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Abstract: Rice, the world’s most extensively cultivated cereal crop, serves as a staple food and
energy source for over half of the global population. A variety of abiotic and biotic factors such as
weather conditions, soil quality, temperature, insects, pathogens, and viruses can greatly impact the
quantity and quality of rice grains. Studies have established that plant infections have a significant
impact on rice crops, resulting in substantial financial losses in agriculture. To accurately diagnose
and manage the diseases affecting rice plants, plant pathologists are seeking efficient and reliable
methods. Traditional disease detection techniques, employed by farmers, involve time-consuming
visual inspections and result in inadequate farming practices. With advancements in agricultural
technology, the identification of pathogenic organisms in rice plants has become significantly more
manageable through techniques such as machine learning and deep learning, which are receiving
significant attention in crop disease research. In this paper, we used the transfer learning approach on
15 pre-trained CNN models for the automatic identification of Rice leave diseases. Results showed
that the InceptionV3 model is outperforming with an average accuracy of 99.64% with Precision,
Recall, F1-Score, and Specificity as 98.23, 98.21, 98.20, and 99.80, and the AlexNet model resulted in
poor performance with average accuracy of 97.35% among others.

Keywords: transfer learning; rice leaf diseases; plant disease detection; image classification; deep
learning; machine learning; convolutional neural network

1. Introduction

Rice is one of the most important food crops in the world, providing a staple food and
energy source for over half of the global population. This means that it plays a crucial role
in feeding a large portion of the world’s population and is essential for their survival [1]. As
the world population continues to grow, so does the demand for food, making it increasingly
important to ensure a stable and bountiful rice harvest. Rice is a crop that is grown and
consumed in many countries around the world, and it is an important source of food for a
large proportion of the global population, particularly in Asia where it is a dietary staple. Rice
is a major source of carbohydrates, proteins, vitamins, and minerals and is the primary source
of calories for more than half of the population of world, which lives in Asia.

As a result, ensuring a stable and bountiful rice harvest is crucial for food security.
This means that the rice crop must be protected from diseases, pests, and other factors
that can cause crop failure. This includes using appropriate farming practices, developing
effective disease management strategies, and implementing new technologies to improve
crop productivity [2]. Therefore, It is crucial for ensuring food security by maintaining the
production of rice, as the world population continues to grow, and the demand for food
increases. One way to address this challenge is through precision agriculture, which uses
advanced technologies to increase crop yields.

One of the most advanced technologies in precision agriculture is the automated leaf
disease diagnosis system. This system is used to identify plant illnesses by analyzing im-
ages of infectious leaf diseases. It uses a combination of computer vision, image processing,
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machine learning (ML), and deep learning (DL) algorithms to identify diseases. Tradition-
ally, human vision-based models were used to identify leaf diseases, but these methods
can be time-consuming and expensive. Additionally, these models rely on the opinions
of individuals or specialists to determine their performance. In contrast, the automated
leaf disease diagnosis system streamlines the diagnostic process, allowing farmers to make
prompt and accurate decisions about the condition of their plants. This can help farmers to
more efficiently use resources and improve crop yields [3].

The use of ML and DL models for disease diagnosis in rice plants is an area that has
not been extensively studied. Despite the potential benefits, this field has not received much
attention. Further research in this area could help improve rice crop yield and mitigate
losses due to disease outbreaks. However, the use of these advanced techniques has the
potential to significantly improve the efficiency and accuracy of disease detection in rice
plants. A convolutional neural networks (CNN) is a deep learning model ideal for visual
data processing, consisting of 3 layers: input, hidden, and output [4]. The hidden layer
has three sublayers: Convolution, Pooling, and Fully Connected. The CNN has adjustable
parameters referred to as weights, enabling it to recognize spatial input relationships and
perform classification.In the context of rice plant disease diagnosis, CNNs can be a powerful
tool for automating the diagnostic process and increasing the accuracy of disease detection [5].
There are several types of CNN models that are suitable for plant disease detection. Some of
the most commonly used models include LeNet, AlexNet, VGGNet, and ResNet [6].

All of these CNN models have been used in various studies for the detection of
plant diseases, with the choice of which model to use often depending on the specific
task and the available resources [7]. One of the major advantages of using CNNs for rice
plant disease diagnosis is the ability to identify diseases at an early stage. Early detection
can be important for preventing the spread of disease and minimizing damage to crops.
Furthermore, automated diagnosis can help farmers to make more informed decisions
about crop management and treatment, which can lead to better crop yields and improved
economic outcomes. Overall, The use of CNNs can provide an efficient and accurate
diagnosis of rice plant diseases that can help farmers to optimize their crop management
strategies and improve the overall quality and yield of their rice crops.

Deep learning models, while powerful, do have some limitations [8]. These include the
need for large amounts of labeled data to train, high computational resources, a tendency
to overfit the training data, and difficulty in understanding how the model is making
predictions. These limitations can be a challenge to overcome, particularly in domains with
limited data or resources, and can affect the model’s ability to generalize to new data and
diagnose and fix errors.

Transfer learning can help to mitigate some of these limitations. Transfer learning is a
technique where a pre-trained model, trained on a large dataset of one task, is fine-tuned on
a smaller dataset of another task [9]. The pre-trained model can be used as a starting point,
allowing the model to learn faster and achieve better performance than training a model
from scratch, especially when there is limited data available. Additionally, by fine-tuning a
pre-trained model, the model is less likely to overfit the training data, which can lead to
improved generalization performance. Also, using pre-trained models can save a lot of
computational resources, as the model has already been trained on a large dataset, so it
takes less time and computational power to fine-tune it on a new dataset.

Transfer learning enables the utilization of a pre-trained model that has already been
trained on a large dataset, to be adapted for use with a new dataset. This can help to reduce
the amount of data and computational resources required to train a deep learning model,
while also reducing the risk of overfitting, which leads to better generalization performance.
The method makes it possible to take advantage of already existing large datasets, so the
model can be trained faster and more accurately.

Some of the common rice plant diseases and symptoms were listed in Table 1.
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Table 1. List of Rice leaf diseases, their symptoms, and their description.

Name of Disease Description Cause Affected Part
of the Plant Damage

Bacterial Leaf Blight (BLB)
Water-soaked lesions on leaves
that turn brown and dry, leading
to wilting and death of the plant.

Xanthomonas oryzae bacteria Leaves
Severe yield loss,
particularly in humid
environments.

Brown Spot
Irregularly-shaped brown spots
with yellow borders on leaves,
reduced grain size and quality.

