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Abstract: Leaf spot disease is a dangerous disease that affects peanut growth, and its severity can
significantly impact peanut yield. Hyperspectral-based disease detection technology is a popular
non-destructive technique due to its high efficiency, objectivity, and accuracy. In this study, peanut
leaf spectra at different levels of severity of leaf spot disease were collected in Liaoning Province,
China, in mid-August. This study analyzed the differences in wavelengths using mean spectral
reflectance and sensitivity. Using improved principal component analysis loading (I-PCA loading)
based on the contribution weight assignment approach, we identified three feature wavelengths
of 570 nm, 671 nm, and 750 nm. We evaluated the ability of these feature wavelengths to detect
the severity of leaf spot disease using k-nearest neighbor (KNN), support vector machine (SVM),
and back-propagation (BP) neural network classifiers. Our experimental results showed that our
improved PCA loading method achieved higher classification accuracy with fewer wavelengths than
the seven commonly used feature selection methods. Among these classifiers, the SVM achieved the
highest accuracy, with an overall accuracy (OA) of 96.88% and a Kappa of 95.81%. Therefore, our
proposed method can accurately detect the severity of peanut leaf spot disease and provide scientific
and technical support for accurately managing peanut crops.

Keywords: peanut; leaf spot; hyperspectral reflectance; feature extraction; principal component
analysis loading

1. Introduction

Peanuts are a significant source of plant oils and proteins and are widely cultivated
worldwide [1]. However, leaf spot disease caused by Cercosporidium personatum is
destructive and can cause up to 70% yield loss in severe cases [2]. Therefore, timely,
accurate, and efficient detection of peanut leaf spot disease in the field and understanding
of its severity can provide technical support and scientific guidance for accurate field
management. This approach can improve peanut yields, ensure peanut quality, and reduce
the use of agricultural chemicals and residues [3,4]. As a result, it is critical to develop
effective methods for detecting and managing peanut leaf spot disease.

Traditional field disease detection methods rely on field sampling by plant protection
personnel to determine disease severity. However, this method has several disadvantages,
including subjectivity, low efficiency, and high cost. Serological detection techniques [5,6]
and pathogen isolation techniques [7] are the most commonly used methods in disease
detection. However, their detection processes are time consuming, labor intensive, and
destructive, making them unsuitable for efficient and non-destructive crop disease detec-
tion [8]. These methods also fail to meet the need for scientific monitoring and control
of crop diseases. Therefore, there is a need to develop more efficient, accurate, and non-
destructive methods for detecting crop diseases.

Remote sensing technology has advantages such as objectivity, non-destructiveness,
and repeatability and has become an important means of monitoring in recent years [9].
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Hyperspectral technology has characteristics such as multiple bands and high detection
accuracy and has been widely used in agriculture [10–13]. However, there is some invalid
interference information in the full-spectrum data, which can easily reduce the general-
ization ability and overall accuracy of the model. The high collinearity of hyperspectral
data also increases the complexity of the model and computing time. Therefore, many
scholars obtain spectral feature wavelengths through feature selection methods to improve
the detection efficiency and accuracy of the model. The authors of [14] utilized a continuous
projection algorithm (SPA), boosted regression trees (BRTs), and a genetic algorithm (GA)
for feature wavelength selection and employed various machine learning techniques for
non-destructive detection of tomato spotted wilt virus (TSWV) in tobacco. They found that
the SPA–BRT combination produced the best results, with an average overall accuracy of
85.2%. The authors of [15] used RELIEF-F to select feature wavelengths for hyperspectral
reflectance of southern corn rust (SCR) at varying levels of severity. To detect disease
severity, they developed a vegetation index based on the normalized difference between
two wavelengths. The results indicated an overall accuracy of 87% for SCR detection
and severity classification accuracy of 70%. The authors of [16] collected hyperspectral
data of healthy, anthracnose, and gray mold strawberry leaves. The competitive adaptive
reweighted sampling (CARS) and random frog (RF) pairs were used for feature selection.
They evaluated and compared the classification performance of the feature wavelengths
using six classification models, and the majority of the models achieved high accuracy
(100%) and robust performance.

The feature selection methods mentioned above primarily employ candidate subsets
and evaluation functions to select feature wavelengths, and these methods can achieve
greater accuracy through training. However, these methods are sensitive to the selection
criteria of candidate subsets and the use of evaluation functions and require substantial
manual labeling. In contrast, spectral information methods can select features by assessing
feature importance. Among these, principal component analysis loading (PCA loading)
is one of the more commonly used feature selection methods. The authors of [17] used
the PCA loading method to select feature wavelengths for spectra of healthy and diseased
wheat ear tissues. The study showed that the head blight index (HBI) constructed from
feature wavelengths of 665–675 nm and 550–560 nm could be a detection indicator for
identifying head blight. The authors of [18] used second-order derivative spectroscopy
and PCA to select optimal wavelengths for detecting oilseed rape stalk bunt. Partial least
squares discriminant analysis (PLS-DA), a radial basis function (RBF) neural network, a
support vector machine (SVM), and an extreme learning machine (ELM) were used for
modeling. The results showed that the best classification accuracy of both calibration and
prediction sets was above 90%. The authors of [19] used PCA to identify more effective
spectral regions and PC vectors to distinguish healthy and decayed tissues. The loadings
of PCs corresponding to each wavelength were analyzed to extract key wavelength images
from raw hyperspectral data. The authors of [20] used common peaks and valleys in the
loading curves of PCA’s first and second principal components to select feature wavelengths
of maize seed maturity hyperspectral data. The authors of [21] performed PCA loading,
second-order derivative spectroscopy, CARS, and used an SPA to select feature wavelengths
for different hyperspectral sample sets of infected oilseed rape. The results showed that
the PCA loading method is insensitive to the data set’s composition and can produce more
stable results across different data sets.

