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Abstract: Phosphorus (P) is a macronutrient that often limits the productivity and growth of terrestrial
ecosystems, but it is also one of the main causes of eutrophication in aquatic systems at both local and
global levels. P content in soils can vary largely, but usually, only a small fraction is plant-available or
in an organic form for biological utilization because it is bound in incompletely weathered mineral
particles or adsorbed on mineral surfaces. Furthermore, in agricultural ecosystems, plant-available
P content in topsoil is mainly controlled by fertilization and land management. To understand,
model, and predict P dynamics at the landscape level, the availability of detailed observation-based
P data is extremely valuable. We used more than 388,000 topsoil plant-available P samples from
the period 2005 to 2021 to study spatial and temporal variability and land-use effect on soil P. We
developed a mapping approach based on existing databases of soil, land-use, and fragmentary soil
P measurements by land-use classes to provide spatially explicit high-resolution estimates of topsoil
P at the national level. The modeled spatially detailed (1:10,000 scale) GIS dataset of topsoil P is
useful for precision farming to optimize nutrient application and to increase productivity; it can also
be used as input for biogeochemical models and to assess P load in inland waters and sea.

Keywords: agricultural land; geographical information system; interpolation; land use; machine
learning bagging model; soil phosphorus mapping

1. Introduction

Phosphorus (P) is an important macronutrient for plant growth, and the primary role
of P in plants is to store energy needed for plant growth and reproduction produced by
photosynthesis. Most phosphorus is relatively immobile in soil and even P from phosphate
fertilizers will readily react with soil minerals, making it less available for plants.

Soil phosphorus consists of two forms: organic (non-plant available) and inorganic
(plant available) P. Approximately 29 to 65 percent of total soil phosphorus is in organic
forms, which is not plant available, while the remaining 35 to 71 percent is in inorganic
forms [1] available to plants mainly in the form of phosphate as labile or occluded forms of
P [2]. Organic forms of phosphorus include dead plant/animal residues and soil microor-
ganisms. Soil microorganisms play a key role in processing and transforming these organic
forms of phosphorus into plant-available forms, especially in natural ecosystems.

The inorganic form (plant-available form of P) is highly reactive and can be tied up
to chemical compounds (e.g., iron, aluminum, and calcium) in soils as absorbed phospho-
rus [3]. The inorganic P has to be dissolved into a solution (P-solution) for plants to be able
to uptake it. P absorption (incorporation of plant-available P in soil solution into soil clay
minerals, such as Fe, Al, and Ca oxides) is a fast process, and absorbed P can be released
into soil solution (plant-available P) via desorption. P absorption (retention) is higher in
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soils that contain more clay and iron and aluminum oxides [4]. A lower soil pH favors
P absorption by aluminum and iron (pH below 5.5), and a higher pH (over 7.5) enhances
plant-available P fixation by calcium [4,5].

The solution P pool (plant-available P) is very small and ranges from 0.001 mg/L
to 1 mg/L [6]. In general, roots absorb phosphorus in the form of orthophosphate but
can also absorb certain forms of organic phosphorus (e.g., glycerophosphate, lecithin, and
phytin) [7]. The active (labile) pool is P in the solid phase that is more readily released into
soil solution, which is the water surrounding soil particles. As plants take up phosphate,
the concentration of phosphate in the solution decreases and some phosphate from the
active P pool is released. An active P pool consists of mainly P absorbed into soil clay
minerals (Fe, Al, and Ca oxides) and easily mineralizing organic P. Labile inorganic P
in soils is predominantly present as specifically adsorbed orthophosphate. This P is in
equilibrium with the soil solution and acts to buffer the soil solution against concentration
change [8,9]. Thus, P is desorbed into solution in response to plants’ P uptake or adsorbed
from solution when the P concentration is raised by mineralization or by the addition of a
fertilizer material.

Soil age is also an important factor influencing P availability, with P becoming increas-
ingly limiting in ancient soils because it gradually disappears through leaching and ero-
sion [10,11]. In arable lands, P is also partly removed with yield, and additional P fertilizer
application is needed to maintain soil fertility. Contrarily to agricultural lands, in natural
ecosystems, P uptaken by plants will mainly remain in place after plants’ death, and after
decomposition and mineralization, it will be available in topsoil for other plants.