Cochliobolus
miyabeanus fungus

Leaves, panicles,
grains Significant yield loss

Hispa Leaf holes on leaves Dicladispa
armigera insect Leaves, leaf sheaths serious yield loss

Leaf Blast

Circular or elongated necrotic
lesions on leaves, panicles, and
glumes, reduced grain size
and quality.

Magnaporthe
oryzae fungus

Leaves, panicles,
grains Severe yield loss

Leaf Scald
Yellowish to brownish lesions
on leaf blades, leaf sheath,
and leaf collar.

Xanthomonas oryzae
pv. oryzicola bacterium Leaves

Serious yield loss,
particularly in warm
and humid conditions.

Leaf Streak Circular or elongated tan to
brown leaf spots, reduced yield. Cercospora oryzae fungus Moderate yield loss

Narrow Brown Spot Small, rectangular brown spots
on leaves, reduced yield.

Raphanus sativus
var. nasturtii fungus Leaves Moderate yield loss

Sheath Blight
Dark-brown to black lesions on
leaf sheaths and stems, reduced
grain size and quality.

Rhizoctonia solani fungus Leaf sheath,
collar, straws Moderate yield loss

Tungro
Chlorotic and necrotic leaf spots,
stunted growth, reduced grain
size and quality.

Rice tungro spherical
virus (RTSV) and
Rice tungro bacilliform
virus (RTBV)

Leaves Severe yield loss
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1.1. Need for Automatic Rice Leaf Disease Detection

• Rice is a major food and energy source for over half of the global population, making it
a critical crop for food security. Ensuring a stable and bountiful rice harvest is crucial
for feeding the world’s growing population.

• The growth in population and the increasing demand for food is vital to optimizing
crop yield. Rice is one of the most important food crops that feed most of the world’s
population. thus early detection of diseases will help to increase crop productivity [10].

• Rice is susceptible to a wide range of diseases caused by various pathogens and
viruses, which can greatly impact the quantity and quality of rice grains. This can lead
to significant financial losses for farmers and a reduction in the global food supply.

• Traditional disease detection techniques, such as visual inspections, are time-consuming
and can result in inadequate farming practices. By developing automatic detection
models, pathologists can more efficiently and effectively identify and manage rice
plant diseases [11].

• Advancements in agricultural technology, such as machine learning and deep learning,
have made it possible to create accurate and efficient disease detection models for rice
plants. Utilizing these techniques can significantly improve disease management and
crop productivity.

1.2. Challenges Associated with Automatic Rice Leaf Disease Detection

There are several challenges associated with rice leaf disease detection [12], including:

• Diversity of rice leaf diseases: Rice plants can be affected by a wide range of diseases
caused by various pathogens and viruses, which can present with different symptoms
and affect different parts of the plant. This can make it challenging to accurately detect
and diagnose different diseases.

• Lack of standardized methodologies: There are currently no universally accepted and
standardized methodologies for rice leaf disease detection. This can make it difficult
to compare the performance of different detection methods and to effectively diagnose
diseases in different regions.

• Limited accessibility to technology: many farmers in remote rural areas may have lim-
ited access to the technology and resources needed for accurate disease detection. This
can make it difficult for them to effectively manage diseases and protect their crops.

• Difficulties in data collection: Collecting large and diverse datasets for training and
testing automatic detection models can be challenging, particularly when the images
of leaf diseases are not taken in similar conditions and lighting.

• Balancing accuracy and computational complexity: Developing a disease detection
model that is both highly accurate and computationally efficient can be challeng-
ing. Many existing techniques may be too complex or computationally intensive for
practical use.

Research has been undertaken to develop technical and AI-based methods for diag-
nosing paddy leaf diseases. Table 2 presents various studies in the classification of rice
diseases that are discussed in the related literature. In one study, Malathi et al. [13], used
deep convolutional neural networks to categorize ten distinct species of rice crop pests. The
team utilized transfer learning by updating the ResNet-50 model’s hyperparameters and
layers, resulting in an improved model with an accuracy rate of 95.012%. Author Sethy P. K
et al. [14] evaluated 13 CNN models for rice disease identification using transfer learning
and deep features with SVM. The effectiveness of all classification models based on CNN
and conventional techniques was compared. The performance of MobileNetv2 + SVM
and ResNet50 + SVM are close enough to be comparable. Haridasan et al. [15] proposed a
system that uses computer vision and machine learning to automatically detect and classify
diseases in rice plants, specifically focusing on 5 common diseases in Indian rice fields. It
uses image processing, segmentation, and a combination of an SVM classifier and CNNs to
accurately recognize and classify the disease, getting a validation accuracy of 0.9145.
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Table 2. Related Literature Survey to Classify and identify rice leaf diseases.

Study & Year Objective No of Images Algorithm/Method Leaf Diseases Performance

Yang et al. [16] & 2023

Introduced a new model
rE-GoogLeNet, which is able
to accurately identify rice
leaf diseases in natural
environments.

1122 rE-GoogLeNet

Aphelenchoides besseyi,
Leaf blight, Red blight,
Leaf smut, Rice sheath blight,
Bacterial leaf streak,
Brown spot and Rice blast

Avg Accuracy 99.58%

Latif et al. [17] & 2022

Proposed method for identifying
and categorizing rice leaf
diseases utilizing transfer
learning through DCNN.

2167 Modified VGG19
Healthy, Narrow Brown Spot,
Leaf Scald, Leaf Blast,
Brown Spot, BLB

Avg Accuracy 96.08%
Precision = 96.20%
F1-score = 96.16%

Daniya et al. [18] & 2022

Introduced an effective
optimization deep learning
framework ExpRHGSO
algorithm for disease
detection and classification

1006 ExpRHGSO
Algorithm

Bacterial Leaf Blight,
Blast, and Brown spot

Accuracy = 91.6%,
Sensitivity = 92.3%,
Specificity = 91.9%

Bari et al. [19] & 2021 Faster R-CNN algorithm
proposed RPN architecture 2400 Faster R-CNN Rice blast, Brown spot,

and Hispa

Rice blast = 98.09%,
Brown Spot = 98.85%,
Hispa = 99.17%

Islam et al. [20] & 2021
Proposed an automated
detection approach with
the deep learning CNNmodel

984

VGG-19,
InceptionResnetV2,
ResNet-101,
Xception

Brown Spot,
Leaf Blight,
Leaf Smut, Bacterial
Leaf Blast

Accuracy = 92.68%
(Inception-ResNet-V2)
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Table 2. Cont.