The above literature shows that feature wavelengths of the full spectrum can be ef-
fectively extracted using PCA loading. However, as the method selects the wavelengths
corresponding to the peaks and troughs of each principal component as feature wave-
lengths, it often results in an excessive selection of feature wavelengths, which may not be
conducive to practical applications and cost reduction. Therefore, this study proposes a
novel PCA loading feature selection method based on assigning contribution weights. The
specific objectives are as follows: (1) Obtain hyperspectral reflectance of leaf spot disease of
different severity using collection equipment and determine the wavelength range with
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high variability through data analysis. (2) Determine the feature wavelengths for detecting
leaf spot disease of peanuts using a PCA loading feature selection method based on the
contribution weight assignment proposed in this study. (3) Evaluate the ability of the
feature wavelengths to detect the severity of leaf spot disease using different classifiers.

2. Materials and Methods
2.1. Overview of Experimental Site

The experimental site for this study was located at the Haicheng campus of Shenyang
Agricultural University in Gengzhuang Town, Anshan City, Liaoning Province, China
(40◦58′42.6′′ N–40◦58′43.68′′ N, 122◦43′24.96′′ E–122◦43′29.28′′ E, altitude 13 m), as shown
in Figure 1. The variety of peanuts tested was Four Grain Red, which is susceptible to leaf
spot disease and is the primary cultivar in Liaoning, China. The peanuts were planted in
rows spaced 45 cm apart and 35 cm apart in a test plot measuring about 1200 m2. Before
planting, a compound fertilizer of 81 kg ha−1 containing N-P2O5-K2O was applied, and
local agronomic measures were used to control weeds, pests, and other diseases. Natural
peanut leaf spot disease appeared in the experimental field, with symptoms not apparent
in the early growth stage. Symptoms of leaf spot disease appeared in some field areas after
60 days of seedling emergence, with varying degrees of severity appearing in mid-August.
Consequently, peanut plants of different severity were tested on 15 August, 19 August, and
23 August.
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Figure 1. Location and overview of the experimental site.

The experiment was conducted at 7:00 pm every day to avoid the impact of light inten-
sity on plants. Professional personnel entered the experimental field to assess the disease
level. This experiment transplanted eight plants (two plants per level) of different disease
levels into the experimental bucket. The entire plant was wrapped in a black breathable
plastic bag to avoid the impact of leaf structure and compound content changes during the
transfer process. Afterward, all samples were quickly transferred to the laboratory. Leaves
of different disease levels from the canopy were cut at the root and immediately subjected
to spectral measurement to avoid errors.
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2.2. Data Collection
2.2.1. Disease Severity Assessment

The Technical Regulations for Identification of Peanut Varieties Resistant to Leaf Spot
Disease (DB21/T 3074-2018) classify disease severity into six levels based on the ratio of
disease spot area to total leaf surface [17,22]. As early disease detection is crucial for its
control and spread, this study focused on the early stages of disease development. In the
field, no leaves were found to have extremely severe disease symptoms. Only the first four
levels of disease severity were observed, which were asymptomatic, initially symptomatic,
moderately symptomatic, and severely symptomatic, as shown in Table 1. Due to the
natural occurrence of peanut leaf spot disease throughout the experimental field, detecting
infected but symptomless samples was challenging. Therefore, this study categorized all
samples without disease spots on the leaves as asymptomatic.

Table 1. Disease severity levels at leaf scale.

Level Disease Severity Area Ratio

A Asymptomatic 0
I Initially symptomatic 0–0.1

M Moderately symptomatic 0.1–0.25
S Severely symptomatic 0.25–0.5

2.2.2. Spectral Reflectance Collection

This study used an HR2000+ high-resolution spectrometer from produced by Ocean
Optics in Dunedin, Florida, USA, equipped with a reflection sensor and an HL-2000 tungsten
halogen lamp light source to obtain hyperspectral reflectance data of leaves with different
disease severity levels. The reflection probe contained six fiber legs connected to the light
source and another fiber leg connected to the spectrometer for optimal performance. A probe
with a receiving angle of 24.8◦ was fixed at a distance of 3 cm above the leaf. The average
reflectance of a circular area with a diameter of 1.3 cm was collected. The spectrometer was
calibrated with a diffuse reflection reference plate before each measurement, and ten mea-
surements were taken for each area. Their average was taken as the absolute hyperspectral
reflectance of that area. The hyperspectral wavelengths ranged from 190 to 1100 nm, with
a spectral resolution of 1 nm. This study analyzed hyperspectral reflectance between 400
and 1000 nm, as the noise between 190 and 400 nm and 1000 and 1100 nm was significant.
We collected 1071 hyperspectral reflectance samples, including 261 asymptomatic, 338 ini-
tially symptomatic, 242 moderately symptomatic, and 230 severely symptomatic samples.
Figure 2 displays the collection equipment and leaf samples.

