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Abstract: This study aims to investigate the near-infrared spectral properties of Rose Oxide (4-Methyl-
2-(2-methyl-1-propenyl) tetrahydropyran) in wine, establish a quantitative detection, and build
relationships between the chemical groups of Rose Oxide and near-infrared characteristic bands, so
as to provide ideas and references for the near-infrared detection of a low-content aroma substance
in wine. In total, 133 samples with different wine matrices were analyzed using Fourier transform–
near-infrared (FT-NIR) spectroscopy. Min–max normalization (MMN), principal component analysis
(PCA), and synergy interval partial least squares regression (Si-PLSR) were used for pre-processing,
outlier rejection, analysis of spectral properties, and modeling. Finally, the quantitative detection model
was established using the PLSR method and the wine sample containing Rose Oxide was verified
externally. Eight subintervals (4000–4400 cm−1, 4400–4800 cm−1, 5600–6000 cm−1, 6000–6400 cm−1,
6400–6800 cm−1, 6800–7200 cm−1, 7200–7600 cm−1, 8400–8800 cm−1) were determined as the charac-
teristic band intervals of Rose Oxide in the NIR region. Among them, 5600–6000 cm−1 was assigned
to the first overtone C–H stretching in tetrahydropyran ring and methyl as well as the combination
C–H stretching of the CH3 function groups, 6000–6400 cm−1 was assigned to the first overtone C–H
stretching of the C–H=group and the combination C=C stretching in isobutyl, and 8400–8800 cm−1

was assigned to the second overtone C–H stretching and C–O stretching in tetrahydropyran ring as
well as the C–H stretching vibration in methyl. In addition, 4000–4800 cm−1, 6400–6800 cm−1, and
7200–7600 cm−1 were assigned to the C–H stretching vibration, while 6400–7600 cm−1 was assigned
to the C–O stretching vibration. The training result showed that the calibration model (r2

cv of 0.96
and RMSECV of 2.33) and external validation model (r2

cv of 0.84 and RMSECV of 2.72) of Rose Oxide
in wine were acceptable, indicating a good predictive ability. The spectral assignment of Rose Oxide
provides a new way for the NIR study of other terpenes in wine, and the use of the established
Si-PLSR model for the rapid determination of Rose Oxide content in wine is feasible.

Keywords: Rose Oxide (4-Methyl-2-(2-methyl-1-propenyl) tetrahydropyran); de-aromatic wine; NIR
spectroscopy; Si-PLSR; wavebands analysis

1. Introduction

Rose Oxide (4-Methyl-2-(2-methyl-1-propenyl) tetrahydropyran), with strong fragrance
of rose and lychee, is the main component of rose and rose geranium. It is not only used
to prepare flavors, such as rose, leaf, and other flower flavors, but it is also widely used
in upscale cosmetics and the food industry. Surprisingly, many varieties of grapes also
contain Rose Oxide broadly, which enriches their aroma features and makes wine purer and
fresher [1]. As an oxide of monoterpenols, Rose Oxide has a strong volatility. It becomes
a kind of recognizable aroma [2]; even its concentration reduced by three times during
fermentation [3]. Therefore, Rose Oxide is an important sign for identifying the varieties,
years, and origins of wine objectively [4]. Studies have shown that the existence of Rose
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Oxide is highly significant correlated with whether grape and wine have a rose aroma [1].
Although Rose Oxide has a low concentration in wine, it also has a lower odor threshold
with only 0.2 µg/L [4] and a higher odor activity value (OAV) of generally more than
100 [4,5]. This means that Rose Oxide could be easily perceived and contribute significantly
to the overall aroma of wine. In addition, Rose Oxide could react with other terpene
aroma substances and play a decisive role in the formation of aroma when other aroma
substances hold a low concentration [2]. Many studies have revealed that Rose Oxide is the
key compound for bringing out the floral, rose, and even lychee aromas of wine [6,7] and
that it correlates with positive emotions and higher liking scores for wine consumers [8].

However, the quantification of Rose Oxide is complicated as a trace component. Gas
chromatography (GC) coupled to at least one detector, such as a flame ionization detector
(GC-FID) or a mass spectrometer (GC-MS), is the typical method for analyzing the Rose
Oxide content in wine [9]. It is necessary to conduct a pre-treatment of the wine sample,
such as extraction, heating, oscillation, analysis, as well as other steps, and finally use the
instrument to conduct a qualitative and quantitative analysis. These methods are labor-
intensive and costly, and they easily cause the loss of volatility of Rose Oxide. Therefore,
a rapid, simple, and economical method for predicting the content of Rose Oxide as an
alternative to the traditional analysis methods is required. Near-infrared (NIR) spectroscopy
can address these limitations.