Study & Year Objective No of Images Algorithm/Method Leaf Diseases Performance

Wang et al. [21] & 2021

Proposed the ADSNN-BO
model based on MobileNet
structure and augmented
attention mechanism.

2370 ADSNN-OB model Brown spot, hispa,
and leaf blast. Accuracy = 94.64

Rahman et al. [22] & 2020

Three different training
methods compared on
state-of-the-art CNN
architectures

1426

VGG16,
InceptionV3,
MobileNetv2,
NasNetMobile,
SqueezeNet,
SimpleCNN

False Smut, BPH,
BLB, Neck Blast,
Stemborer, Hispa,
Sheath Blight, Brown Spot

VGG16 = 97.12%,
InceptionV3 = 96.37%,
MobileNetv2 = 96.12%,
NasNetMobile = 96.95%,
SqueezeNet = 92.5%,
Simple CNN = 94.33%
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Author Chen et al. [23] used deep learning techniques to improve image processing
and classification. They combined DenseNet and Inception modules and achieved high
accuracy on a public dataset, with an average of 94.07% or higher. Their model also achieved
an average accuracy of 98.63% for classifying rice disease images. Lei Feng et al. [24]
employed hyperspectral imaging(HSI) to detect paddy leaf diseases and developed a CNN
architecture as a classification model using deep transfer learning techniques. They found
that fine-tuning was the most efficient solution, achieving 88% accuracy.

In their study, Thenmozhi et al. [25] proposed a deep CNN model that was able
to classify different types of insects with high accuracy. They compared their model’s
performance to other pre-trained transfer learning models and found that their deep
CNN model achieved the highest level of accuracy on all three publicly available datasets.
Similarly, Upadhyay et al. [26] presented a technique for identifying and classifying rice
plant diseases by analyzing lesion characteristics such as shape, color, and size on leaf
images. They used a fully connected CNN method and achieved an accuracy rate of 99.7%
on the dataset used, demonstrating the effectiveness of this approach. In another study,
Hossain et al. [27] proposed a new CNN-based model to recognize rice leaf diseases by
reducing network parameters. The model was trained and tested on a dataset consisting
of 4199 images of five common rice leaf diseases, achieving high accuracy rates in both
training and validation phases. The model was also tested on independent images, with
good recognition rates for specific diseases.

Chen et al. [28] introduced a new technique BLSNet, which aims to accurately detect
and identify the leaf damage caused by the Rice Bacterial Leaf Streak (BLS) disease, which
can greatly affect the quality and quantity of rice growth. BLSNet was compared to other
benchmark models and was found to have better performance in identifying the damage.
Additionally, it has the potential to be an effective tool for estimating the severity of BLS
disease. Stephen et al. [29] conducted a study on identifying healthy and diseased leaves
using four CNN architectures. They utilized ResNet34 and ResNet50 to avoid gradient
problems and applied self-attention with ResNet18 and ResNet34 to improve feature
selection. Their suggested ResNet34 architecture with self-attention attained an accuracy
rate of 98.54% in multiclass classification and outperformed other methods. In contrast Li
et al. [30] developed a deep learning-based framework for detecting plant leaf diseases and
pests in videos. The framework used Faster-RCNN and image-training models to detect
low-quality images. Their experiments showed that their custom backbone was better than
other frameworks in detecting non-trained videos in the system.

Latif et al. [17] proposed a method for identifying and categorizing rice leaf diseases
using transfer learning via DCNN and achieved a 96.08% accuracy. Bari et al. [19] developed
a faster R-CNN approach for diagnosing rice leaf diseases. Accuracy was improved
by combining a database of healthy/infected leaves with a public database and image
augmentations. Results are promising for identifying healthy/infected leaves in the lab
and field images. Islam et al. [20] compared four deep learning networks and found that
Inception-ResNet-V2 had the highest accuracy (92.68%). The dataset consisted of five image
classes, including disease and healthy classes. Inception-ResNet-V2’s unique structure
showed better adaptability to the data. Transfer learning was used to improve accuracy and
simplify training time. The ResNet-101 network had the second-highest accuracy (91.52%).

Overall, the above studies have utilized CNN, DCNN, Faster-RCNN models to classify
images of rice leaves displaying various diseases, such as bacterial leaf blight, brown spot,
leaf blast and sheath blight. The primary issue is the scarcity of images, where only a
limited number of classes have been tested and each class has fewer than 100 images.
This shortage of data results in an insufficient representation of the classes and weakens
the ability of the model to accurately classify images. This lack of image data presents
a significant challenge in image classification as the model needs a sufficient amount of
information to learn and make accurate predictions. A limited dataset leads to limited
learning and generalization capabilities, resulting in a weakened model that is unable to
accurately classify images.
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Our proposed approach takes into account these limitations and utilizes a robust
dataset with a substantial number of images per class to achieve exceptional accuracy
in the classification of diseases affecting rice leaves. This abundance of data provides a
comprehensive representation of the classes and strengthens the model’s ability to clas-
sify images accurately. Furthermore, our implementation of the InceptionV3 model has
achieved remarkable accuracy with a score of 99.64%. The use of advanced models such as
InceptionV3, which was trained on a large dataset, enables the model to learn complex fea-
tures and representations, leading to improved performance. This exceptional performance
far surpasses previous works and demonstrates the superiority of our proposed method.

1.3. Objectives of This Work

The objectives of the research work described in the paper are:

• To apply transfer learning to pre-trained CNN models for identifying rice leaf diseases
automatically.

• To enhance the performance of these transfer learning models.
• To assess and compare the performance of different transfer learning models for

identifying rice leaf diseases.
• To identify the best performing and most effective transfer learning models for identi-

fying rice leaf diseases.

1.4. Primary Contributions of This Work

The primary contributions of the work in this paper are as follows:

• We created and utilized a dataset of 10,080 images of ten rice leaf diseases for our ex-
periment.

• While many researchers focus on a few common rice diseases, we aimed to create a
deep transfer learning model that can classify up to 10 diseases namely Bacterial Leaf
Blight, Brown Spot, Hispa, Leaf Blast, Leaf Scald, Leaf Streak, Narrow Brown Spot,
Sheath Blight, and Tungro. Additionally, we also included a healthy class as part of
the classification.

• We employed transfer learning on pre-trained models to enhance their performance
in detecting rice leaf diseases.

• The best and most effective model among the 15 pre-trained deep CNN models was
identified.

