relationship between VWC and NDVI was found to be weakest for April
2022 during the period when the grass was emerging from winter dormancy. There are
some similarities in the patterns of VWC for July 2021 (Figure 7d), in the middle of the
irrigation season, and the VWC patterns for April 2022 (Figure 7a) before the irrigation
season started. However, the relatively wet area in the central part of the field for April 2022
(Figure 7a) when the soil was generally very dry and under rainfed conditions corresponds
with an area with low relative slope position, and the dry areas in the south and east
of the field in April 2022 correspond with the top of the steepest slopes. This suggests
that under natural conditions the soil moisture patterns may be more related to patterns
of topography than when the field is irrigated. The larger area with higher VWC levels
mid-irrigation-season (July 2021) than pre-irrigation-season (April 2022) could be related to
the denser placement of sprinklers in the NE corner of the field (Figure 2c). The NE part of
the field will become wetter when irrigated rather than when it is rainfed as it is receiving
water from more sprinklers than other parts of the field (Figure 8c).

Unlike the Harmon field, the Temple field in July 2021 (mid-season) showed some
of the greenest areas being associated with some of the driest locations such as in the SW
corner and central eastern part of the field (Figure 7d,e). This suggests that there may be
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significant amounts of over-watering occurring in this field. The black lines on the maps in
Figure 7d and e show the optimum zones developed using the kriged NDVI meter and
% VWC data, respectively. The bivariate LMI between VARI data and VWC (Figure 8e)
shows that the VWC zones essentially identify the significant spatial clusters of low–high
areas (pale blue) where VARI is low, but VWC is high. These areas are probably receiving
too much water. The two pale blue areas in the center of the field, with low VARI but
high VWC, also correspond with areas of high foot traffic where sporting activities are
concentrated, and excess water here could be increasing damage to the grass. The VWC
zones also identify the significant spatial clusters of high–low values (pink) where VARI
is high, but VWC is low. These areas suggest that the amount of water currently applied
is sensible.

When the temporal patterns in VWC are examined for Temple field, the map for VWC
with the greatest range in values (8–50% VWC) is Figure 7g for September 2021, this may
reflect the after-effects of more-than-double the normal precipitation levels received in
August 2021 followed by low precipitation levels in September, which could accentuate
locations with differences in soil texture and thus soil water holding capacity. Figure 7a
shows very dry soils throughout the Temple field before the 2022 irrigation season began
(April 2022) with a range of only 13% in VWC values. In addition, the highest VWC values
for April 2022 were less than the minimum values observed in July 2021.

3.3. Harmon Field—Zones and Associated Errors

Figure 6a–c shows optimal zones for Harmon field created using different variables
and from different time periods. The zones in the NW and the SE of the Harmon field
in Figure 6a,c are consistent with the different soil types identified by the NRCS web soil
survey (see black lines in Figure 5j). In addition, in each of these classifications, generally
the large central area of the Harmon field is one class. Table 2 shows the summary statistics
of the calculated absolute errors associated with treating the whole field as one zone, using
existing zones and using optimal zones defined using different variables and all variables
(including drone imagery and derived topographic attributes) combined. For Harmon
field, when the field is treated as one zone or the zones are defined just by soil series,
the mean absolute errors were generally larger than when other zones were used. This
may be because the areas identified as having different soil series are confined to the NW
and SE corners of the field (Figure 5j) and it is therefore very similar to using uniform
irrigation and treating the whole field as one zone. Important errors, along with the mean
absolute errors, is the range of absolute errors and their standard deviation. The range and
standard deviation were generally largest, as might be expected, when the field was treated
as one zone.

For Harmon field in the March 2021 pre-season sampling, the error (Table 2) was very
small for the existing zones that cut across the main slope in line with elevation patterns
(Figure 1c). This suggests, as does Figure 5a, that under rainfed conditions, the patterns of
VWC largely reflect patterns in elevation and slope in this field and that spatially varying
the irrigation rates with elevation is sensible with progressively less water being applied as
the zones at the base of the slope are approached. For the other zones in the Harmon field
for March 2021, the MAE was lowest for the zones defined using the wet/dry indicator;
however, the range and standard deviation of errors was large. The best results overall
were obtained from using the zones defined using March 2021 VWC as they had a low
MAE, the smallest range and lowest standard deviation of errors. The worst performing
zones pre-season based on MAE, range and standard deviation were the zones based on
the March 2021 NDVI. The error statistics were worse for these zones than treating the
whole field with uniform irrigation. This is probably due to the fact that when the grass
is coming out of dormancy, the degree of greenness does not necessarily reflect soil VWC.
Pre-season, of the free-to-measure variables (% dead grass and wet/dry indicator), the
zones produced from dead grass patterns only performed slightly better than treating the
whole field with uniform irrigation, but the wet/dry indicator zones had low errors.
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Table 2. Summary statistics of absolute errors between kriged VWC (Harmon, March 2021, August
21a, September 2021) and average VWC per field or zone based on zones calculated with different
variables and combinations of variables.