The NIR spectrum lies between the visible and IR regions of the electromagnetic spec-
trum in the wavelength range 780–2500 nm and involves the excitation of non-fundamental
vibrations, overtones, and combination modes [10,11]. NIR spectroscopy mainly reflects
the information of hydrogen-containing groups, including C–H (such as methyl, methylene,
methoxy, carboxyl, and so on), O–H (hydroxyl), S–H (sulfhydryl), N–H (amino), and so
on. There is also some other groups’ information (such as C=C, C=O, and so on), but
the intensity is weak. These groups are important components of organic compounds,
which means that the structures and compositions of almost all organic compounds can
be found in the near-infrared spectrum. The process of NIR generally includes spectrum
pretreatment, outlier elimination, band screening, and quantitative model establishment.
Band screening, also called spectrum allocation, aims to detect the feature wavebands of the
chemical groups in targeting ingredients and ensuring the spectral fingerprint information
of the ingredients. It is the basis for establishing the quantitative models and providing
models with a theoretical note. NIR spectroscopy is a simple and non-destructive tech-
nique which generally does not require any sample pretreatment which may result in the
loss of the substance under test. Therefore, it is widely used in agriculture, petroleum,
chemical, tobacco, pharmaceutical, and food industries [12]. Several studies have used NIR
spectroscopy for predicting compounds in wine, such as phenolic compounds [13], trace
metal elements [14], and volatile compounds [9], as well as different terpenes in plants,
such as α-pinene, β-pinene, myrcene, eugenol, cineole, and linalool [11,15]. To the best of
our knowledge, no attempts have been made to establish an association between the NIR
spectrum and terpene profiles of wines, let alone study the spectral characteristics of its
molecular group and create a quick detection method in wines.

Here, we aimed to investigate the spectral properties of Rose Oxide and methods of
quantitatively detecting it in wine. First, based on a single controlled environment (model
wine), the NIR feature wavebands of Rose Oxide were screened using spectral preprocessing,
outlier rejection, and synergy interval partial least squares (Si-PLS) methods. Second, a
quantitative detection method for Rose Oxide was constructed based on these spectral
wavebands using the partial least squares regression (PLSR) method in a relatively complex
environment (de-aromatic wine). Third, wine samples containing Rose Oxide were used
to effectively validate the accuracy and model transferability of the above method. In
this study, NIR spectroscopy was used to analyze the typical terpene compounds in wine,
establish a rapid detection method of Rose Oxide, and hopefully provide methodological
support for the rapid and non-destructive detection of terpene compounds in wine.
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2. Materials and Methods
2.1. Materials

Grape variety to be de-flavored: Cabernet Franc, collected from the Ningxia Helan
Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F
University in October 2021, which contains 222.5 g/L of residual sugar (expressed as
glucose) and 4.6 g/L of acid (expressed as tartaric acid); bacterial strain: a strain of S. cere-
visiae called ACTIFLORE F33 from Lafford Company in France; and the sample set of
external verification: 21 Cabernet Franc dry red wines (produced from wineries at Ningxia
Helan Mountain’s East Foothill) with different concentrations of Rose Oxide were added to
construct external verification wine samples.

2.2. Instruments and Reagents

The instruments and reagents used in the experiment include: HW.SY21-KP8 Electric
Thermostatic Water Bath (Chengfeng Inc., Beijing, China ); ME203E Electronic Balance
(Mettler Toledo Inc., Shanghai, China); FE28pH meter (Mettler Toledo Inc., Shanghai,
China); DW-YL270 Cryogenic Refrigerator (Zhongke Meiling Cryogenic Technology Inc.,
Hefei, Anhui, China); KH-500DE CNC ultrasonic cleaner (Hechuang Ultrasonic Instrument
Inc., Kunshan, Jiangsu, China); Hei-VAP Table Rotary Evaporation Instrument (Hadolf
Instrument Equipment Inc., Shanghai, China); GCMS-QP2020 Gas chromatography–mass
spectrometry instrument (Shimazu Laboratory Equipment Inc., Shanghai, China); Bruker-
TANGO-T Fourier Transform–near-infrared spectrometer (Brock Scientific Instruments
Inc., Hong Kong, China), a built-in automatic background scanning program can timely
eliminate the impact of environmental changes in detection results, equipped with Rock-
SolidTM patent interferometer, multi-layer coating low OH quartz beam splitter, and InGAs
digital detector.

The ultrapure water was obtained from the Milli-Q Pure Water Preparation System
(Millipore Inc., Molsheim, France). The analytically pure-grade reagent, anhydrous ethanol,
tartaric acid, and sodium hydroxide were purchased from Chemical Reagent Inc., Tianjin,
China. The chromatographic grade reagents, 2-octanol (purity ≥ 99.0%) and (+)-Rose Oxide
(purity ≥ 99.0%), were purchased from Sigma-Aldrich Corporation (Beijing, China).

2.3. Methods
2.3.1. Sample Preparation and Data Acquisition

Model wine preparation: In total, 120 mL of anhydrous ethanol, 880 mL of distilled
water, and 5 g of tartaric acid were added to the blue silk-mouthed bottle and mixed evenly
with ultrasonic waves; the pH was adjusted to between 3.2 and 3.4 using saturated NaOH.
This was followed by the addition of cis-Rose Oxide into the configured model wine to
the concentration of 0–40 µg/L (2 µg/L was a step), with a gradient that referred to the
concentration range of Rose Oxide in real wine [16,17]. The sample was refrigerated at 4 ◦C
after being prepared, sealed by the sealing film, and tested quickly and timely to reduce
the volatilization of aroma substances.