2.3. Feature Wavelength Selection
2.3.1. Principal Component Analysis Loading

PCA is a multivariate statistical method that transforms multiple indicators into
several composite indicators called principal components. Each principal component is
a linear combination of the original variables [23]. Let D be a data set consisting of m
n-dimensional data:

D =
[

x(1), x(2), . . . x(m)
]

x(i) ∈ Rn (1)

The following steps were taken to reduce the dimensionality of D from n-dimensions
to k-dimensions.

(1) Decentralize all samples in D:

x(i) = x(i) − 1
m ∑m

j=1x(i) (2)

(2) Calculate the covariance matrix (or correlation matrix) XXT of D based on the initial
variable characteristics.
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(3) Find the eigenvalues of XXT with their corresponding standard eigenvectors.
(4) Take out the eigenvectors corresponding to the largest k eigenvalues (w1, w2, . . . , wk),

normalize them, and form the eigenvector matrix W.
(5) Transform each sample x(i) in D into a new sample:

z(i) = WTx(i) (3)

(6) Obtain the reduced-dimensional data set D′:

D′ =
[
z(1), z(2), . . . z(m)

]
(4)Agronomy 2023, 13, x FOR PEER REVIEW 5 of 18 
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Suppose the dimension k after dimensionality reduction is not specified. In that case,
a threshold t (0 < t ≤ 1) can be set for the weight of the principal component to which the
dimensionality reduction is applied. Assuming the n eigenvalues are λ1 ≥ λ2 ≥ . . . ≥ λn, k
can be obtained using the following equation:

∑k
i=1 λi

∑n
i=1 λi

≥ t (5)

As can be seen from the above steps, each principal component is a linear combination
of the original variables, and the correlation between the principal components and the
original variables is reflected in the loading coefficient. The larger the absolute value of
the loading coefficient, the stronger the correlation. Therefore, loading coefficient curves
were obtained for all wavelengths in each principal component. The feature wavelengths
were defined as those corresponding to the extreme values (positive and negative) on the
curves [21].

2.3.2. Improved PCA Loading Method

Traditional PCA loading assumes that the correlation coefficients of each principal
component are equally important to the original data. However, since each principal
component’s contribution may differ, their correlation strength with the original data may
also differ. Therefore, a novel PCA loading feature selection method is proposed in this study,
in which the correlation between wavelengths and the original data is resolved by assigning
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contribution weights. The contribution of each principal component can be measured by
the proportion of complete information it contains. The specific method is as follows.

Ii =
λi

∑n
i=1 λi

(6)

The loading matrix WT represents the correlation coefficients between the principal
components and the original indicators in the PCA process. It can be expressed as follows:

WT = (w1, w2, . . . , wk)
T =

w11 · · · w1n
...

. . .
...

wk1 · · · wkn

 (7)

The expressions of each principal component in terms of the original indicators are
given by the following:

Z1 = w11X1 + · · ·+ w1jXj + · · ·+ w1nXn
Z2 = w21X1 + · · ·+ w2jXj + · · ·+ w2nXn

· · · · · · · · ·
Zi = wi1X1 + · · ·+ wijXj + · · ·+ winXn

· · · · · · · · ·
Zk = wk1X1 + · · ·+ wkjXj + · · ·+ wknXn

(8)

where Zi is the ith principal component indicator, wij is the loading coefficient of the
original jth indicator in the ith principal component, and Xj is the original jth indicator of
the data set. To consider the contribution of each principal component, we can combine the
loading coefficient with the information ratio. The overall loading coefficient of the original
jth indicator can be calculated as follows:

Wj = ∑k
i=1Ii

∣∣wij
∣∣ (9)

The proposed PCA loading feature selection method comprehensively considers
the importance of each principal component and the correlation of each wavelength in
the principal component. The overall loading coefficient of the original jth indicator
is calculated using the information ratio and the loading coefficient. Based on these
coefficients, the loading coefficient curves are plotted and smoothed to remove the influence
of saw-tooth jitter in local regions. The wavelengths corresponding to the peaks on the
smoothed curve are selected as the feature wavelengths [19].

2.3.3. Correlation Optimization Feature Wavelength

Correlation is a statistical indicator that measures the strength of the relationship be-
tween variables. In hyperspectral data, changes in reflectance at different wavelengths can
indicate different disease levels. However, some wavelengths may show similar changes,
leading to collinearity issues. This study uses correlation analysis to identify pairs of highly
correlated wavelengths and replace them with a single wavelength, thereby reducing the
number of input variables and improving model efficiency. The pseudo-code for optimizing
feature wavelengths using correlation is shown in Algorithm 1, where D represents hyper-
spectral data, C is candidate feature wavelengths, W is the weight of each wavelength, F is
optimized feature wavelengths, and PEARSON is the correlation coefficient.