This paper was structured into several sections: Section 2 explains the details of the
dataset, pre-trained NN, evaluation methods, and experimental design. Section 3 analyzes
the experiment outcomes to evaluate the pre-trained models’ efficiency and interpret
their impact. Lastly, Section 4 summarizes the paper’s main achievements and provides
directions for future research.

2. Materials and Methods

Feature extraction involves selecting relevant features from raw data to represent it
in a meaningful way, while implicit processing involves learning directly from the raw
data without explicitly extracting features. Implicit processing using deep learning models
can often outperform feature-based methods because the models are able to learn more
complex and abstract features that are difficult to extract using traditional feature extraction
techniques, so the use of deep learning models eliminates the need for explicit feature
extraction or segmentation, as these tasks are implicitly handled by the model. This can
greatly simplify the process of identifying and classifying pests and diseases in rice crops.
Generally, pre-trained CNN models can be reused for a particular application, but a number
of changes must be made to adapt the model to the specific task at hand.

The first step is to update the classification layer, it is typically updated last in a deep
learning model, after the earlier layers have learned to extract useful features from the input
data. However, during fine-tuning, the classification layer may be updated first to quickly



Agronomy 2023, 13, 961 9 of 24

adapt the model to a new task or dataset, while the earlier layers can still be useful for feature
extraction. Once the classification layer has been updated, the earlier layers can be fine-tuned
to better extract task-specific features, leading to improved performance on the new task.
This will ensure that the model can accurately predict the correct class for each input.

Next, a new layer was added in place of the learnable layer that combines features
from earlier layers. The process of replacing a learnable layer involves identifying the
layer type and position to replace, instantiating the new layer, inserting it into the network,
possibly freezing its parameters, training the network, and evaluating its performance.
Depending on the CNN model being used, this could be a convolution2D layer or a fully
connected layer. This new layer will help to extract more relevant features from the input
image, which can improve the model’s performance. For example, if the task is to identify
rice leaf diseases, the new layer should be able to extract features such as the shape, size,
and color of the lesions.

To improve the efficiency of training, certain layers of the model can be kept unchanged.
The best number of layers to be frozen can be decided by experimenting and evaluating
the performance of the task and dataset. This approach is taken to prevent the model from
becoming too specialized for the training data and to improve its ability to work with new
data. In this particular project, all layers were trained thoroughly because the technology
made it possible.

In order to get the dataset ready for the CNN model, the images must be resized. This
is typically done to ensure that the images have the same dimensions and can be fed into
the model. Furthermore, the dataset should be partitioned into training and validation sets.
This will allow for efficient training and testing of the model, which is crucial to ensure that
the model is able to generalize well to new unseen data.

Finally, the pre-trained CNNs were re-trained using the rice leaf disease dataset, and
its performance was measured. This will allow for an evaluation of the model’s accuracy
and provide insight into the model’s strengths and weaknesses. Details on each stage
were provided in the following subsections for a more in-depth understanding of the
methodology. Overall, the proposed methodology is a powerful tool for identifying and
classifying pests and diseases in rice crops, which can help to enhance the yield and quality
of the crop. Figure 1 represents a flowchart of each stage of the proposed methodology
using transfer learning on pre-trained convolutional neural networks (CNNs).

Rice leaf disease
Images

Model-   
 Specific    

Resize

224x224x3

227x227x3

256x256x3

299x299x3

331x331x3

 
Split Data Set 

(60:40) 
(80:20) 
(90:10) 

Augmentation

Augmentation

Training Images

Test Images

Performance
Evaluation

Pre-trained Deep Neural Network

Frozen Initial Layers

Replace Final Layers: 
Convolutional 2D or
Fully Connected and

Classifiers  

Training
Parameters

Model

Customized Model

Model Training

Repeated  
10 times

Figure 1. An illustration of the successive stages in the conceptualization of the proposed architecture.
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2.1. Dataset

In this study, we collected publicly available rice leaf disease images of nine diseased
classes and one healthy class from Kaggle [31] and Mendeley data [32] and combined them
to create a dataset. Data augmentation is used to increase the size and diversity of training
dataset and generate total 10,080 images. Each class contained a total of 1004 images,
except for the Leaf streak and tungro classes which had 1022 and 1024 images. The classes
included were Bacterial leaf blight, Brown spot, Hispa, Leaf blast, Leaf scald, Leaf streak,
Narrow brown spot, Sheath blight, Tungro, and Healthy. All images were in .jpg format
with a resolution of 128 × 128 pixels and captured under the same illumination and white
background setting. The dataset used in this work is detailed in Table 3 and some sample
images of the rice leaf diseases are illustrated in Figure 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Rice leaf diseases: (a) Bacterial Leaf Blight (b) Brown spot (c) Hispa (d) Leaf Blast (e) Leaf
Streak (f) Leaf Scald (g) Narrow Brown Spot (h) Sheath Blight (i) Tungro.
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Table 3. Rice leaf disease dataset.

Leaf Disease No of Images

Bacterial_leaf_blight 1004
Brown_spot 1004
Healthy 1004
Hispa 1006
Leaf_blast 1004
Leaf_scald 1004
Leaf_streak 1022
Narrow_brown_spot 1004
Sheath_blight 1004
Tungro 1024
Total 10,080

2.2. Preprocessing (Image Quality Enhancement and Data Augmentation)

In this work, All models were trained with identical hyperparameters as shown in
Table 4. All images of leaf diseases were pre-processed by resizing them to fit the input
size of the respective pre-trained CNNs, as specified in Table 5. All images were colored
RGB (red, green, blue) images. To increase the amount of training data, data augmenta-
tion [33] was employed. Data augmentation helps prevent overfitting and improves model
generalization. It increases the amount of training data available and enhances model
robustness. This method includes image rotation, reflection, and shear parameters. Some
sample augmented images were shown in Figure 3. The values of the data Augmenter are
listed in Table 6. The RandXReflection was set to true to enable horizontal reflection of
images. The RandXTranslation (Range of horizontal translation) and RandXTranslation (the
range of vertical translation) were set to −3 to 3, allowing for a small range of translation
in the images. The RandXShear (Range of horizontal shear) and RandYShear (Range of
vertical shear) were set to −30 to 30, which allowed for a range of shear in the images,
measured as an angle in degrees. This technique can increase the diversity of the training
dataset and improve the model’s performance.

Figure 3. Sample augmented diseased images.

Table 4. Training Parameters.