De-aromatic wine solution: Ripened Cabernet Franc grapes were picked to make
wine using 200 mg/L of Saccharomyces cerevisiae at 25–27 ◦C after hand-destemming
and crushing. After the alcohol fermentation, the vacuum rotary evaporator was used
to finish the deodorization procedure optimized based on Margaux Cameleyre [18]; the
parameters of the rotary evaporator were set to 50 rpm and 30 ◦C, and two rounds of
rotational evaporation were performed. For the first time, 500 mL of the original wine was
spun in a water bath for 1.5 h. The matrix and ethanol water fractions of the wine sample
were collected and blended to form 500 mL of initial de-aromatic wine, following which
the second spinning was continued with identical parameters and was replenished with
12% ethanol–water to 500 mL again after 1.5 h. The matrix of de-aromatic wine and the
distillate of anhydrous ethanol were collected and blended into the final de-aromatic wine.
Rose Oxide was added to the de-aromatic wine, and the gradient settings and precautions
were the same as those of the simulated wine samples.
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Spectral data acquisition: The NIR spectra of different samples were recorded on a
Fourier transform–near-infrared spectrometer equipped with an indium gallium arsenide
detector from 11,500 to 4000 cm−1. The temperature of the samples was equilibrated at 30 ◦C
in the instrument. Each sample was scanned for 32 s with a spectral resolution of 8 cm−1.

2.3.2. Data Pre-Processing and Outlier Rejection

The analysis process of spectral signals would be interfered with by the redundant
information, spectral overlap, and baseline drift due to the complexity of the wine matrix.
Min–max normalization (MMN) and vector normalization (VN) methods can effectively
reduce redundant information and eliminate the effects of changes in the spectra, such as
light range changes or sample dilution. First derivative (FD) and second derivative (SD)
methods can eliminate the effects of baseline drift or smoothing background interference,
distinguish overlapping peaks, and provide higher resolution and sharper spectral profile
changes than the original spectra [19]. Thus, the above four methods were used to process
the spectral signals of Rose Oxide in model wine and de-aromatic wine. For a spectral signal
x= (x1, x2, . . . , xn), the equations of MMN, VN, FD, and SD were as follows:

xMMN
i =

xi − xmin

xmax − xmin
(1)

xVN
i =

xi√
n
∑

i=1
x2

i

(2)

xFD
i =

xi+g − xi

g
(3)

xSD
i =

xi+g − 2xi + xi−g

g2 (4)

where xi was the i-th vector of x, xmin was the minimum vector of x, xmax was the maximum
vector of x, and g was the window width.

During the acquisition of Rose Oxide spectral signals, human and instrumental errors
may cause some signals to deviate severely from the true value, resulting in outliers. In
this study, principal component analysis (PCA) was used to shine the simples upon the
low-dimensional space, then the outliers would be found according to the Hotelling T2

statistic under the coordinate of first and second principal components [20]. The confidence
level of T2 detection was calculated as follows:

xT(t)PΛ−1PTx(t) ≤ δT2 (5)

δT2 =
(N − 1)(N + 1)

N(N − K)
F (6)

where δT2 was the confidence level of T2 detection, x(t) was the input matrix at the time t,
Λ was the covariance matrix, N was the number of principal components, k was the kth
principal component, and F was the F-distribution.

In this study, two T2 confidence intervals with 99% and 95% were used to reject outliers.
The specific screening criteria were as follows: samples located outside the 99% confidence
interval were directly judged as outliers, and samples located between the two confidence
intervals of 95% and 99% were judged as pending values and had to be validated to decide
whether to reject them, while those located within the 95% confidence space were judged
as excellent values and could be used for subsequent modeling.
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2.3.3. Synergy Interval Partial Least Squares Regression (Si-PLSR)

The NIR spectrum contained abundant information regarding the molecular vibra-
tion absorption of hydrogen-containing groups, with most of them being redundant and
unrelated. The removal of these extraneous spectral bands may significantly reduce the
input variables and improve the accuracy of the prediction model. Therefore, synergy
interval partial least square (Si-PLS) was used to screen the synergy intervals reflecting the
Rose Oxide content [21,22]. Then, the rapid quantitative detection method of the Rose Oxide
content in wine would be available based on the selected intervals. The specific calculation
process was referred to [23]:

Step 1: Constructing PLSR models in the range of 11,500–4000 cm−1 for Rose Oxide.
The root means square error of cross validation (RMSECV) was calculated as:

RMSE =

√
1
n∑n

i=1 (yi − y′)2 (7)

where yi was the measured value of the i-th sample, y′ was the predicted value of the i-th
sample, and n was the number of samples.

Step 2: Dividing the spectral region of 11,600–4000 cm−1 into 19 equal-width subinter-
vals into steps of 400 cm−1. Establishing the regression model of each subinterval by the
PLS correction analysis.

Step 3: Selecting the subintervals, of which the RMSECV were smaller than the
RMSECV calculated by step 1.

Step 4: Establishing the new Si-PLSR model based on the selected subintervals and
evaluating the performance of the model.