2.4. Classification Methods
2.4.1. K-Nearest Neighbor

The k-nearest neighbor (KNN) algorithm is a classical supervised learning method for
classification problems [24]. The algorithm determines the class of a test sample based on the
classes of its k-nearest neighbors. Specifically, the algorithm calculates the Euclidean distance
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between the test sample and all the training samples. It then identifies the k-nearest samples
as the neighbors of the test sample. Finally, the algorithm determines the category of the test
sample based on the category with the highest frequency among its k-nearest neighbors.

Algorithm 1. The feature wavelength is optimized by correlation

Input: D = n×m, C = {c1, c2, · · · , ck}, W = {w1, w2, · · · , wn}
Output: F
1: function WAVELENGTHOPTIMIZATION (D, C, W)
2: F ← 0
3: for i := 1 to k − 1 do
4: for j := i + 1 to k do
5: if PEANSON

(
ci, cj

)
> 0.8 then

6: if W (ci) < W
(

cj

)
then

7: F ← cj
8: else
9: F ← ci
10: end if
11: end if
12: end for
13: end for
14: return F
15: end function

2.4.2. Support Vector Machine

Support vector machines (SVMs) are a popular type of supervised learning algorithms
that are used for data classification in pattern recognition. The SVM is a generalized linear
classifier that uses a kernel function to transform linearly indistinguishable data in low-
dimensional space into linearly separable data in high-dimensional feature space. This
kernel function constructs the optimal partition in the feature space based on the theory of
structural risk minimization. Our study uses the RBF kernel as the kernel function for the
SVM [25]. To achieve the best classification results, we optimize the parameters of the RBF
kernel using a GA.

2.4.3. Backward Propagation Neural Network

The BP neural network is a widely used multilayer feed-forward neural network
model trained using the error back-propagation algorithm [26]. The BP neural network
consists of an input layer, a hidden layer, and an output layer. During training, the weights
and threshold values of the network are continuously updated using the gradient descent
method to minimize the sum of squared errors between the predicted value and the target
value. In our study, we choose the tansig function as the transfer function of the hidden
layer and the purelin function as the transfer function of the output layer.

3. Evaluation Indicators
3.1. Evaluation Indicators of Variability

Average spectral features can be used to evaluate the variability in spectral features of
different disease levels at specific wavelengths. The average value of the spectra provides
an overall assessment of different disease levels, while sensitivity can be used to evaluate
variability quantitatively [27]. Sensitivity is defined as the ratio of the average reflectance
of the asymptomatic level to the average reflectance of the different disease levels. A
sensitivity greater than 1 indicates a higher average reflectance of the asymptomatic level,
and the greater the sensitivity, the greater the variability. Sensitivity less than 1 indicates a
lower average reflectance of the asymptomatic level, and the smaller the sensitivity, the
greater the variability.
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3.2. Evaluation Indicators of Separability

The confusion matrix, also known as the error matrix, is a matrix with n rows and n
columns, where n is the number of classes. This matrix is a standard format for representing
accuracy evaluations and is shown in Table 2. Various advanced classification metrics can be
obtained from the confusion matrix, including the producer’s accuracy (PA), user’s accuracy
(UA), harmonic mean (HM), overall accuracy (OA), and kappa coefficient (Kappa) [28].
These accuracy metrics provide different perspectives on classification accuracy.

HM =

[
1
2
×
(

1
PA

+
1

UA

)]−1
(10)

OA =
∑4

i=1 Xii

N
(11)

Kappa =
N×∑4

i=1 Xii −∑4
i=1(Xi+ × X+i)

N2 −∑4
i=1(Xi+ × X+i)

(12)

where N is the total number of samples, Xii represents the diagonal elements, Xi+ represents
the sum of the columns of a category, and X+i represents the sum of the rows of a category.
In this study, 70% of the data set is set as the training set and 30% as the test set.

Table 2. Confusion matrix.

Predicted Class
Actual Class

A I M S Totals UA

A X11 X12 X13 X14
4
∑

i=1
X1i

X11

∑4
i=1 X1i

I X21 X22 X23 X24
4
∑

i=1
X2i

X22

∑4
i=1 X2i

M X31 X32 X33 X34
4
∑

i=1
X3i

X33

∑4
i=1 X3i

S X41 X42 X43 X44
4
∑

i=1
X4i

X44

∑4
i=1 X4i

Totals
4
∑

i=1
Xi1

4
∑

i=1
Xi2

4
∑

i=1
Xi3

4
∑

i=1
Xi4 − −

PA X11

∑4
i=1 Xi1

X22

∑4
i=1 Xi2

X33

∑4
i=1 Xi3

X44

∑4
i=1 Xi4

− −
A: asymptomatic; I: initially symptomatic; M: moderately symptomatic; S: severely symptomatic.