Climatic conditions affect P availability as a higher temperature increases the activ-
ity of soil microorganisms and contributes to faster organic matter decomposition and
P mineralization. On the other hand, a higher temperature also increases P sorption. In
well-aerated soils, P is released faster than in saturated wet soils. A neutral soil pH (6-7.5)
is the best for P availability, while pH values below 5.5 and between 7.5 and 8.5 limit P
availability to plants due to fixation by aluminum, iron (in case of lower pH), or calcium
(in case of higher pH) [5]. Wet soil conditions decrease soil pH, which increases P sorption
to Fe and Al oxides, but flooding the soil reduces P sorption by increasing the solubility
of phosphates that are bound to aluminum and iron oxides and amorphous minerals [12].
This aspect has to be considered when mapping soil P in high latitudes rich in histosols
across all land uses and soil types.

Soil phosphorus maps are used to estimate P availability to calculate the need for
fertilization and to model P loss. As only a small amount of P fertilizers used may be readily
available for plant uptake due to P sorption and P loss via erosion and runoff, the use of
fertilizers should be based on deeper knowledge about soil properties. Improper P fertilizer
use contributes to higher P loss and eutrophication rather than better plant growth.

Detailed and spatially high-resolution soil P measurements covering equally all land
uses and soil types are not usually available for larger areas to produce accurate data-driven
P maps, which are based only on soil sampling data. If high-spatial-resolution P sampling
data are available (e.g., for small areas), geostatistical methods, such as interpolation
techniques (e.g., ordinary kriging, co-kriging, or regression kriging) are usually used to
produce soil P maps [13,14]. In the case that soil P sampling grid is not dense enough, other
available environmental variables are also used to predict P content by using machine
learning algorithms, co-kriging, or some other multi-criteria algorithms, including multiple
regression models. Hybrid geostatistical methods, which incorporate spatially distributed
soil observations and readily available ancillary environmental data (e.g., topographic
variables and satellite data) are recommended instead of univariate methods, such as
ordinary kriging, in cases where natural soil-forming processes are complex or landscapes
have high anthropogenic influence [15,16].

Gaussian process regression (GPR) works principally like co-kriging with a number
of covariates. Ballabio et al. [17] applied GPR to create maps of different LUCAS topsoil
chemical properties (pH, P, N, CaCO3, K, etc.), including indexes calculated from remote
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sensing data, meteorological parameters, XY coordinates, and topographic, land-use, and
geological variables.

Recently, machine learning algorithms are increasingly used in predictive mapping
of soil parameters over larger areas as the number of available variables and computing
capacity are increased. Matos-Moreira et al. [18] used a machine learning tool (Cubist)
to develop rule-based predictive models from a calibration dataset. Covariates included
pedological, geological, agricultural, terrain and geophysical-related attributes. Rossel
and Bui [19] used a machine learning algorithm (Cubist) to predict total phosphorus in
six different soil layers and ordinary kriging to predict the residuals at each of the standard
depths in Australian soils. To derive the final estimates of total P, the predictions from
Cubist and the kriging estimates of the residuals were summed. The spatial modeling was
performed on 50 bootstraps, and 90 m grid size was used for modeling. Hosseini et al. [20]
used different statistical and machine learning algorithms, such as genetic algorithm
(GA), artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy
inference system (ANFIS), partial least squares (PLS), principal component regression
(PCR), ordinary least squares (OLS), and multiple regression (MR), to determine the best
model to predict soil P in Iran. Four predictive variables (clay, sand, soil organic matter
(SOM), and pH) were used to predict soil P, and the best results were obtained by PLS
(among the regression models) and GA and ANN (among the intelligent models).

Esfandiarpour-Boroujeni et al. [21] used different methods (decision tree (DT), ran-
dom forest (RF), artificial neural network (ANN), and support vector machine (SVM)) for
predicting soil classes (different WRB classification levels) based on environmental vari-
ables (planar and profile curvature, aspect, elevation, slope, catchment area, topographic
wetness index (TWI), LS factor, NDVI, etc.) and expert knowledge from soil scientists
(presence or absence of soil horizons and other soil properties). The SVM algorithm had
the highest overall accuracy for prediction of all qualitative soil properties. The ANN
algorithm showed good performance in predicting some quantitative variables (e.g., pure
clay percentage), and the DT algorithm had the lowest uncertainty value.