2.3.4. External Validation

Twenty-one commercial wines were used to verify the accuracy of rapid detection
models. First, headspace solid-phase microextraction combined with gas chromatography–
mass spectrometry (HS/SPME-GC-MS) was used for quantifying the measured value of
Rose Oxide [24]. The details were as follows:

SPME sample processing: Volatiles were extracted using solid-phase microextraction
using DVB/CAR/PDMS fiber (50/30 µm film thickness, 2 cm Stableflex) assembled with
a 57330-U holder (Supelco, Bellefonte, PA, USA). A wine sample (8 Ml), 2.0 g of NaCl,
2-octanol (final concentration was 400 µg/L), and a magnetic stirring bar were mixed in
a 20 Ml glass vial. The vial was incubated in a thermostatic water bath to equilibrate for
15 min at 40 ◦C, then the fiber was exposed for 30 min at 40 ◦C. This was immediately
followed by thermos-desorption of the extraction fiber in the GC injector for 5 min at
280 ◦C prior to GC-MS analysis. The extraction operation was repeated twice for each wine
sample.

GC-MS analysis: GC-MS-QP2020 equipped with a DB-WAX capillary column (60 mm
× 0.25 mm × 0.25 µm; Agilent J & W, Santa Clara, CA, USA) was used. The carrier gas
was high-purity helium (99.999%) without shunt, and the gas flow rate was 1.5 Ml/min.
The temperature of the GC capillary column was maintained as follows: 40 ◦C for 3 min,
increase to 160 ◦C at a rate of 4 ◦C/min, followed by an increase to 220 ◦C at the rate of
7 ◦C/min, and this temperature was maintained for 10 min. We set the temperature of
the inlet as 250 ◦C, the ion source as 220 ◦C, and the connecting rod as 200 ◦C. We set the
energy of the electron impact source as 70 Ev. Electron ionization mass spectrometric data
were acquired within the mass range of 35–350 m/z at 0.2 s intervals combined with the
selected ion monitoring mode for the quantitative analysis.

Qualitative and quantitative analysis: A calibration curve for the pure standard was
established to analyze the Rose Oxide content in the simulated wine solution by the above
HS/SPME-GC-MS method. Rose Oxide was identified by comparing the retention times,
retention indexes, aroma characteristics, and mass spectra with those of the standards
available in the NIST 17.0 mass spectral library. The concentration of Rose Oxide was
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quantitated by interpolating the relative area of the sample versus the area of the internal
standard (2-octanol) using calibration curves previously established for pure standards.
Then, the predicted value of Rose Oxide was obtained using the NIR model established
in this study, and the validity and practical applicability of the model were judged by
comparing the true values with the predicted values.

2.4. Data Analysis

Microsoft excel was used for processing and preliminary analysis of spectral data,
MATLAB R 2021b (MathWorks Inc., Natick, MA, USA) was adopted for spectrum prepro-
cessing, Si-PLS analysis and model establishment, and Unscrambler X 10.4 (Camo Inc.,
Oslo, Norway) was used to eliminate outliers. Origin 2019 (OriginLab Inc., Northampton,
MA, USA) was used for data drawing.

3. Results
3.1. Original Spectral Analysis of Model and De-Aromatic Wine

The NIR spectral signals of the wine with added Rose Oxide are shown in Figure 1. The
red curves expressed the model wine, and the blue curves expressed the de-aromatic wine.
It could be observed that the different matrix backgrounds exerted a considerable effect on
the height and width of the peaks in the curves, but they had little effect on the position of
the peaks.
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The absorption peak of the de-aromatic wine was 0.30–1.00 (a.u.) higher than that
of the model wine in 5500–11,600 cm−1 and 0.00–0.50 (a.u.) higher in 4000–5000 cm−1.
However, their original spectra overlapped at 5000–5500 cm−1, probably because of the
characteristic absorption of ethanol in this interval, while the ethanol content of both matri-
ces was consistent. Although the matrix solution was different, the change in the spectral
curves caused by a different content of Rose Oxide could be observed at 4500–5500 cm−1,
5500–6000 cm−1, 6000–7500 cm−1, and 8000–9000 cm−1. Therefore, we tentatively specu-
lated that the characteristic waveband of Rose Oxide is mainly located in the wave number
range of these four regions.

3.2. Spectral Pre-Processing and Outlier Rejection

The average data of all original spectral were pretreated using MMN, VN, FD, and SD.
The spectral pre-processing results of Rose Oxide in model wine and de-aromatic wine are
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shown in Figure 2. The spectral curves were narrower and smoother after pre-processing
by the MMN and VN algorithm, but there was no significant difference between the two
curves. The FD and SD algorithms separated the overlapping regions in the different
spectral curves and intensified the absorption peaks around 4500 cm−1, 5500 cm−1, and
7500 cm−1. The RMSE and the determination coefficients (r2) estimated the availability of
four pre-processing methods as shown in Table 1. Among them, MMN had the highest
r2

cv value of 0.14 and the lowest RMSEcv value of 11.34 in de-aromatic wine, while VN
showed the best performance, with an r2

cv value of 0.31 and RMSEcv value of 10.10 in model
wine. Considering MMN exhibits a better performance for both spectral curves, and the
de-aromatic wine was more complex than the model wine, MMN was selected as the best
pre-processing method and applied in subsequent data analysis and model construction,
while VN was only selected as the pre-processing method to explore the theoretical spectral
features of Rose Oxide, which was not used for the subsequent establishment of the Rose
Oxide prediction model.
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Pre-Processing Methods
Model Wine De-Aromatic Wine

r2
c RMSEC r2

cv RMSECV r2
c RMSEC r2

cv RMSECV

MMN 0.75 6.37 0.23 10.70 0.04 12.10 0.14 11.34
VN 0.78 5.97 0.31 10.10 0.06 11.90 0.03 12.30
FD 0.51 8.85 0.12 11.40 0.05 12.00 0.05 12.00
SD 0.14 11.34 0.09 11.80 0.06 11.90 0.09 11.80