4. Results
4.1. Spectral Features of Leaf Spot Disease

Qualitative analysis was performed using the average spectral reflectance of each
disease level. Figure 3a shows the spectral features of each disease level. Photosynthetic
pigment absorption was high in the visible range, with a peak at 520–570 nm (green band)
and a trough at 650–700 nm (red band). Reflectance gradually increased and peaked
in the 700–760 nm range (red band) and remained at a high value in the 760–1000 nm
range (near-infrared band). The spectral reflectance of different disease levels showed that
asymptomatic leaves had the highest peak at 520–570 nm, and reflectance decreased with
increasing disease levels. Asymptomatic leaves also had the smallest reflectance values
at 650–700 nm, with a slight increase as the disease class increased. Reflectance gradually
increased from 670 to 760 nm, with different disease classes showing different levels of
the increase, resulting in a blue shift in the “red edge” of spectral reflectance. The highest
reflectance was found in asymptomatic leaves in the 760–1000 nm range, and reflectance
decreased gradually as disease levels increased.
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Figure 3b presents the results of a quantitative evaluation of the variability of different
disease levels using sensitivity. The results showed a local peak in sensitivity for different
disease levels within 520–600 nm, indicating a large variability in spectral reflectance in
this range that increases with the disease level. Within 650–700 nm, weak variability is
observed for the initially symptomatic disease level, with sensitivity close to 1, suggesting
no significant difference between initially symptomatic and asymptomatic disease levels
in this range. For moderately and severely symptomatic disease levels, sensitivity is
less than 1, indicating that their spectral reflectance is smaller than that of asymptomatic
disease levels, with smaller sensitivity values indicating greater differences with increasing
disease levels. In the 700–760 nm range, initially symptomatic disease level sensitivity
increases and decreases with the number of wavelengths. At the same time, the sensitivity
of moderately and severely symptomatic disease levels increases, and the sensitivity of
initially, moderately, and severely symptomatic disease levels gradually decreases between
760 and 1000 nm.

4.2. Result of Feature Wavelength Selection
4.2.1. Comparison with Traditional PCA Loading

Principal component analysis was performed on the hyperspectral reflectance of leaf
spot disease of different severity levels collected in this study. The contributions and
cumulative contributions of the principal components (PCs) with eigenvalues greater than
1 are listed in Table 3. The top principal components with a cumulative contribution rate
greater than 95% and an eigenvalue greater than 1 were selected as candidate principal
components. The top five principal components had a cumulative contribution rate of
95.95%, making them suitable for further analysis. Therefore, the first five principal
components with different disease severity levels were combined, and differentiability
analysis of the principal components was performed by visualization in this study.

Figure 4 depicts the scatter plots and statistical histograms of combinations between
the first five principal components. The best separability between categories was observed
when PC1 was combined with PC2, PC3, PC4, and PC5. Specifically, the combination of
PC1 with PC2 showed the best separability. PC2 and PC3 had good separability when
combined with PC1 but not with other principal components. The scatter plot of PC2 and
PC3 also indicated better aggregation. No separability was observed for PC4 and PC5, and
the feature points of the same category were dispersed. The feature points of PC4 and PC5
in the same category were scattered. Based on these observations, PC1, PC2, and PC3 were
selected as the principal components for feature wavelength selection in this study.
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Table 3. Eigenvalues, contribution rates, and cumulative contribution rates of each principal component.

PCs Eigenvalues Contribution Rate (%) Cumulative Contribution Rate (%)

PC1 339.39 56.47 56.47
PC2 158.17 26.32 82.79
PC3 43.13 7.178 89.97
PC4 26.60 4.43 94.39
PC5 9.29 1.55 95.94

PC: principal component.
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The loading coefficients of each principal component were calculated using conven-
tional PCA loading, and Figure 5 shows the results. Based on analysis of the spectral
features, it is known that the feature wavelengths exist in the visible-near-infrared band
(500–1000 nm) range. Therefore, feature wavelengths were selected based on the positive
and negative peaks of PC1, PC2, and PC3 in the 500–1000 nm range. Significant positive
correlations were observed at 527 nm, 725 nm, and 880 nm for PC1, 626 nm and 688 nm for
PC2, and 571 nm and 706 nm for PC3. Conversely, significant negative correlations were
observed at around 679 nm for PC1, 757 nm for PC2, and 672 nm for PC3. Furthermore,
wavelengths with a correlation greater than 0.8 and larger weights were retained through
correlation analysis between the feature wavelengths of each principal component. The
final feature wavelengths obtained by the traditional PCA loading were 626 nm, 672 nm,
679 nm, 706 nm, 757 nm, and 880 nm.

The loading coefficients in the principal components were weighted based on con-
tribution to obtain the integrated weights of each wavelength, as presented in Figure 6.
The integrated weight curves show that between 400 and 570 nm, the weights gradually
increase with the increase in wavelengths and obtain higher weights within 500–570 nm.
Within 570–620 nm, weight decreases with the wavelength increase. In the 620–671 nm
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range, weight increases with increasing wavelength and obtains a great weight value at
671 nm. Higher weight values were obtained in the range of 760–1000 nm, and the weights
decreased gradually with the increase in wavelengths. The candidate feature wavelengths
of 514 nm, 570 nm, 671 nm, 750 nm, and 959 nm were obtained based on the local peaks.
The final feature wavelengths were obtained through correlation optimization of 570 nm,
671 nm, and 750 nm.
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wavelengths.