Function Name Value

Optimizer Adam
MiniBatchSize 32
MaxEpochs 30
ValidationFrequency 30
VerboseFrequency 30
ExecutionEnvironment gpu
Verbose true
LearnRateDropFactor 0.1
LearnRateDropPeriod 8
LearnRateSchedule none
Shuffle Every-epoch



Agronomy 2023, 13, 961 12 of 24

Table 5. Pre-trained models input size.

Pre-Trained CNN Model Parameters (Millions) Input Image Size

ResNet50 25.6 224 × 224 × 3
ResNet101 44.6 224 × 224 × 3
GoogleNet 7 224 × 224 × 3
VGG16 138 224 × 224 × 3
Shufflenet 1.4 224 × 224 × 3
NasNetMobile 5.3 224 × 224 × 3
MobileNetV2 3.5 224 × 224 × 3
Efficientnetb0 5.3 224 × 224 × 3
DenseNet201 20 224 × 224 × 3
AlexNet 61 227 × 227 × 3
Squeeznet 1.24 227 × 227 × 3
Darknet53 41.6 256 × 256 × 3
InceptionV3 23.9 229 × 229 × 3
InceptionResnetV2 55.9 229 × 229 × 3
Xception 22.9 229 × 229 × 3

Table 6. Data Augmentation.

Properties Values

RandXReflection True
RandXTranslation −3 to 3
RandYTranslation −3 to 3
RandXShear −30 to 30
RandYShear −30 to 30

2.3. Pre-Trained Deep Neural Network

Convolutional Neural Networks are a type of deep neural network that have become
popular in recent years, particularly in agriculture. They are designed to recognize objects
by using layers that include convolution, pooling, and fully connected layers. These layers
work together using backpropagation to adapt and optimize the network [27]. The main
objective of CNNs is to create a more extensive network with fewer parameters.

Transfer learning is a technique where we take CNN models that have already been
trained on millions of images on ImageNet and continue to train them on a smaller set
of images [34]. There is one way to accelerate the training process, prevent overfitting,
improve model interpretability, reduce memory requirements and optimize efficiency is
to use the layer freezing technique, which helps preserve the weights of initial layers and
prevent them from being altered. Noor et al. [35] achieved higher accuracy from the layer
freezing technique. This can be done in several ways:

Freezing all Convolutional Layer weights: A technique where only the weights of the
Fully-Connected Layers are adjusted during training is achieved by freezing the weights of
all Convolutional Layers, and replacing the Fully-Connected Layers of the old CNN model
with new Fully-Connected Layers trained on recent data.

Freezing some Convolutional Layer weights: The pre-trained weights in the subse-
quent Convolutional Layers and the initialized weights in the personalized fully-connected
layers are adjusted during training.

Unfreezing all Convolutional Layer weights: All of the weights in the convolutional layers
are unfrozen while the fully connected layers are eliminated from the original CNN model.

Selecting the best pre-trained model for image classification depends on several factors,
including the size of the dataset, computational constraints, and the specific requirements
of the task. It’s important to experiment with different models and fine-tuning techniques
to find the best fit for our particular use case.

The goal of this study is to investigate how pre-trained deep learning CNN models can
be adapted, retrained, and used to classify rice leaf diseases from images of the leaves. The
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study evaluated 15 pre-trained CNN models, which differ in terms of input size, architecture,
and computational efficiency. The hyperparameters used for fine-tuning the training of these
models were standardized across the study to ensure a fair comparison. The pre-trained CNN
models evaluated in this study were [36]: DarkNet-53, DenseNet-201, GoogLeNet, Inceptionv3,
MobileNetv2, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, Xception, InceptionResNetV2,
NasNetMobile, VGG16, AlexNet, and EfficientNetB0. The study aimed to determine the most
effective way to use these models for rice leaf disease classification.

2.4. Evaluation Setup

In our experiments, we use transfer learning models that have already been trained on
the 1000 classes in the Imagenet dataset. To make these models work for our specific use
case, we change the first and last layers, such as fully connected, convolutional, softmax,
and classification output layers, depending on how the model is built. Generally, lower
layers of pre-trained models capture general features, while upper layers capture task-
specific features. By modifying the upper layers, the pre-trained model can be adapted
to new tasks while leveraging the knowledge learned from the original task.Then, after
all models were trained using the same hyperparameters. The training was conducted for
30 epochs, which were determined based on the models’ performance during training and
validation. A learning rate of 0.0001 was used, and the Adam optimizer was applied for
network training. The models’ capability to generalize to a more extensive testing set was
evaluated through several data partitioning procedures. The first method split the dataset
into 60% training and 40% validation sets. The second method used 80% of the images for
training, and the third method used 90% of the images for training [37].

The models were constructed and evaluated on a LENOVO DESKTOP-QT2QLGA
system, which boasts 64 GB of RAM, a powerful Intel(R) Xeon(R) W-2125 CPU clocked at
4.00 GHz, 4 cores, a high-performance NVIDIA GeForce GTX 1080 Ti graphics card, and
8 logical processors. The building and testing process was conducted using the MATLAB
R2021a program.

2.5. Performance Evaluation Metrics

In machine learning, performance metrics are used to evaluate the accuracy and
effectiveness of a model. Different types of metrics are used depending on the type of
problem and the algorithm being used. In this paper we used the following classification
metrics accuracy, precision, recall, f1-score specificity, Matthews Correlation Coefficient
(MCC), and False Positive Rate (FPR). Accuracyis the proportion of correctly classified
disease samples out of the total number of disease samples. Precision is the proportion of
true positive predictions out of all positive predictions. Recall (Sensitivity or true positive
rate) is the proportion of true positives out of all actual positive samples. F1 Score is the
harmonic mean of precision and recall. Specificity is a performance metric that measures
the ability of a model to correctly identify negative samples. MCC is a metric that takes
into account true and false positives and negatives and gives a value ranging from −1 to 1
which shows the correlation between observation and prediction. FPR It is a measure of
how often a test incorrectly detects that an event of interest has occurred when it has not.

The measures used to assess the effectiveness of CNN models are depicted in
Equations (1)–(6).