However, most of these studies that have been conducted to predict soil P with good
results have used detailed measured data for smaller areas [16,18,20-22] or small-scale
maps over larger areas [17,19,23].

The aim of this study was to create a high-resolution (1:10,000) topsoil plant-available
P map for the entire Estonia (area 45,339 km?) covering all land uses and soil types based
on datasets with highly unbalanced data availability and spatial resolution across land-use
categories. The available soil sampling data are usually collected for different purposes
and, thus, have different spatial and temporal resolutions, usually covering agricultural
areas mainly on mineral soils well while being extremely scarce over natural ecosystems
(e.g., forests and wetlands) on histosols and other less fertile soils. Based on the typical
large bias of sampling data along soil types and land-use categories, we hypothesized
that topsoil P content can be sufficiently accurately mapped with geostatistical methods
(e.g., kriging interpolation) in arable lands, but the use of machine learning algorithms
increases prediction accuracy, especially in less intensively managed land-use categories
(e.g., short-term and permanent grasslands), while these established relationships are not
applicable for natural ecosystems (e.g., forests and wetlands), where more robust models
such as the two parameter ordination method should be applied.

Our study objectives were to establish the relationships between observed soil plant-
available P and environmental variables by soil and land-use classes, to determine the most
effective predictive factors related to soil P, establish a cost-effective modeling approach,
assess the accuracy of different modeling methods, and create a high-resolution topsoil
P map at the national level.
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2. Materials and Methods
2.1. Soil Phosphorus Data

Soil phosphorus data available for agricultural soils were obtained from the PANDA
database, which contains regular soil monitoring and voluntary soil sampling data by
farmers. The database contains soil sampling data collected from agricultural lands for the
period 2005-2021 and is managed by the Centre of Estonian Rural Research and Knowledge.
For this period in the PANDA database, there are data about 387,904 composite soil samples
all over Estonia, including topsoil phosphorus content (mg/kg). Composite soil samples in
the PANDA database were collected by licensed personnel following the same prescribed
sampling strategy (prescribed sampling route and sampling density, depth, and volume)
and analyzed in the same laboratory using the Mehlich-3 method. All soil samples from
arable lands were collected in late summer or autumn at minimum 2-3 months after last
fertilization and, in case of winter crops in crop rotation, before the sowing of crops. In
the case of application of organic fertilizers, the soil samples were collected not earlier
than 6 months after fertilization. The same field was resampled in each 4-5 years. Up to
2012, the Mehlich-3 colorimetric and, since 2013, the Mehlich-3 inductively coupled plasma
(ICP) analysis method were used to determine soil available phosphorus. The Mehlich-3
P extraction method is the main method used for estimating plant-available P in Estonia
since 2004. This method is robust, provides the advantage of multielement analysis [24,25],
and, thus, is well-suited for long-term monitoring of Estonian agricultural soils, where
pH is in the range between 5 and 7 for 75.9% of the samples. The PANDA dataset from
2021 (29,261 soil samples) was not included in model building but used as an additional
independent test dataset to evaluate model performance.

There are no similar comprehensive topsoil phosphorus content databases for other
land-use categories available in Estonia. Comparable values of topsoil phosphorus con-
tent for other land-use types (forest, wetland, peat extraction areas, and quarries) on
different soil types were searched through a literature review of scientific papers [26—44],
reports [45,46], and the Estonian Environmental Monitoring System and supplemented
by original unpublished datasets of the authors. Therefore, the datasets for these land-
use categories vary by sample size, sampling, and analysis methods. For all samples
from agricultural soils, the Mehlich-3 method was applied, while the topsoil P concentra-
tion in the forest and peatland soil samples collated from multiple studies and literature
sources were determined with various methods (Aqua Regia, Olsen, and Kjeldahl), and,
thus, conversion coefficients based on Kulhének et al. [47] and Wolf and Baker [48] were
used prior to statistical analysis to convert phosphorus content to the same level with the
Mehlich-3 method.

2.2. Land Use and Land Cover

Land-use data were combined from the ARIB (Agricultural Registers and Information
Board) 2020 database, where main crop types for agricultural lands are registered. Data
on natural grasslands were taken from the EELIS (Estonian Nature Information System)
database for semi-natural grassland layer, and all other land-use types (wetlands, forests,
mining areas, settlement, waterbodies, etc.) were taken from the ETD (1:10,000, Estonian
Topographic Database) (Estonian Land Board, 2020). For topographic information (ground
elevation), a 10 m resolution digital elevation model generated from LiDAR data (Estonian
Land Board, 2021) was used.