A comparison between the feature wavelengths selected by conventional PCA loading
and those selected by improved PCA loading (I-PCA loading) is presented in Figure 7. PCA
loading selected more feature wavelengths than I-PCA loading, mostly in the green, red,
red-edge, and near-infrared bands. However, sensitivity analysis shows that wavelengths
with greater variability for different disease levels are mainly concentrated in the green,
red, and near-infrared bands. The sensitivity in the red-edge band is unstable. In contrast,
I-PCA loading accurately selects the wavelengths with large differences in each disease
level, and there is no over-selection or repeated selection. Therefore, I-PCA loading is a
more effective method for selecting feature wavelengths with high accuracy.

Figure 8 shows an evaluation of the ability to detect disease levels by using KNNs,
SVMs, and BP for the feature wavelengths extracted by PCA loading and I-PCA loading,
respectively. In the green band, the accuracy of I-PCA loading is higher than that of PCA
loading for all classifiers. In the red band, the accuracy of I-PCA loading is slightly lower
than that of PCA loading using KNNs and BP, while the accuracy of the wavelength
extracted by I-PCA loading is higher than that of PCA loading using an SVM. I-PCA
loading is slightly lower than PCA loading when using KNNs and BP in the near-infrared
band. The SVM results show that I-PCA loading obtains the same accuracy as PCA loading.
In the red-edge band, I-PCA loading did not obtain a feature wavelength, while the feature
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wavelength selected by PCA loading obtained lower accuracy. The results indicate that
I-PCA loading produces feature wavelengths with similar accuracy to PCA loading but
with fewer feature wavelengths, improving the classification model’s efficiency.

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 6. Loading coefficient curves of the improved PCA loading method and the selected feature 

wavelengths. 

A comparison between the feature wavelengths selected by conventional PCA load-

ing and those selected by improved PCA loading (I-PCA loading) is presented in Figure 

7. PCA loading selected more feature wavelengths than I-PCA loading, mostly in the 

green, red, red-edge, and near-infrared bands. However, sensitivity analysis shows that 

wavelengths with greater variability for different disease levels are mainly concentrated 

in the green, red, and near-infrared bands. The sensitivity in the red-edge band is unstable. 

In contrast, I-PCA loading accurately selects the wavelengths with large differences in 

each disease level, and there is no over-selection or repeated selection. Therefore, I-PCA 

loading is a more effective method for selecting feature wavelengths with high accuracy. 

 

Figure 7. Feature wavelengths selected by conventional PCA loading and improved PCA loading. 

Figure 8 shows an evaluation of the ability to detect disease levels by using KNNs, 

SVMs, and BP for the feature wavelengths extracted by PCA loading and I-PCA loading, 

respectively. In the green band, the accuracy of I-PCA loading is higher than that of PCA 

loading for all classifiers. In the red band, the accuracy of I-PCA loading is slightly lower 

than that of PCA loading using KNNs and BP, while the accuracy of the wavelength ex-

tracted by I-PCA loading is higher than that of PCA loading using an SVM. I-PCA loading 

is slightly lower than PCA loading when using KNNs and BP in the near-infrared band. 

The SVM results show that I-PCA loading obtains the same accuracy as PCA loading. In 

the red-edge band, I-PCA loading did not obtain a feature wavelength, while the feature 

wavelength selected by PCA loading obtained lower accuracy. The results indicate that I-

PCA loading produces feature wavelengths with similar accuracy to PCA loading but 

with fewer feature wavelengths, improving the classification model’s efficiency. 

Figure 7. Feature wavelengths selected by conventional PCA loading and improved PCA loading.

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8. Classification results of the feature wavelengths selected by PCA loading and I-PCA load-

ing. (a) and (b) are OA and Kappa for KNNs, (c) and (d) are OA and Kappa for SVMs, and (e) and 

(f) are OA and Kappa for BP. 

4.2.2. Comparison with Other Feature Wavelength Selection Methods 

This study compares the proposed feature wavelength selection method with com-

monly used methods, including CARS [29], LSMI [30], RF [31], Relief-F [32], SPA [33], 

UVE [34], and PCA loading. The above methods obtain the weights of each wavelength, 

and the peaks or troughs of local regions are obtained as the candidate feature wave-

lengths. In order to test the classification accuracy of feature selection methods with a 

small number of features, correlation analysis was performed between the candidate 

wavelengths in this study, and wavelengths with a correlation greater than 0.8 and larger 

weights were retained to obtain the final feature wavelengths. The results are shown in 

Table 4. The results show that CARS extracted 10 feature wavelengths, the largest number 

of feature wavelengths extracted among all methods. LSMI, SPA, and I-PCA loading ob-

tained three feature wavelengths, the lowest number of feature wavelengths extracted 

among all methods. 

Table 4. Results of different feature wavelength selection methods. 