VWC Data Used and Zone Type Mean Min. Max. St. Dev.

Pr
e-

se
as

on

Harmon March 2021—whole field zone 0.0049 −16.53 14.77 5.72
Harmon March 2021—existing zones 2.4271 × 10−14 −20.31 11.42 3.76

Harmon March 2021—March 2021 VWC zones 0.0048 −9.340 8.52 2.33
Harmon March 2021—March 2021 Dead grass zones 0.0046 −15.03 15.72 5.55

Harmon March 2021—March 2021 NDVI zones 0.0063 −16.59 16.38 5.26
Harmon March 2021—March 2021 Wet/Dry zones 2.8140 × 10−6 −18.94 13.65 5.35

M
id

-s
ea

so
n

Harmon August 2021—whole field zone 0.0138 −9.91 9.72 3.42
Harmon August 2021—existing zones 5.3652 × 10−15 −13.29 7.60 2.72

Harmon August 2021—August 2021 VWC zones 0.0015 −5.61 2.88 0.99
Harmon August 2021—August 2021 Dead grass zones 0.0161 −7.74 8.42 3.08

Harmon August 2021—August 2021 NDVI zones 0.0149 −9.86 9.37 3.27
Harmon August 2021—August 2021 NDVI app zones 0.0130 −9.83 9.96 3.35
Harmon August 2021—August 2021 Wet/Dry zones 0.0086 −8.91 7.42 2.63

En
d

of
Se

as
on

Harmon September 2021—whole field 1 zone 0.0060 −11.54 12.3 4.23
Harmon September 2021—existing zones 2 × 10−10 −16.83 10.68 3.38

Harmon September 2021—September 2021 VWC zones 9.402 × 10−7 −5.34 6.00 1.63
Harmon September 2021—All dates VWC zones 6.62 × 10−7 −8.16 8.33 2.64

Harmon September 2020—September 2020 NDVI zones 0.0001 −11.68 12.33 4.17
Harmon September 2021—September 2021 Wet/Dry zones 1.7661 × 10−6 −9.82 10.49 3.8

Harmon September 2021—Soil Series zones 3.93 −15.31 19.77 4.95
Harmon September 2020—September 2020 All Variables zones 1.0915 × 10−6 −10.52 13.29 3.98

V
W

C
zo

ne
s

ot
he

r
ti

m
es Harmon August 2021—March 2021 VWC zones 0.0091 −8.86 8.64 2.76

Harmon March 2021—August 2021 VWC zones 4.5936 −12.57 −1.80 1.53

For Harmon field in August 2021a, the mid-season survey, the MAE was lowest for
existing zones, but the range and standard deviation of errors were both larger than zones
based on some other variables. The next smallest MAEs were for zones based on August
2021a VWC and the August 2021a wet/dry indicator. The range and standard deviation of
the errors were also smallest for August 2021a VWC followed by the wet/dry indicator.
Zones based on the kriged NDVI meter, NDVI app values and dead grass percentages
were similarly poorly performing in terms of MAEs, range, and standard deviation, and
each had an MAE which was larger than that for managing the whole field uniformly as
one zone. This shows that grass health is not just a function of VWC, but also varies with
compaction, trafficking, and nutrient status of the soil; however, management practices
often suggest that if there are brown patches of grass, the solution is to add more water.
Indeed, at this within-season sampling we observed the turf mat being torn by mowers in
areas that were particularly wet.

At the end of the irrigation season in Harmon field (September 2021) when patterns
resulting from irrigation should be most defined, the VWC zones were the best-performing
according to the minimum, maximum, and standard deviation of the absolute errors
(Table 2). The results for Harmon field showed that after the VWC zones for the same date,
VWC zones based on all survey dates performed next best followed by wet/dry zones
from September 2021. For the end of the irrigation season, existing zones performed well
in terms of MAE but not in terms of the range of errors. The zones based on NDVI or all
variables from September 2020 performed slightly better than treating the whole field as
one zone in terms of MAE, range and standard deviation. This could possibly be linked to
the high level of detail in the drone data as they were not interpolated by kriging, which
is a smoothing process which can lead to more spatially coherent zones with less random



Agronomy 2023, 13, 1267 14 of 20

variation. The NDVI measurements being more useful for defining zones at the end of the
season rather than pre- or mid-season makes sense as the patterns in grass response to
areas that have been well-, over- and under-watered during the season are likely to be most
pronounced. However, the fact that zones based on NDVI measurements only become
slightly useful at the end of the season suggests they should generally not be used. For
all surveys in the Harmon field, zones based on the wet/dry indicator performed better
than the NDVI meter measurements, suggesting that residential customers may be able to
determine when different zones need watering by merely touching or looking at the topsoil
to see if it looks or feels wet or dry at several places in each zone. However, this method
can only work for mapping in a large field if the whole field, or a very large percentage of
it, is not universally wet or dry.