Crop data by year were obtained from the ARIB database. In the ARIB database, all
crops that are grown in agricultural massive (complex of neighboring fields) are listed in
alphabetical order. Agricultural massive is an agricultural unit that is in the agricultural
registry and can be applied for EU agriculture support (area-related aid). The ARIB crops
were classified into 8 categories: natural grassland, fallow, cultural grassland, permanent
cultures (e.g., orchards and berries), crop (e.g., rye, wheat, and barley), legumes (e.g., pea,
bean, and lentil), technical cultures (rapeseed, flax, and hemp), and vegetables (e.g., potato,
carrot, and cabbage). The main crop type was selected for each agricultural massive from
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the ARIB crop list by prioritizing the crops by their probability of having the largest share
of this agricultural massive (e.g., the area for crop growing is probably larger than the area
for vegetables). From the EELIS database, data on semi-natural grasslands were obtained
and added to the natural grassland category. These areas not covered by the ARIB data,
and EELIS semi-natural grasslands were obtained from the ETD database and additional
categories of wetland, peat mining areas, forest, settlements, and waterbodies were added.
Settlements and waterbodies were omitted from the further analysis as we did not estimate
phosphorus for these areas.

We distinguished 11 land-use classes, with 8 of which being agricultural land cate-
gories (crop types) for which topsoil P values had been obtained from the PANDA database
(permanent grassland, fallow, cultivated grassland, permanent cultures (e.g., orchards and
berries), cereals (e.g., rye, wheat, and barley), legumes (e.g., pea, bean, and lentil), technical
cultures (rapeseed, flax, and hemp), vegetables (e.g., potato, carrot, and cabbage)). Three
non-agricultural land-use types (forest, wetland, and peat extraction area) were included in
the models to allow P value prediction for the entire Estonia (excluding settlement areas,
waterbodies, and mining areas).

2.3. Soil Data

The Estonian Soil Map (1:10,000) in digital form based on extensive field surveys
includes information about soil type, fertility, texture, coarse fragments, and rock content
by layers. Kmoch et al. [49] used the Estonian Soil Map to develop EstSoil-EH: A high-
resolution eco-hydrological modelling parameters dataset for Estonia where soil map
information was made machine-readable and used to predict soil properties (such as clay,
silt and sand content, organic carbon content, and bulk density) by pedotransfer functions
(PTF). In our study, we used the Estonian Soil map data obtained from Kmoch et al. [49].
Kmoch et al. [49] used the SAGA GIS functions (Conrad et al., 2015) to calculate the mean,
median, and standard deviation of several topographic factors (slope, USLE slope length
and steepness factor LS, topographic wetness index (TWI), and topographic ruggedness
index (TRI)) and environmental variables (share of drained area and different land-use
types within the soil polygon) as predictor variables in a random forest model to predict
soil organic carbon content (SOC). The 5 m resolution LiDAR-based DEM provided by the
Estonian Land Board was used for deriving topographic factors. In our study, we modeled
only topsoil phosphorus content; thus, we used only top-layer soil variables (bulk density
(bd1); clay (clay1), silt (siltl), and sand (sand1) contents; soil organic carbon content (soc1);
hydrologic conductivity (k1); and available water content (awcl)) from Kmoch et al. [49].

Quaternary sediment deposit map in a scale of 1:400,000 (Estonian Land Board, 2020)
was used as an indicator of soil parent material. This information was classified into
9 categories (alluvial, glaciolacustrine, glaciofluvial, till, aeolian, wetland sediment, shallow
quaternary sediment, lacustrine, and marine deposits).

2.4. Data Processing
2.4.1. Soil-Type Aggregation

In the Estonian Soil map (1:10,000), there are 119 soil types distinguished according to
the Estonian national soil classification system. The Estonian soil classification and soil tex-
ture types based on the Kachinsky texture system [50] cannot be directly converted to WRB
or FAO classification as the soil types are distinguished based on different principles [49].
To avoid potential conversion-related issues, we made all our calculations based on the
original texture and soil-type classes.