Accuracy =
T+ve + T−ve

T+ve + T−ve + F+ve + F−ve
(1)

Precision =
T+ve

T+ve + F+ve
(2)

Recall =
T+ve

T+ve + F−ve
(3)
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F1Score = 2 × (Preciison × Recall)
(Preciison + Recall)

(4)

Speci f icity =
T−ve

F+ve + T−ve
(5)

MCC =
(T+ve × T−ve)− (F+ve × F−ve)√

(T+ve + F+ve)(T+ve + F−ve)(T−ve + F+ve)(T−ve + F−ve)
(6)

3. Experimental Results and Discussion

To evaluate the ability of CNN models in recognizing the disease type of rice leaves, we
conducted experiments. To account for differences in the random data division of images into
training and validation sets, the training process was repeated ten times. The final results
were calculated by taking the average. We logged the performance evaluation metrics of all
the CNN models and also documented the duration of the training and validation phases.

Three data partition methodologies were employed (i.e., 60/40, 80/20, and 90/10),
which may indicate the capabilities of the various models to train from additional data
as well as any underfitting/overfitting abnormalities. The first data partition scheme was
60/40, the mean overall accuracy, precision, recall, F1-score, specificity, MCC and FPR of
pretrained deep neural network models were tabulated in Table 7. All models performed
with extremely high precision in addition to the other evaluation metrics. Most models did
remarkably well, with InceptionResNetV2 achieving the highest mean F1 score of 98.21%
and specificity of 99.81%. The lowest performing model was Alexnet with mean F1 score
of 86.03% and a specificity value of 98.49%. The performance values were validated by
Confusion matrices for the top and lowest performing models was displayed in Figure 4.

(a)

Figure 4. Cont.
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(b)
Figure 4. Confusion matrices for the finest and the poor performing pre-trained models using 60% of
the training data. (a) InceptionResNetV2; (b) AlexNet.

Table 7. The mean overall performance metric values using using 60% of the training data.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) MCC FPR

InceptionResNetV2 99.64 98.22 98.2 98.21 99.81 0.98 0.017
Xception 99.61 98.13 98.08 98.08 99.78 0.978 0.018
ResNet50 99.59 98.03 97.98 97.97 99.77 0.977 0.019
InceptionV3 99.59 97.99 97.96 97.96 99.77 0.977 0.021
DenseNet201 99.58 97.97 97.93 97.93 99.77 0.977 0.022
EfficientNetB0 99.51 97.57 97.56 97.55 99.73 0.972 0.024
MobileNetV2 99.47 97.53 97.38 97.38 99.71 0.971 0.024
ResNet101 99.47 97.39 97.36 97.35 99.7 0.97 0.026
GoogleNet 99.35 96.77 96.76 96.75 99.64 0.964 0.032
NasNetMobile 99.27 96.4 96.34 96.35 99.59 0.959 0.035
ShuffleNet 99.19 96.06 95.94 95.94 99.55 0.955 0.039
DarkNet53 99.18 96.18 95.89 95.89 95.54 0.955 0.038
SqueezeNet 98.98 95.22 94.92 94.95 99.43 0.955 0.047
VGG16 98.21 91.18 90.99 91.01 99.01 0.901 0.088
AlexNet 97.28 87.28 86.37 86.03 98.49 0.851 0.127

According to the AlexNet confusion matrix, some images of leaf blast are misclassified
as brown spot and hispa.

Table 8 presented the performance metrics for 10 runs of 15 pre-trained deep learning
models, using 80% of the data for training. The performance of the models was evaluated
using the remaining 20% of the data, and the results were tabulated. The efficientnetb0
model had the highest precision at 98.48% and MCC of 0.982, which outperformed the
other models. In contrast, the AlexNet model had the lowest performance with a precision
of 88.39% and MCC of 0.86. The highest and lowest performance of the models can also be
observed in the confusion matrices, which are presented in Figure 5. The confusion matrix
of AlexNet model shows that healthy and leaf blast disease samples were misclassified as
brown spot and hispa, respectively.
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Table 8. The mean overall performance metric values using 80% of the training data.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) MCC FPR

EfficientnetB0 99.69 98.48 98.45 98.46 99.82 0.982 0.015
InceptionV3 99.59 97.99 97.96 97.94 99.77 0.977 0.020
InceptionresnetV2 99.59 97.95 97.96 97.95 99.77 0.977 0.020
ResNet50 99.58 97.94 97.91 97.91 99.76 0.976 0.020
DenseNet201 99.56 97.85 97.81 97.81 99.75 0.975 0.021
Xception 99.54 97.82 97.71 97.72 99.74 0.974 0.021
ResNet101 99.53 97.71 97.66 97.65 99.74 0.974 0.022
Nasnetmobile 99.51 97.58 97.56 97.56 99.73 0.972 0.024
Mobilenetv2 99.49 97.57 97.46 97.46 99.71 0.972 0.024
Darknet-53 99.41 97.16 97.06 97.02 99.67 0.967 0.028
Shufflenet 99.41 97.09 97.01 96.99 99.66 0.967 0.029
Googlenet 99.32 96.93 96.61 96.64 99.62 0.963 0.030
Squeeznet 99.14 95.93 95.72 95.69 99.52 0.953 0.040
VGG16 98.71 93.76 93.53 93.48 99.28 0.928 0.062
Alexnet 97.51 88.39 87.51 87.01 98.61 0.861 0.116

(a) (b)
Figure 5. Confusion matrices for the finest and the poor performing pre-tarained models using 80%
of the training data. (a) EfficientNetb0; (b) AlexNet.

The performance of 15 pre-trained models was evaluated by using random partitions
of 90% of the data for training, and 10% for testing. The results were recorded and tabulated
in Table 9 for each model after 10 runs. The InceptionV3 model showed exceptional
performance with a precision of 98.72% and a specificity of 99.85%. On the other hand, the
AlexNet model had the lowest performance, with a precision of 87.55% and a specificity
of 98.48%. Figure 6 depicts the confusion matrices for the best-performing and worst-
performing models. The InceptionV3 model correctly classified all diseases, however, the
AlexNet model misclassified ’hispa’ and ’leaf blast’ as ’brown spot’ and ’hispa’ respectively.

Determined the mean of the performance metrics for 15 pre-trained models that were
divided into three partitions (60/40, 80/20, and 90/10) as shown in Table 10.

Upon analyzing the results, it was found that the InceptionV3 model achieved the
highest accuracy at 99.64%. This model also displayed impressive precision, recall, f
measure, and MCC, with values of 98.23%, 98.32%, 98.20%, and 0.98, respectively. These
results demonstrate that the InceptionV3 model has a high level of performance across
multiple metrics. However, the AlexNet model had the lowest overall performance, with
an average accuracy of 97.35%. This suggests that while the InceptionV3 model is a strong
performer, the AlexNet model may not be as reliable for certain tasks.