Note: r2
c , the correlation coefficient of calibration set (the closer to 1, the better); RMSEC , the calibration set root

mean square error; r2
cv, the correlation coefficient of the cross-validation set; RMSECV , root mean square error of

calibration set (the smaller the better).
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The outliers were found by the Hotelling T2 statistics in the coordinate of PC1 and PC2,
as shown in Figure 3. Out of a total of 133 model wine samples (No. 1 to 133), 3 samples (No.
90, 122, and 130) were excluded as outliers directly at a 99% confidence level. Sample No.
1 was distributed between the 95% and 99% confidence spaces and needed to be verified.
As shown in Table 2, r2

p increased from 0.44 to 0.47, and RMSEP decreased from 9.03 to
8.67 after excluding the No. 1 sample, which indicated the it was an outlier. Out of a total of
133 de-aromatic wine samples (No. 1 to 133), 4 samples (No. 3, 63, 71, and 99) were outside
the 99% confidence interval and were rejected directly. Additionally, five new samples (13,
31, 47, 109, and 128) were distributed between the 95% and 99% confidence spaces and
needed to be verified. As shown in Table 2, the r2

p values increased, and the RMSEP values
decreased by excluding samples No. 13, 109, and 128, while the model effect worsened after
excluding samples No. 31 and 47. Therefore, samples No. 13, 109, and 128 were defined as
outliers and samples No. 31 and 47 passed the verification. After removing the outliers, the
RMSE values were reduced and the r2 values were enhanced in most models (compared
to the results in Table 1), suggesting that outlier rejection may improve the accuracy and
stability of the prediction model. However, the model after pre-processing and outlier
removal still did not work well because an RPD less than 1.5 meant a poor prediction
performance. This may be caused by the interference of unrelated information in a full
waveband. Thus, the feature wavebands of Rose Oxide in wines have to be screened out.
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Table 2. Results of model validation after outlier rejection between 95% and 99% confidence space.

Sample Exclusion r2
c RMSEC r2

p RMSEP RPD

Model
wine

All samples (except number 90, 122, and 130) 0.78 5.93 0.44 9.03 1.33
1 0.79 5.79 0.47 8.67 1.38

De-aromatic
wine

All samples (except number 3, 63, 71, and 99) 0.61 7.95 0.11 11.60 1.06
13 0.70 7.06 0.14 11.30 1.08
31 0.67 7.32 0.09 11.70 1.05
47 0.57 8.37 0.08 11.80 1.04

109 0.63 7.82 0.18 11.10 1.10
128 0.71 6.86 0.22 10.80 1.13

Note: r2
p, the correlation coefficient of the validation set; RMSEP, validation set root mean square error; RPD, the

ratio of prediction to deviation (RPD < 1.5: poor model. 1.5 ≤ RPD < 2.5: general model. 2.5 ≤ RPD < 5: good
model. RPD > 5: excellent model).

3.3. Si-PLS Analysis

Rose Oxide, as a monoterpene cyclic ether compound with a tetrahydropyran ring,
is attached to a methyl and an isobutylene group, and possesses C=C, C–H, C–O–C, –CH3,
and –CH2 functional groups. In this study, the Si-PLS method was used to extract the
feature bands. The full wavenumber (11,600–4000 cm−1) range was divided into 19 equal
subintervals, with each subinterval modeled separately. The experimental results were
shown in Figure 4. The RMSECV values for subintervals 8, 11, 12, 13, 14, 15, 18, and
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19 were smaller than the RMSECV values (10.7 and 12.4) modeled for the full band in
model and de-aromatic wine, while the remaining subintervals had lager RMSECV values,
which suggested that the model built with these eight subintervals would be better. The
eight subintervals of two different background matrices were identical, indicating that
they contained the feature information of Rose Oxide. Indeed, the references regarding
the function group and spectral structure of Rose Oxide were limited. However, Davis
et al. [25] conducted a study on the same functional groups in other chemicals, such as
alkanes, alkenes, ethers, and tetrahydropyran, as shown in Table 3. It can be shown that
the overtones of CH3 stretching and deformation modes were largely responsible for the
strong absorption region of 5901–5909 cm−1 (the first overtone) and 8264–8696 cm−1 (the
second overtone), while the combination C–H stretching vibration bands of the CH3 group
were at 4100, 4395, 4400, 4500–4545, 5520, 5814, 7355, and 7263 cm−1 in alkanes. The first
overtone C–H stretching of the C–H=group bands were at 6100–6200 cm−1, while the
combination C=C stretching bands at 4482, near 4600, 4670–4780, and 6130 cm−1, were
found in alkenes. Moreover, the C–H stretching bands of CH and CH2 functional groups in
tetrahydropyran at 5565–6150 and 8040–9320 cm−1 were assigned to the first and second
overtones, respectively, while bands at 3885–4795, 6500, and 7500 cm−1 were assigned to
the combination regions. The C–O–C group was readily identified by the second overtone
bands at 8300 and 8495 cm−1 and the combination bands at 6400–7515 cm−1 in ethers.
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Table 3. Spectral mapping analysis of functional groups in similar substances of Rose Oxide.