As VWC zones were the best-performing pre-, mid-, and at the end of the season for
Harmon field, the last two rows in Table 2 show how using VWC zones from a different
survey perform for this field. Using March 2021 zones to manage VWC in August 2021
would have produced errors that were slightly larger, but with similar characteristics to the
August 2021 wet/dry zones. The August 2021 zones performed less well with the Mar21
VWC data, but these results suggest that it may be possible to use temporally stable zones
for this field that are based on VWC. In addition, the good performance of the wet/dry
indicators zones suggests that very cheap, crude soil moisture sensors could be installed in
the field to determine when each zone should be watered.

3.4. Temple Field—Zones and Associated Errors

Figure 8a,b show examples of zones for Temple field that are based on VWC and
NDVI values from July 2021. For Temple field in April 2022, during the pre-season sur-
vey, the range and standard deviation of the absolute errors showed that zones based
on the wet/dry indicator, all variables (including drone vegetation indices and derived
topographic attributes), dead grass, and NDVI all performed similarly to each other and
similarly to when treating the whole field as one zone (Table 3). This is likely because in
April 2022 the whole field was very dry (VWC 11–24%) and there was not much variation
in VWC within the field, therefore the errors were small for all approaches.

Table 3. Summary statistics of absolute errors between kriged VWC (Temple, April 2022, July 2021
and September 2021) and average VWC per field or zone based on zones calculated with different
variables and combinations of variables.

VWC Data Used and Zone Type Mean Min. Max. St. Dev.

Pr
e-

se
as

on

Temple April 2022—whole field 1 zone 0.0829 −4.08 7.38 1.46
Temple April 2022—existing zones 3.035 × 10−5 −1.87 4.06 0.59

Temple April 2022—April 2022 VWC zones 0.0829 −1.89 5.29 0.69
Temple April 2022—April 2022 dead grass zones 0.0829 −3.93 7.16 1.40

Temple April 2022—April 2022 NDVI zones 0.0830 −4.34 7.07 1.40
Temple April 2022—April 2022 wet/dry zones 0.0830 −4.23 7.23 1.44

Temple April 2022—April 2022 All Variables zones 0.0829 −3.68 6.90 1.34

M
id

-s
ea

so
n Temple July 2021—whole field 1 zone 9.6 × 10−14 −8.82 13.07 3.98

Temple July 2021—existing zones 6.21 × 10−21 −0.00018 0.00015 0.000031
Temple July 2021—July 2021 VWC zones 4.955 × 10−7 −6.85 4.16 1.59
Temple July 2021—July 2021 NDVI zones 1.463 × 10−6 −14.26 8.67 3.39

En
d

of
Se

as
on Temple September 2021—whole field 1 zone 0.3624 −26.28 13.05 7.65

Temple September 2021—existing zones 0.3282 −10.20 13.83 3.03
Temple September 2021—September 2021 VWC zones 0.3384 −12.08 12.78 3.25
Temple September 2021—April 2022 dead grass zones 0.3556 −17.54 19.63 6.52