Agronomy 2023, 13, 961 17 of 24

(a) (b)

Figure 6. Confusion matrices for the finest and the poor performing pre-trained models using 90% of
the training data. (a) InceptionV3; (b) AlexNet.

Table 9. The mean overall performance metric values using using 90% of the training data.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) MCC FPR

InceptionV3 99.74 98.72 98.7 98.7 99.85 0.985 0.012
DenseNet201 99.7 98.57 98.5 98.51 99.83 0.983 0.014
Xception 99.68 98.42 98.4 98.4 99.82 0.982 0.015
Nasnetmobile 99.66 98.31 98.3 98.3 99.81 0.981 0.016
Mobilenetv2 99.64 98.25 98.2 98.2 99.81 0.981 0.017
Shufflenet 99.64 98.23 98.2 98.21 99.8 0.98 0.017
ResNet101 99.64 98.21 98.2 98.2 99.8 0.98 0.017
InceptionresnetV2 99.64 98.24 98.2 98.19 99.8 0.98 0.017
Googlenet 99.52 97.67 97.6 97.61 99.73 0.973 0.023
EfficientnetB0 99.48 97.75 97.4 97.44 99.71 0.972 0.022
Darknet-53 99.46 97.34 97.31 97.29 99.71 0.97 0.026
ResNet50 99.22 96.34 96.1 96.09 99.56 0.957 0.036
Squeeznet 99.14 95.96 95.7 95.73 99.52 0.953 0.04
VGG16 98.48 92.83 92.41 92.4 99.15 0.917 0.071
Alexnet 97.27 87.55 86.32 86.46 98.48 0.852 0.124

In addition, we compared the above results with K-fold cross-validation, which is
a technique used to evaluate the performance of machine learning models. K-fold cross-
validation is often used when the amount of available data is limited, it can still be a useful
technique to consider even with sufficient data, as it helps to reduce the variance of the
estimated performance and provides a more robust estimate of the model’s generalization
performance. The basic idea behind it is to divide the data into k subsets, called “folds,”
and then train the model k times, each time using a different fold as the test set and the
remaining k − 1 folds as the training set. The model’s performance is then assessed by
averaging the performance metrics across all k runs.

One of the key parameters in k-fold cross-validation is the value of ‘K’, which de-
termines the number of folds that the data will be divided into. The larger the value of
‘K’, the more accurate the performance evaluation is likely to be, as more of the data is
used for testing and validation. However, increasing the value of ‘K’ also increases the
computational cost of the evaluation, as the model has to be trained and tested more times.
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Table 10. Average performances of the Transfer learning Models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) MCC FPR

InceptionV3 99.64 98.23 98.21 98.20 99.80 0.98 0.02
InceptionresnetV2 99.62 98.14 98.12 98.12 99.79 0.98 0.02
DenseNet201 99.61 98.13 98.08 98.08 99.78 0.98 0.02
Xception 99.61 98.12 98.06 98.07 99.78 0.98 0.02
EfficientnetB0 99.56 97.93 97.80 97.82 99.75 0.98 0.02
ResNet101 99.55 97.77 97.74 97.73 99.75 0.97 0.02
MobileNetV2 99.53 97.78 97.68 97.68 99.74 0.97 0.02
Nasnetmobile 99.48 97.43 97.40 97.40 99.71 0.97 0.03
ResNet50 99.46 97.44 97.33 97.32 99.70 0.97 0.03
Shufflenet 99.41 97.13 97.05 97.05 99.67 0.97 0.03
GoogleNet 99.40 97.12 96.99 97.00 99.66 0.97 0.03
Darknet-53 99.35 96.89 96.75 96.73 98.31 0.96 0.03
Squeeznet 99.09 95.70 95.45 95.46 99.49 0.95 0.04
VGG16 98.47 92.59 92.31 92.30 99.15 0.92 0.07
AlexNet 97.35 87.74 86.73 86.50 98.53 0.85 0.12

When resources are limited, it may not be possible to use a large value of ‘K’ without
sacrificing other aspects of the model development or evaluation. In such cases, it may be
necessary to set ‘K’ to a lower value, such as 5, to balance the trade-off between accuracy
and computational cost. This means that fewer iterations of the model are used, so the
results may not be as accurate as the results would have been if we have higher value of
‘K’ but it would be less computationally intensive. All the results should be tabulated in
Table 11.

Table 11. 5-Fold cross validation of pre-trained models performance.

Model Accuracy Specificity Precision Recall F Measure MCC ERR

InceptionResNetV2 98.49 98.56 88.33 97.81 92.83 0.921 0.015
Xception 98.44 98.65 88.83 96.52 92.52 0.917 0.015
ResNet50 98.12 98.27 86.11 96.81 91.15 0.903 0.018
EfficientNetB0 98.01 98.08 84.92 97.41 90.74 0.899 0.019
ResNet101 97.91 98.06 84.66 96.62 90.25 0.893 0.021
Inception 97.86 98.13 85.03 95.42 89.93 0.889 0.021
MobileNetV2 97.74 98.38 86.3 92.04 89.08 0.878 0.022
NasnetMobile 97.67 97.73 82.61 97.21 89.31 0.883 0.023
Shufflenet 97.53 97.67 82.1 96.22 88.6 0.875 0.024
DenseNet201 97.41 97.53 81.22 96.32 88.13 0.871 0.025
Darknet53 97.11 97.47 80.46 93.73 86.59 0.852 0.028
Googlenet 96.38 96.41 74.84 96.12 84.16 0.829 0.036
Squeezenet 96.13 96.22 73.65 95.32 83.1 0.818 0.038
VGG16 93.36 92.17 67.87 78.95 69.42 0.693 0.089
AlexNet 87.11 87.83 42.35 80.61 55.52 0.523 0.128

The Figure 7 shows the confusion matrices of the best and worst-performing mod-
els. Comparing the performance results with the remaining models, InceptionResNetV2
performed at the highest accuracy of 98.49%, and 1.51% of ERR. AlexNet had performed
lowest accuracy of 87.11% and 12.89% of ERR. Figure 8 displayed the 5-flod cross validation
of training progress curve at the fifth fold. The Figure 8 horizontal axis represented the
number of epochs to run the model and vertical axis represents accuracy and loss of the
model. Figure 9 depicts the ROCs of the networks utilized for classification in this article.
ROCs were used to figure out the area under the curve (AUC). Based on this data, we
calculated an AUC of 99.94% for InceptionResNetV2, 99.92% for Xception, 99.91% for
ResNet50, and 97.70% for Alexnet. The given information displays the ability of the CNN
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to classify each class correctly using confusion matrices and ROCs, including the AUC and
total accuracy of the model.
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Figure 7. Confusion matrices for the finest and the poor performing models using 5-Fold cross
validation (a) InceptionResNetV2; (b) AlexNet.