Methods Number of Wavelengths Feature Wavelengths (nm) 

CARS 10 404, 411, 435, 504, 534, 584, 667, 884, 989, 996 

LSMI 3 519, 667, 850 

RF 6 465, 536, 626, 701, 932, 997 

Relief-F 7 412, 421, 458, 540, 660, 760, 996 

Figure 8. Classification results of the feature wavelengths selected by PCA loading and I-PCA loading.
(a) and (b) are OA and Kappa for KNNs, (c) and (d) are OA and Kappa for SVMs, and (e) and (f) are
OA and Kappa for BP.

4.2.2. Comparison with Other Feature Wavelength Selection Methods

This study compares the proposed feature wavelength selection method with com-
monly used methods, including CARS [29], LSMI [30], RF [31], Relief-F [32], SPA [33],
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UVE [34], and PCA loading. The above methods obtain the weights of each wavelength,
and the peaks or troughs of local regions are obtained as the candidate feature wavelengths.
In order to test the classification accuracy of feature selection methods with a small number
of features, correlation analysis was performed between the candidate wavelengths in this
study, and wavelengths with a correlation greater than 0.8 and larger weights were retained
to obtain the final feature wavelengths. The results are shown in Table 4. The results
show that CARS extracted 10 feature wavelengths, the largest number of feature wave-
lengths extracted among all methods. LSMI, SPA, and I-PCA loading obtained three feature
wavelengths, the lowest number of feature wavelengths extracted among all methods.

Table 4. Results of different feature wavelength selection methods.

Methods Number of Wavelengths Feature Wavelengths (nm)

CARS 10 404, 411, 435, 504, 534, 584, 667, 884, 989, 996
LSMI 3 519, 667, 850

RF 6 465, 536, 626, 701, 932, 997
Relief-F 7 412, 421, 458, 540, 660, 760, 996

SPA 3 547, 696, 958
UVE 9 405, 412, 489, 534, 595, 682, 882, 988, 999

PCA Loading 6 626, 672, 679, 706, 757, 880
I-PCA Loading 3 570, 671, 750

The disease detection ability of the feature wavelengths selected by the above eight
methods was evaluated using KNNs, SVMs, and BP, and the results are shown in Table 5.
From the comparison results, I-PCA loading obtained the highest classification accuracy
with KNNs, and Relief-F and PCA loading obtained the second- and third-highest classifica-
tion accuracy, respectively. In the SVM, Relief-F obtained the highest classification accuracy.
I-PCA loading obtained the second-highest accuracy. In BP, PCA loading obtained the
highest classification accuracy, Relief-F obtained the second-highest accuracy, and I-PCA
loading obtained the third-highest accuracy. Relief-F, PCA loading, and I-PCA loading
obtained high classification accuracy with all the different classifiers, with seven, six, and
three feature wavelengths, respectively. The results demonstrate that I-PCA loading selects
fewer feature wavelengths while achieving stable and high classification accuracy.

Table 5. Classification results of feature wavelength selection methods.

Methods
KNN SVM BP

OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

CARS 90.34 86.92 95.33 93.71 95.37 93.78
LSMI 90.65 87.35 93.77 91.60 92.73 90.19

RF 88.16 83.98 94.08 92.01 94.03 91.96
Relief-F 95.02 93.28 97.51 96.65 96.73 95.60

SPA 87.85 83.57 92.52 89.95 91.48 88.55
UVE 90.97 87.78 96.26 94.97 95.42 93.83

PCA Loading 94.70 92.85 96.57 95.39 96.98 95.93
I-PCA Loading 95.33 93.70 96.88 95.81 95.73 94.26

OA: overall accuracy; Kappa: kappa coefficient.

5. Discussion

In this study, we evaluated the variability in wavelengths by analyzing the average
spectral features and sensitivity of different disease levels. Our findings indicate that
the wavelengths with the highest variability are primarily located in the green, red, and
near-infrared bands. These results are consistent with those reported in [35]. Specifically,
The authors of [36] proposed that the decline in reflectance in the green band could be
attributed to the breakdown of chlorophyll. In addition, the variation in reflectance in the
red band might be related to changes in carotenoid and lutein pigments. On the other hand,
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the authors of [37,38] suggested that the decline in reflectance in the NIR region is mainly
influenced by changes in leaf structure and water content.

The studies of [39,40] have shown that different crops and diseases have distinct spec-
tral responses, and identifying specific feature wavelengths is crucial for accurate disease
detection. Therefore, in this study, we used the proposed I-PCA loading method to assign
weights to each wavelength, and we obtained high weight values in the ranges of 500–570 nm,
650–700 nm, and 760–1000 nm. We then used the local peak and correlation optimization
method to select 570 nm, 671 nm, and 750 nm as feature wavelengths. Notably, 570 nm was
in the green band, 671 nm was in the red band, and 750 nm was in the near-infrared band.
These findings align with our analysis of spectral variability among disease levels.