The original Estonian soil types were in some cases grouped into larger categories
based on genesis and expected similarities in soil properties related to phosphorus content
(soil wetness, gleyic processes, erosion, anthropogenic influences, etc.) to increase soil
P sample number per soil group. Median phosphorus content by soil types or groups was
calculated (Soil_MedP variable in Supplementary Table S1), and differences between soil
groups were tested by using the Kruskal-Wallis and Dunn tests with Bonferroni multiple
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comparison correction in R. There were no statistically significant differences between
different Gleysols (Gh, GI, Gk, Go, and Gor). Due to the limited number of samples and the
mixed origin of soils in the anthropogenic soil category (mainly quarries and recultivated
quarries), these soils also had no statistically significant difference from many other soil
categories. Altogether, 26 soil categories were distinguished.

Soil texture was classified into 12 categories based on Estonian soil texture types [50]
as some of these categories could not be directly converted to the USDA texture system. An
approximate reference was used as listed (Estonian texture codes given in brackets): gravel
(kr), gravel limestone (r), sand (s), sandy loam (Is1), loamy sand (Is2, Is3, and sl), fine sand
(p)), clay (s), peat (t), fine sandy loam (tls), and fine loamy sand (tsl). Differences in median
phosphorus content between soil texture categories were calculated (Texture_MedP variable
in Table S1), and differences between categories were tested by using the Kruskal-Wallis
and Dunn tests in R.

2.4.2. Data Analysis and Modeling

Three different approaches were used to model phosphorus content: (1) spatial interpo-
lation (kriging), (2) statistical-empirical soil and land-use ordination scalar, and (3) machine
learning bagging (bootstrap aggregation) model.

Spatial interpolation techniques (kriging in our case) create continuous smooth raster
surfaces based on the predictive variable values. Soil and land-use ordination and bagging
methods need some data units (polygons) for which all predictive variables are available.
Therefore, for model building, only variables that were available for all study area (entire
Estonia) could be used. For topsoil P content prediction, we used the unique units created
by intersecting soil and land-use polygons.

The ArcGIS Pro (2.9) tools were used to prepare units (so-called soil-land use polygons)
for P prediction. Soil map layer enriched with the predicted soil parameters (EstSoil-EH)
was intersected with land-use/land-cover layer (composed from the ARIB, EELIS, and
ETD data as described above) to create a layer that contains information about both soil
and land-use parameters. Settlements and waterbodies were excluded from the prediction
dataset. The output layer contained over 3 million polygons. Sediment (parent material)
information was added to the soil-land use polygons by spatial join function with the
largest share option. The soil-land use polygons central point X and Y coordinates were
calculated, and the central point elevation was extracted from a 10 m resolution LiDAR
DEM to represent longitude, latitude, and elevation variables in the bagging model.

Kriging

The most widespread approach to create a continuous surface from spatially well-
distributed point measurements is interpolation [51-53]. Kriging is among the most popular
spatial interpolation techniques because it can give the best linear unbiased prediction if
suitable parameters are selected. This method is widely used in regional hydrological and
spatial nutrient runoff models, but also for mapping spatial distribution of nutrients in
detailed field-level test areas.

In our study, topsoil phosphorus content for agricultural areas all over the Estonia
was interpolated based on the measured phosphorus values of the PANDA database by
using simple kriging and stable variogram method in the ArcGIS Pro Geostatistical Analyst
extension. Normal score transformation was used to transform the measured phosphorus
data to follow a univariate standard normal distribution. Kriging is using Gaussian process
to estimate the mean value of a dependent variable and thus normal distribution of data are
very important. Kriging assumes normal distribution and stationarity of data (close points
should have quite similar values, with low variance nearby). Spatial trend was investigated
based on the scatter plots of P values against the X and Y coordinates, but, as no trend
was detected, trend removal was not applied in the kriging models. Two kriging models
were built in order to compare the kriging results with other models: the Kriging1 method,
which used all available sample points to build a model to get the best results, and the
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Kriging2 method, where the original phosphorus dataset was divided into training (75%)
and test (25%) datasets by using the ArcGIS Geostatistical Analyst extension tool Subset
Features, which created a random subset from the dataset. The Kriging2 model served only
a model validation purpose.