Temple September 2021—April 2022 NDVI zones 0.3281 −24.24 18.92 7.35

V
W

C
zo

ne
s

ot
he

r
ti

m
es Temple July 2021—April 2022 VWC zones 2.279 × 10−5 −4.34 7.12 1.39

Temple April 2022—May 2022 VWC zones 0.0002 −4.23 7.24 1.45
Temple April 2022—September 2021 VWC zones 0.0002 −4.40 7.01 1.44
Temple September 2021—May 2022 VWC zones 0.3547 −27.62 16.40 7.05
Temple May 2022—September 2021 VWC zones 0.0052 −15.79 23.50 5.45
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The best-performing type of zones was existing zones, namely if the VWC values were
averaged within the 27 m radius around each sprinkler head, and also in the areas of overlap
between sprinkler heads. However, they are very small and have never been managed
individually to date. Figure 8f shows for May 2022 the average VWC per sprinkler zone,
and that this is a very complicated pattern to implement and would involve calculations
about what to do for the zones that are in areas of overlap between different sprinkler
heads (Figure 8c). This is also complicated by the northeast edges of the field where the
sprinkler spacing is slightly different. For April 2022, the best performing zones based on
MAE, range, and standard deviation of errors were the zones based on April 2022 VWC.
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In the Temple field mid-season survey (July 2021), the errors (Table 3) show that,
like Harmon field, zones based on VWC values (Figure 7d) are more effective than NDVI
zones (Figure 7e). This makes sense as there are several other factors that can affect grass
greenness other than VWC such as nutrient levels, soil texture, and compaction. The VWC
zones being better than NDVI-based zones mid-season is also confirmed by the bi-variate
LMI analysis of VARI and VWC (Figure 8e), which showed that the VWC zones identify the
wettest and driest zones well and that the LMI analysis can help determine which zones are
being over- or under-watered and thus need either more or less water. Although the VWC
zones have larger errors than using each sprinkler head as its own zone, implementing
use of these zones would be far simpler than calculating how much water to apply to each
individual sprinkler head for each irrigation event.

The errors for Temple field in April 2022 for all types of zones are at least an order
of magnitude smaller than for July 2021. In April 2022, the field was very dry and thus



Agronomy 2023, 13, 1267 16 of 20

the range of VWC values was small compared to July 2021 (compare Figures 7a and 7d).
This resulted in the range and standard deviation of the absolute errors being smaller
for April 2022 than July 2021. The end-of-season September 2021 zones for Temple field
(Table 3) showed that all variables performed better than treating the whole field as one
zone in terms of all error criteria; however, zones based on NDVI and dead grass were the
worst performing and VWC zones the best. Unfortunately, it was not possible to produce a
meaningful wet/dry indicator map and associated zones for this survey. As can be seen for
the deciles map (Figure 7g), only 10% of the soil in the field had VWCs < 20% and as the
dry locations were quite randomly located, it was not possible to produce a map for the
wet/dry indicator in September 2021.

As VWC-based zones were the best-performing pre-, mid- and at the end of the season
for both Harmon and Temple fields, the last five rows in Table 3 show how using VWC
zones from a different survey performed for Temple field. Generally, using zones from
another time produced low errors, but the range and standard deviation of the errors
was large when May 2022 VWC zones were used with September 2021 VWC values and
September 2021 VWC zones were used with May 2022 VWC values. While there are
similarities in the patterns of VWC between different surveys for the Temple field, they are
less consistent than the patterns for the Harmon field and are not particularly related to
broad patterns in elevation. This is probably a result of the more densely packed sprinklers
at the top of the slope and sandy soil at the bottom of the slope due to pipeline installation
along the side-walk. All surveys basing zones on NDVI performed similarly to treating the
whole field like one zone and having uniform irrigation, so this should be avoided. This
shows that there is not always a positive relationship between NDVI and soil moisture,
and others have found negative relationships between NDVI and soil moisture in certain
locations [39].

As VWC zones were the best-performing for both fields, apart from existing zones in
Temple field that could not be practically managed without detailed spatial information,
Figures 9 and 10 show maps of VWC for both fields on all survey dates. As mentioned
earlier, for Harmon field, both an E–W pattern and a N–S pattern are evident with the latter
being slightly stronger for the VWC data than the NDVI data (Figure 5b,e,h,k). The N–S
pattern is most pronounced for March 2021, which was before the start of the irrigation
season, and is likely to reflect the natural, long-term soil moisture patterns under rainfed
conditions. The curved black lines in Figure 9 show the zones based on the March 2021
VWC and how they relate to patterns in VWC levels from other surveys. Clearly, from the
legends of the maps in Figure 9, the range of % VWC in the field changes over time but
there is a general pattern of the southerly five zones (below the red dashed line) having
larger % VWC than the northerly zones. Indeed, the black dots show the locations of
sensors that have been installed in this field which could help determine the amount of
water needed in these two sets of existing zones and could also determine if irrigation rates
should be varied within the northerly and southerly zones, as there are sensors within two
of the northerly and two of the southerly zones.