Chemicals Assignment Groups
Wave Numbers (cm−1)

First Overtone Second Overtone Combination Regions

Alkanes
V(C–H) 5555–5882 8264–8696 6666–7090, 4545, and 4500

V(–CH2–) Near 6135 Near 8290 4545 and 4525

V(–CH3) 5901–5909 8264–8696
4500–4545, 4395, 4100, 4400,

5520,
5814, 7355, and 7263

Alkenes
V(C–H=) 6100–6200

V(=CH2) About 9260, 8787–9009,
and 9091

V(C=C) 4482, near 4600, 4670–4780,
and 6130

Tetrahydropyran V(C–H) 5565–6150 8040–9320 3885–4795, 6500, and 7500

Ethers

V(C–H) 3800–4500 and 6400–7515
V(–CH2–) 5690 and 5790
V(–CH3) 5898 and 5910

V(CH–O–) 8300 6400–7515
V(CH2–O–) 8495

In this study, eight subintervals (4000–4400 cm−1, 4400–4800 cm−1, 5600–6000 cm−1,
6000–6400 cm−1, 6400–6800 cm−1, 6800–7200 cm−1, 7200–7600 cm−1, 8400–8800 cm−1) were
recognized as the characteristic bands of Rose Oxide using the Si-PLS method. According to
the assignments of the relevant groups mentioned in Table 3 and the eight characteristic
intervals identified using the Si-PLS method, the group assignments of chemical structures
in Rose Oxide were shown in Table 4. We observed that bands at the wave number region
5600–6000 cm−1 were due to the first overtone of C–H stretching in the tetrahydropyran
ring and methyl group, as well as the combination of the C–H stretching of the CH3 function
groups. Furthermore, bands between 6000 cm−1 and 6400 cm−1 were assigned to the first
overtone C–H stretching of the C–H= group and the combination C=C stretching in isobutyl
and the wavenumber of 8400–8800 cm−1 belonged to the second overtone C–H stretching
and C–O stretching in the tetrahydropyran ring, as well as the C–H stretching vibration
in the methyl group. For the combination regions, 4000–4800 cm−1, 6400–6800 cm−1, and
7200–7600 cm−1 were assigned to the C–H stretching vibration, while 6400–7600 cm−1

was assigned to the C–O stretching vibration. These represented the spectral fingerprint
information of Rose Oxide and are important for spectral identification and modeling
applications.

Table 4. Group assignment of different chemical structures in Rose Oxide.

Chemical Structure Assignment Group
Wave Numbers (cm−1)

First Overtone Second Overtone Combination Regions

Tetrahydropyran ring V(C–H) 5600–6000 8400–8800 4000–4800, 6400–6800, and
7200–7600

V(C–O) 8400–8800 6400–7600

Methyl V(CH3) 5600–6000 8400–8800 4000–4800, 5600–6000,
7200–7600

Isobutyl V(C–H=) 6000–6400
V(C=C) 4400–4800, 6000–6400

Nevertheless, the individual intervals included limited information and did not com-
pletely reflect the absorption properties of the Rose Oxide spectra. Therefore, subinter-
vals 8, 11, 12, 13, 14, 15, 18, and 19 (corresponding to wave numbers: 8800–8400 cm−1,
7600–5600 cm−1, and 4800–4000 cm−1) were selected as joint intervals and re-modeled
using the PLSR method. According to the results of joint interval modeling shown in
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Table 5, the r2
c and RMSEc were 0.97 and 2.22 for the model wine and 0.97 and 2.36 for the

de-aromatic wines, respectively; the r2
cv and RMSECV were 0.96 and 2.55 for the model

wine and 0.96 and 2.33 for the de-aromatic wines, which significantly improved the stability
and predicted the accuracy of the model. The considerable improvement in the RPD value
from 0.99 to 5.24 in de-aromatic wine indicated that a screened joint interval excluded a
large amount of irrelevant information and condensed the spectral information of Rose
Oxide, which laid the foundation for a further investigation of the spectral characteristics
of its molecular groups and chemical bonds. The results of the best prediction model for
the Rose Oxide were presented in Figure 5. It was apparent that the validation data (cross-
validation method used in this study) were in good agreement with the resulting model.
The correlation between the values tested by HS/SPME-GC-MS and the NIR calibration for
the different wine substrates was good, and the models showed a satisfactory fitting result
and predictive ability.

Table 5. Results of full-band and joint interval modeling of model wine and de-aromatic wine.