Other studies have also used the feature wavelengths identified in this study. For
example, the authors of [41] used 570 nm to detect FHB in late flowering, and the authors
of [42] identified it as a crucial feature wavelength for detecting apple blasts. Additionally,
670 nm is commonly used to estimate leaf chlorophyll content and is a feature wavelength
widely used in vegetation indices such as the NDVI [43], MSR [44], MCARI [45], TCARI [46],
and OSAVI [47]. Additionally, 750 nm was identified by [48] as the most distinguishable part
of the lesion detection spectrum. Our findings suggest that diseases cause changes in crops’
physiological and biochemical parameters, leading to distinct spectral responses. Identifying
and utilizing specific feature wavelengths can greatly enhance disease detection accuracy.

This study employed eight feature selection methods to identify feature wavelengths,
including CARS, LSMI, RF, Relief-F, the SPA, UVE, PCA loading, and I-PCA loading. We
found that different methods produced different feature wavelengths, which can be at-
tributed to the different evaluation criteria of the methods. Similar findings were reported
by the Zhang [49] and Balabin [50], who used 10 and 16 optimal wavelength selection
methods, respectively. Notably, the feature wavelengths identified by all methods were
mostly concentrated in the green, red, red-edge, and near-infrared bands, consistent with
variability in wavelengths. When we evaluated the feature wavelengths using KNNs, SVMs,
and BP, we found that all models achieved satisfactory accuracy, with OA and Kappa ex-
ceeding 85% and 80%, respectively. Although different methods selected different feature
wavelengths, these features were still concentrated in similar regions, demonstrating their
ability to enhance detection capability. There were often cases of excessive and repetitive
selection in methods with a larger number of selected feature wavelengths. For example,
CARS and UVE selected 10 and 9 feature wavelengths, respectively. However, some of
their selected feature wavelengths were concentrated between 400 and 420 nm and 980
and 1000 nm, which did not correspond with the results of wavelength difference analy-
sis. Therefore, selecting too many feature wavelengths may not improve disease detection
accuracy. In addition, the LSMI, SPA, and I-PCA loading methods were used for feature
selection, and the results show that only three feature wavelengths were selected. The KNN,
SVM, and BP algorithms were used to evaluate the disease detection ability of different
feature wavelengths. The results showed that LSMI achieved an OA and Kappa of over
90% and 87%, respectively, with all classifiers. In comparison, the SPA achieved an OA
and Kappa of over 87% and 83%, respectively, with all classifiers. Other studies have also
demonstrated the effectiveness of the LSMI and SPA methods in feature selection [30,33].
Therefore, selecting fewer feature wavelengths can achieve higher disease detection accuracy.
Similar to the LSMI and SPA methods, the three feature wavelengths selected in this study
were located in the green, red, and near-infrared bands and detected with high a degree
of accuracy. Furthermore, it can be seen from analysis of wavelength difference that the
feature wavelengths selected in this study are better than those selected by the LSMI and
SPA methods, which may be the reason why the selected feature wavelengths performed
better in disease detection in this study.

In this study, various feature selection methods were evaluated using different clas-
sifiers, with I-PCA loading identified as the best-performing method. Specifically, the
SVM classification results using feature wavelengths selected by I-PCA loading achieved
high OA and Kappa scores of 96.88% and 95.81%, respectively. Further analysis of disease
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severity detection using the selected feature wavelengths, and the results are shown in
Table 6. The results revealed that the HM values for all categories exceeded 96%, with the
highest HM of 98.55% achieved for level S. More samples incorrectly predicted A levels as I
levels, and fewer samples incorrectly predicted I levels as A levels, resulting in a PA below
95% and a UA above 98% for A levels. These results suggest that the model can accurately
predict healthy areas, which can aid in the timely detection and control of crop diseases in
real-world production settings.

Table 6. Confusion matrix for detecting disease severity based on an SVM.

Predicted Class
Actual Class

A I M S Totals UA (%)

A 74 1 0 0 75 98.67%
I 4 99 2 0 105 94.29%

M 0 1 71 2 74 95.95%
S 0 0 0 67 67 100.00%

Totals 78 101 73 69 321 −
PA (%) 94.87% 98.02% 97.26% 97.10% − OA = 96.88%

HM (%) 96.77% 96.15% 96.60% 98.55% − Kappa = 95.81%
A: asymptomatic; I: initially symptomatic; M: moderately symptomatic; S: severely symptomatic; UA: user’s
accuracy; PA: producer’s accuracy; HM: harmonic mean; OA: overall accuracy; Kappa: kappa coefficient.

6. Conclusions

This study collected spectral reflectance data for peanut leaf spot disease with different
severity levels in the laboratory. It was found that disease severity significantly affects
variability in wavelengths within the green, red, and near-infrared bands. This study
proposed an improved PCA loading method and obtained three feature wavelengths at
570 nm, 671 nm, and 750 nm to identify the most important feature wavelengths. The
proposed method was also compared with seven commonly used feature selection methods
using KNN, SVM, and BP classifiers. Results showed that the proposed I-PCA loading
method achieved higher classification accuracy with fewer feature wavelengths. The SVM
classifier achieved the highest accuracy, with OA at 96.88% and Kappa at 95.81%. This
study demonstrates that the proposed method effectively detects peanut leaf spot disease.
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