Temple field patterns in VWC for all surveys are less consistent than for Harmon
field, but all surveys apart from that for July 2021 seem to have areas with larger VWCs
in the center of the field and all surveys apart from May 2022 have some areas with large
VWCs in the north end of the field. Given the slightly less consistency in the spatial
patterns of VWC in this field, but the general good performance of the wet/dry indicator
survey, it suggests that rather than having sensors limited to areas that were identified
as generally wet and dry in the July 2021 survey (see sensor locations at the end of the
northerly transect and on the eastern edge of the field in Figure 4c), it would be a good idea
to install multiple inexpensive and less accurate soil moisture sensors to determine broad
patterns of wet/dryness before irrigation events. There is also a lot more potential in this
field to control the spatial patterns of water application given that valve-in-head sprinkler
heads are installed in it.
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Figure 10. Maps of % VWC for Temple field for (a) July 2021, (b) September 2021, (c) April 2022, (d) May
2022, and (e) October 2022. (Black dots show locations of soil moisture sensors and data loggers).

The total water used in the 2022 season to irrigate the Harmon field was 8,066,754 gallons,
and 18,241,055 gallons were used in Temple field. Estimations have been made that these
huge volumes of water could be reduced by as much as 50% if effective spatial zones
were implemented [9] or if sub-surface drip irrigation directed by calculations of crop
water stress index from infra-red thermometer surveys were used [10]. Either approach
could result in huge water savings for institutions such as Brigham Young University
when multiplied over all irrigation zones for the whole campus; however, the relative
cost of sensing/survey to inform spatial zones needs to be balanced against the water
savings possible.



Agronomy 2023, 13, 1267 18 of 20

4. Conclusions

This analysis demonstrates that a lot more control is possible over where spatial zones
are with valve-in-head sprinkler heads, and thus less water can be wasted. However,
analysis for the Harmon field which does not have valve-in-head sprinklers shows that
even adjusting irrigation rates applied to existing zones can save water. The results of this
study suggest that sprinkler zones for irrigation of turfgrass in large general-purpose sports
fields are best determined through spatial surveys of soil moisture rather than surveys
of several different variables or by NDVI and other measures of grass health. Patterns of
grass health seem to become more accentuated by the end of the season and the errors for
both fields showed that zones based on NDVI were only slightly more useful than uniform
irrigation by the end of the season. As field managers generally observe the grass health
rather than the soil moisture and assume that brown spots are the result of lack of water, the
causes of areas with poor grass health, such as excess compaction in the west of the Harmon
field, need to be determined to help field managers to change their watering practices.

Both fields used in this analysis suggest that patterns in VWC change temporally and
that it would be best to redefine spatial irrigation zones periodically. However, this would
require significant investment in automated sensing and mapping equipment that could
communicate with a smart sprinkler system. It could also be prohibitively expensive given
that no crop is produced for sale by turfgrass that can offset the price of survey and sensing
equipment. However, given that the wet/dry indicator zones performed second-best in
most surveys, yet the method requires no purchase of equipment and is therefore the
cheapest method used, it seems that the spatial configuration of zones could be based
on patterns in soil moisture from one or a few surveys and that the timing of irrigation
events could be determined by field managers touching the soil at several locations in each
zone to determine if it feels wet or dry. Another alternative is that timing of irrigation
could be determined by the placement of very inexpensive but less-accurate sensors in each
irrigation zone. In addition, given that there are similarities in the patterns of VWC over
time that relate to patterns of slope and soil texture, and that using VWC zones data from
all sampling times or from another time period performed better than using NDVI zones,
sensible approaches to static zoning would be basing zones on an average of VWC values
from several surveys taken at different times within the season, or on soil moisture levels
before the irrigation season starts (e.g., March 2021 for Harmon field and April 2022 for
Temple field) when the patterns are more reflective of permanent field characteristics such
as topography and soil texture.

The patterns of variation in VWC for the Harmon field were more consistent over time
than those for the Temple field and related well to patterns of relative elevation. Given
this, and the ability to have more control over the spatial patterns of irrigation in the
Temple field with the valve-in-head sprinkler heads, an inexpensive method for frequently
mapping VWC in this field is needed. The ability of EM38 surveys to identify zones within
turfgrass fields and determine their consistency should be evaluated as these are relatively
swift non-invasive surveys which have proved useful in determining zones for various
aspects of precision agriculture, given the frequent relationship to soil texture and soil
moisture. Consulting firms could determine zones using such equipment just once per
location before the irrigation season starts to characterize differences in VWC that are
likely due to permanent features of the soil, such as texture and topography, rather than
management effects. Another possibility to investigate in the future is drought indices,
such as the crop water stress index from thermal IR drone imagery, to determine if the
same locations are consistently experiencing water deficit throughout the irrigation season.
The final question that needs addressing is that once irrigation rates are modified to fit the
optimal zones that are defined, will the management effect of varying rates between zones
significantly affect the spatial patterns in soil moisture? If so, this would mean that zones
need to be constantly re-defined, making it imperative to find inexpensive, automated
ways of sensing soil moisture patterns.
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