Soil-Land Use Ordination

As the PANDA database covers only agricultural lands, kriging interpolation predic-
tions outside agricultural areas are not valid as the topsoil phosphorus content is largely
depending on anthropogenic factors, such as fertilizer application, pollution, and crop har-
vesting, which are different in agricultural lands and cannot be interpolated or extrapolated
to other land-use categories without taking into consideration other factors.

Ordination can be considered a synonym for multivariate gradient analysis. Ordina-
tion methods are mainly used in community ecology, where multiple spatial axes are used
to arrange or order multiple variables (of species and/or sample units) along gradients.
The most famous ordination methods are principal component analysis (PCA), factor anal-
ysis (FA), detrended correspondence analysis (DCA), and other similar multidimensional
statistical analysis methods [54,55].

According to the exploratory data analysis, soil and land-use types were the main
independent factors influencing phosphorus content in topsoil. The median values of P
content of different soil types, land-use types, and their combinations were calculated to
create a land-use/soil-type matrix. Soil and land-use types were ordered ascendingly based
on the median topsoil phosphorus values. Some soil-type /land-use combinations had no
or limited number of measured soil P values. To interpolate topsoil phosphorus values for
these soil-land use combination without sufficient sampling data, the so-called soil-land
use ordination surface was created. Soil type was used as the X axis and land-use type was
used as the Y axis to generate Cartesian coordinates. The X and Y coordinates representing
soil and land-use types and the corresponding class’s median topsoil phosphorus content
for groups with sufficient measured topsoil P data were used to interpolate trend surface
in Surfer (ver. 24) by using radial basis multiquadratic (R?> parameter 0.2) gridding. The
created ordination model surface represents the P value for different soil and land-use
combinations. This model was used to assign median phosphorus values for all soil-land
use polygons in the entire Estonia according to particular combination of soil type and
land-use class. The soil-land use ordination model results were validated by calculating
the linear relationship between the model results predicted for the soil-land use polygons
all over Estonia and all phosphorus sampling points in the PANDA database. Additionally,
the soil-land use polygons’ median P values calculated from the measured P data from
the PANDA database were used for validation. As the P values in the PANDA database
are not normally distributed, a nonparametric correlation analysis was implemented, and
Kendall tau correlation metrics between the measured and predicted data were calculated.

Bagging

To predict the topsoil phosphorus content for soil-land use/land cover polygons
all over Estonia based on multiple variables, the prediction model was built by using
bagging-based machine learning method (bootstrap aggregation and classification and
regression trees (CART) method) [56]. Bagging works best with high-variance unstable
models, and it is usually applied to decision tree methods, where a forest of many trees is
created to average the model and predict the best outcome, to add stability and accuracy,
and to reduce overfitting and variance. Bagging decreases the variance in prediction in
high-variance models without increasing the bias. It creates new bootstrap training sets by
sampling with replacement and then fits a model to each new training set. These models
are combined by averaging the predictions for the regression case. Other machine learning
methods, such as random forest and extreme gradient boosting methods, were tried, but
they gave very similar results; thus, bagging was chosen because the bagging prediction
was faster in case of large dataset (over 3 million soil-land use polygons). Microsoft R
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and R Studio (v4.0.2) were used to build machine learning models and for exploratory
data analysis. For bagging, the tidymodels and baguette libraries were used. As the
dependent variable (topsoil phosphorus content (mg/kg)) was a continuous variable, a
regression mode and rpart (recursive partitioning and regression tree) model [57] was
used for bagging. The dataset was randomly divided into training (75%, 268,882 samples)
and test data (25%, 89,625 samples), and high and low phosphorus values were selected
proportionally. A total of 25 bootstrap samples were taken from the training dataset to
fit the regression model. Additionally, 50 and 100 bags (bootstrap samples) were also
tried, but the model improvement was very limited compared to the increase in computing
time. For bagging, individual trees are grown deep and not pruned. These trees have high
variance and low bias. Overfitting and high variance are solved by averaging the model
over the number of trees. In this study, bagging fitted 25 regression models and averaged
the results to reduce the variance. A total of 32 variables (Supplementary Table S1) were
used to build the bagging model to predict topsoil P content. The categorical variables
(soil type, land-use/land-cover type, sediments (parent material), soil texture, and soil
hydrological group) were replaced with the median phosphorus content value of each
category (Supplementary Table S1).

2.4.3. Model Evaluation

To compare the results from different models, similar evaluation methods and metrics
were used when applicable. The main metrics we used to evaluate