Interval
Combinations

Model Wine De-Aromatic Wine

r2
c RMSEC r2

cv RMSECV RPD r2
c RMSEC r2

cv RMSECV RPD

Full waveband 0.75 6.37 0.23 10.70 1.19 0.04 12.10 0.14 11.34 0.99
Joint interval 0.97 2.22 0.96 2.55 4.78 0.97 2.36 0.96 2.33 5.24Agronomy 2023, 13, 1123 12 of 16 

 

 

 
Figure 5. The results of the best prediction model for Rose Oxide. (a) The model wines; (b) the de-
aromatic wines. 

Table 5. Results of full-band and joint interval modeling of model wine and de-aromatic wine. 

Interval  
Combinations 

Model Wine De-Aromatic Wine 
2
cr  CRMSE  2

cvr  CVRMSE  RPD 2
cr  CRMSE  2

cvr  CVRMSE  RPD 
Full waveband 0.75 6.37 0.23 10.70 1.19 0.04 12.10 0.14 11.34 0.99 
Joint interval 0.97 2.22 0.96 2.55 4.78 0.97 2.36 0.96 2.33 5.24 

3.4. External Validation 
The external validation aimed at estimating the predictive ability of the model based 

on a sample set that has not been included in the modeling process. In this study, the 
external validation of the PLS model for Rose Oxide in de-aromatic wine was conducted 
with the set of 21 samples, as shown in Table 6. The 2

p
r was 0.84 (higher than 0.80), indi-

cating that the PLS models for Rose Oxide based on NIR spectra explained 84.00% of the 
variation in the data. The RPD value obtained for the Rose Oxide in the external validation 
was 2.36 (higher than 1.50) and the PRMSE  value was 2.72, indicating the good predic-
tion capacity of the NIR models for Rose Oxide in real wines. The regression equations are 
also presented in Table 6. It could be obtained that the Rose Oxide values tested by 
HS/SPME-GC-MS and the NIR calibration were similar. The results of external validation 
showed that this model could predict the Rose Oxide content of real wine to some extent, 
although the amount of information that can be explained was limited compared to the 
model built from the calibration set samples. On the one hand, the presence of other aro-
matic substances in real wine may affect the feature waveband of Rose Oxide, while on the 
other hand, it might be caused by the interference of other chemicals in the matrix. In 
conclusion, improving the accuracy of the external validation of the model is important 
for the transfer and application of the model, which still requires extensive research in the 
future. 

Table 6. External validation of the established PLS models based on de-aromatic wine for Rose Oxide 
(μg/L) in real wines. 

Spectral Number External Validation 
 PRMSE  RPD 2

pr  Regression Equation 
21 2.72 2.36 0.84 y = 0.717x + 3.5288 

  

Figure 5. The results of the best prediction model for Rose Oxide. (a) The model wines; (b) the
de-aromatic wines.

3.4. External Validation

The external validation aimed at estimating the predictive ability of the model based
on a sample set that has not been included in the modeling process. In this study, the
external validation of the PLS model for Rose Oxide in de-aromatic wine was conducted
with the set of 21 samples, as shown in Table 6. The r2

p was 0.84 (higher than 0.80), indicating
that the PLS models for Rose Oxide based on NIR spectra explained 84.00% of the variation
in the data. The RPD value obtained for the Rose Oxide in the external validation was 2.36
(higher than 1.50) and the RMSEP value was 2.72, indicating the good prediction capacity
of the NIR models for Rose Oxide in real wines. The regression equations are also presented
in Table 6. It could be obtained that the Rose Oxide values tested by HS/SPME-GC-MS and
the NIR calibration were similar. The results of external validation showed that this model
could predict the Rose Oxide content of real wine to some extent, although the amount
of information that can be explained was limited compared to the model built from the
calibration set samples. On the one hand, the presence of other aromatic substances in real
wine may affect the feature waveband of Rose Oxide, while on the other hand, it might be
caused by the interference of other chemicals in the matrix. In conclusion, improving the
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accuracy of the external validation of the model is important for the transfer and application
of the model, which still requires extensive research in the future.

Table 6. External validation of the established PLS models based on de-aromatic wine for Rose Oxide
(µg/L) in real wines.