Figure 8. Training/Validation progress curves of InceptionResNetV2 for 5 fold cross validation.

Table 12 shows a summary of the performance of various studies on the identification
and classification of rice leaf disease using machine learning and deep learning algorithms.
Each study is listed with its respective accuracy percentage. The results suggest that our
work achieves high levels of accuracy in identifying and classifying rice leaf diseases with
an accuracy of 99.64% using the InceptionV3 model.
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Figure 9. ROC Curves of the few pre-trained models using 5-Fold cross validation (a) InceptionRes-
NetV2 (b) Xception (c) ResNet50 (d) AlexNet.

Table 12. Performance comparison of existing works with proposed work.

Study Performance (Avg Accuracy)

Haridasan et al. [15] 91.45%
Yang et al. [16] 99.58%
Latif et al. [17] 96.08%
Daniya et al. [18] 91.6%
Islam et al. [20] 92.68%
Wang et al. [21] 94.64%
Chen et al. [23] 98.63%
Yakkundimath et al. [38] 92.4%
Narmadha et al. [39] 97.68%
Proposed Work 99.64%

Limitations of This Work

The current research on using transfer learning for rice leaf disease classification has
some limitations. One of the primary challenges of using this approach is the general-
izability of the models. The models used may not perform optimally on images taken
from different plant species or under varying lighting conditions. This limitation can lead
to incorrect classification of diseases and impact the reliability of the model. Another
limitation is their ability to generalize well to different types of leaf images that are not
similar to the ones it was trained on. If a model encounters images that have significant
differences from the training set, it may struggle to classify the diseases accurately. If a
new dataset has a skewed distribution of samples, these models may focus on the majority
class and ignore the minority class, leading to poor results for the minority class. Another
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limitation is that the models were only trained on a limited number of images and classes
of rice diseases. As a result, it may misclassify new diseases as one of known diseases.

The models may also misclassify nutritional deficiencies as diseases. Nutritional
deficiencies in rice plants can be caused by a lack of essential nutrients in the soil. The
visual characteristics of nutritional deficiencies in rice plants are similar to those of diseases,
but there are some key differences. For example, diseases often cause dark circles or lesions
on the leaves, while nutritional deficiencies tend to cause yellowing or stunted growth.
Additionally, diseases can spread from plant to plant, while nutritional deficiencies are
usually caused by a lack of nutrients in the soil and affect the entire plant. It is important to
differentiate between rice diseases and nutritional deficiencies, as the treatment for each
will differ. Nutritional deficiencies can be addressed by adding the missing nutrients to
the soil, while diseases will require specific treatments to control their spread and cure the
affected plants.

While transfer learning provides a convenient solution for rice leaf disease classifica-
tion, it is essential to consider the limitations of the models. Addressing these limitations
through further research and experimentation can improve the performance of a model
and make it more reliable for practical applications.

4. Conclusions and Future Directions

Rice is a vital food source for over half of the world’s population and is essential
for global food security. However, diseases that affect rice plants can result in significant
financial losses for farmers. To address this, researchers are developing new and effective
methods to combat these diseases. One promising approach is the use of advanced technolo-
gies, such as machine learning and deep learning, to identify pathogens in rice plants. This
study examines the application of transfer learning to 15 pre-trained CNN models, with
the goal of automating the detection of diseases in rice leaves. The results show that the
InceptionV3 model was the most effective, achieving an average accuracy of 99.64%, while
the AlexNet model performed poorly. It is not always possible to determine if one method
is suitable for all rice varieties, as different varieties can have variations in their genetics,
morphology, and physiology that may affect the manifestation of disease symptoms.

To confirm a diagnosis in such cases, it is important to consult with an expert in
plant pathology and take into consideration other symptoms, such as the location and
severity of the symptoms, and environmental factors, such as weather and soil conditions.
Additionally, laboratory tests, such as bacterial or fungal culture, Polymerase chain reaction
(PCR), and microscopy can help to confirm the identity of the pathogen.

Rice plant diseases often exhibit symptoms in different parts of the plant. For example,
bacterial leaf blight is characterized by water-soaked lesions on leaves, while sheath blight
is characterized by lesions on the leaf sheath and collar. Additionally, blast disease can
infect the panicles and grains, leading to reduced size and quality. Therefore, by focusing
only on the symptoms of the disease on the leaves, the diagnosis might not be complete.
And this can lead to missing the disease at early stages. To address this, it is important
to consider the symptoms of the disease on different parts of the plant in the diagnosis of
the disease.

It would be beneficial to collect a more diverse dataset that includes images of different
symptoms of the rice plant diseases, in order to train the model to recognize symptoms
on different parts of the plant. This will enable the model to diagnose the disease more
accurately and in a timely manner, which can help to prevent the disease from spreading
and reduce yield loss. Additionally, to apply integrated pest management strategies for
rice plants, such as regular monitoring and scouting of the field, and if in doubt, multiple
samples should be taken, and the diagnostic process should be repeated. This will make
the process more efficient and effective

Future works can focus on ensemble learning for rice leaf disease detection as it is
considered to be more powerful than transfer learning. Ensemble learning is known for
its improved performance as it combines the predictions of multiple models, reducing
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variance, and bias and improving generalization, leading to better overall performance.
Additionally, ensemble learning is less likely to overfit as it combines multiple models
with different architectures or parameters, resulting in a more robust and generalizable
model. Furthermore, ensemble learning is less affected by domain mismatch as it combines
predictions from multiple models, each of which may be well-suited for different parts of
the data.

Also, using Hybrid systems is an alternative solution for plant disease detection.
Hybrid systems combine the strengths of multiple approaches, such as deep learning,
computer vision, and expert systems, in order to improve the accuracy and robustness of the
disease detection process. For example, a hybrid system may use deep learning to extract
features from plant images, and then use a computer vision-based approach to classify
the images based on those features. Additionally, expert systems can be incorporated
to provide additional knowledge-based rules and decision-making algorithms to further
improve the accuracy of the diagnosis. The combination of multiple approaches can also
help to reduce the dependence on a large dataset of annotated images, making the system
more versatile and adaptable to different types of plant diseases.
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