Spectral Number External Validation

RMSEP RPD r2
p Regression Equation

21 2.72 2.36 0.84 y = 0.717x + 3.5288

4. Discussion
4.1. Spectral Band Allocation of Rose Oxide

The NIR technology is also called “black box” technology. Most studies pay little atten-
tion to the connection between the chemical groups and spectral wavebands of substances
in “black box”. In fact, it is still beneficial to the analysis and application of near-infrared
spectroscopy to master the distribution of the organic compounds near-infrared band. In
this study, the near-infrared waveband allocation of Rose Oxide was analyzed based on the
model wine substrate, and eight feature waveband subintervals were screened using the
Si-PLS method for associating with the chemical groups of Rose Oxide. In fact, it is difficult
to accurately attribute the near-infrared band because the near-infrared band may be the
combination of several different fundamental frequency double and harmonic spectrum
bands, and there is no sharp peak and baseline separation of spectral peaks, mostly over-
lapping peaks and wide peaks. In this study, the simulation of wine substrate and the
Si-PLS method were adopted to avoid the above defects. On one hand, the model wine is a
simple matrix with alcohol and pH values consistent with real wine, which reduces the
interference of other chemical components while simulating the actual situation as much
as possible. On the other hand, although it is hard to accurately locate the near-infrared
band, the distribution range can be expanded by screening the feature bands in the form
of a joint interval so that the broad peaks of near-infrared can be basically distributed in
the sub-interval. In the process of chemical group allocation, the distribution of chemical
bonds will always be the focus because the absorption of organic matter in the near-infrared
band is generally caused by various chemical bond stretching vibrations. In this study, the
frequency doubling and co-frequency absorption of tetrahydropyran rings, C–H bonds,
C–O bonds, and C=C bonds at different positions on the methyl and isobutene groups
of rose ether were assigned to eight selected characteristic bands. It can be observed
that wavebands 5600–6000 cm−1 were related to the first overtone C–H stretching in the
tetrahydropyran ring and methyl group, as well as the combination C–H stretching of the
CH3 function groups, which has been substantiated by the results of other studies. For
example, Tosi and Pinto [26] found that bands near 5905 cm−1 in all the hydrocarbons
can be attributed to the methyl group. Burns and Ciurczak [27] showed that 5700 cm−1,
5810 cm−1, and 5900 cm−1 were due to the 2v (C–H) vibration of the CH2 functional
group of cyclohexane and 2v (C–H) of the CH3 groups of hydrocarbons with the methyl
group. Bands between 6000 cm−1 and 6400 cm−1 were assigned to the first overtone C–H
stretching of the C–H=group and the combination C=C stretching in isobutyl. As described
by Gerasimov and Snavely [28], 6120, 6130, 6140, and 6200 cm−1 corresponded to the CH
stretching bands of vinyl (CH2=CH–) and vinylidene (CH2=C<), which was consistent with
the results obtained in this study. In addition, the distribution of other characteristic bands
has been confirmed by relevant studies. There are also studies that used the fundamental
frequency of chemical substances in the mid-infrared region to calculate their frequency
doubling and frequency co-absorption bands in the near-infrared region, which can provide
a new direction for the near-infrared spectral band attribution analysis of Rose Oxide.
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4.2. Potential of Near-Infrared Spectroscopy Models of Rose Oxide

De-aromatic wine is often used to explore the perceptual interaction among aromas in
wine because it is a modeling background substrate obtained from real wine based on a
strict de-aromatic procedure. Except for the absence of aroma substances, the non-volatile
substrate is consistent with real wine [18]. In this study, the prediction model of Rose Oxide
was established based on the de-aromatic wine matrix. The experiment shows that the
prediction model of Rose Oxide can explain 84% of the information with an RPD value
greater than 1.5, indicating that the method had a certain feasibility. Indeed, many studies
have taken the near-infrared detection of volatile aroma substances into consideration. For
example, NIR technology combined with the PLS method was used to detect esters and
higher alcohols in wine, and it achieved a good prediction [9]. In addition, NIR technology
was used to detect volatile aroma substances such as esters and short-chain fatty acids in
Riesling wine, and the model established based on PLS has also shown good prediction
results [29]. A NIR correction model of oak volatiles was established in dry red wine
using the PLS method, of which the r2 was greater than 0.86 and the RPD was greater than
1.5 [30]. These results indicate that NIR spectroscopy can be used for the rapid detection of
volatile aroma substances in wine. However, the majority of previous research has been
aimed at the near-infrared analysis of volatile substances with a relatively rich content in
wine, such as esters and higher alcohols. There are many compounds in wine with a low
content, such as Rose Oxide, but with a great aroma contribution. Their rapid detection is
also particularly important. Under the condition of modeling based on real wine substrate,
the aroma substances of Rose Oxide are often ignored because the lengthy pre-treatment will
lead to the loss of Rose Oxide in the wine sample, which would result in an error in the test
results. In this study, a modeling sample set was constructed based on the standard for Rose
Oxide in different concentrations and de-aromatic wine substrates. Under the background
of a substrate simulating real wine samples to the greatest extent, the measured values
of Rose Oxide could be accurately obtained, and a wide range of modeling concentrations
could be obtained, which had a good universality for the rapid detection of the aroma
substances of Rose Oxide. It provides methodological support for the near-infrared rapid
nondestructive detection of similar aroma substances in wine.

5. Conclusions

In this study, NIR spectroscopy was used to address the waveband allocation and
quantitative prediction analysis of Rose Oxide. First, MMN and VN were used to pro-process
the spectral signal of the de-aromatic wine and the model wine, and PAC was used to find
the outliers. Then, Si-PLS was used to select the related spectral subintervals of the Rose
Oxide, which improved the accuracy of the prediction model. Finally, the prediction model
of the Rose Oxide content in de-aromatic wine was established and verified in real wine. The
prediction model with a high r2 and low RMSE was effective for detecting the content of
Rose Oxide in wines under certain conditions, and it provided methodology support for the
quantitative analysis of other terpenes in wine using this method. Since the wine samples
in this study were collected from the producing area in the wine region of the Ningxia
Helan Mountain’s East Foothill, whether the Rose Oxide model is applicable to the analysis
of other producing areas or imported wine samples needs to be validated and optimized.
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