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Abstract: High yields and low carbon emissions are new challenges for modern crop production.
Balancing the crop yield and reducing greenhouse gas (GHG) emissions has become a new field of
agronomic technology innovation. Cereal-legume intercropping is a typical diversification planting
system, which has been expected to achieve the dual goals of high production and low GHG
emissions. However, the synergistic effect of integrating various technologies in an intercropping
system on GHG emissions and whether it will achieve the high yield and low emissions goal remains
to be determined. Therefore, bibliometric analysis has investigated the worldwide development
trend of cereal-legume intercropping designs. The literature on the GHG emissions of the cereal—-
legume intercropping system was summarized. Additionally, the effects and mechanisms of different
agricultural management methods regarding soil nitrous oxide and carbon dioxide emissions in
the cereal-legume intercropping system were summarized. The research on GHG emissions of
cereal-legume intercropping systems in non-growing seasons must be revised. In situ observations
of GHG emissions from intercropping systems in different regions should be strengthened. This
work is valuable in supporting and evaluating the potential of GHG reduction in a cereal-legume
intercropping system in various farming areas.

Keywords: bibliometric analysis; soil greenhouse gas emissions; crop residue retention; nitrogen
fertilizer; tillage

1. Introduction

Mitigating global warming caused by greenhouse gas (GHG) emissions is challenging
for all of humanity. As emphasized by the International Panel on Climate Change (IPCC)
Special Report on Global Warming of 1.5 °C (SR1.5) in 2018, drastic measures are urgently
needed to reduce the risks and effects of climate change by limiting the increase in the
global average temperature to 1.5 °C above the pre-industrial level [1]. Agricultural
production has been considered one of the essential contributors to the anthropogenic
source of non-carbon greenhouse gases (GHGg) [2]. It is estimated that the food system
was responsible for 25% to 30% of global emissions, around one-third if we include all
agricultural products [3]. Meanwhile, agriculture also has considerable potential to mitigate
climate change [4].

GHG emissions from farmland soil greatly depend on cultivation practices. Intercrop-
ping, as a classical multi-cropping system, has been widely demonstrated to enhance the
crop yield and nutrient use efficiency by exploiting niche crop and seasonal differentiation
and positive interactions between organisms, if appropriately managed. Therefore, inter-
cropping is a crucial way to achieve the dual goals of increasing crop yields and reducing
GHG emissions [5-8]. The primary consideration for intercropping is selecting compatible
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crops to minimize competitive inhibition, allow for the ease of field management, and in-
crease the profit per land unit compared to monoculture [9]. Cereal-legume intercropping is
the most widely used combination globally and is an essential component of climate-smart
agriculture and sustainable intensification in some regions [10]. However, intercropping
will affect the soil’s physical and chemical properties, influencing microbial-mediated GHG
emissions [11]. Many studies have shown a reduction in soil carbon dioxide (CO,) and
N,O emissions in a cereal-legume system compared to monoculture [11-13]. However,
the reason behind this still needs to be clarified, with limited systematic studies on GHG
emissions with cereal-legume intercropping.

Bibliometrics has been widely used to study the frontier progress of many disciplines
or fields since the 21st century. Its theories and methods have been extensively used to
evaluate and predict the historical process, current situation, development trend, and
hotspots of various research fields. Researchers have analyzed the research trends of
global greenhouse gas emissions [14] and intercropping (including agroforest, crop mixture,
vegetable legume, cereal legume, etc.) [15]. Still, a comprehensive and objective statistical
report on the achievements must be provided. The objectives of the study were (1) to
analyze the development trend of cereal-legume intercropping through a bibliometric
method, (2) to summarize the emission characteristics and mechanism of soil N,O and
CO; and elaborate the main factors affecting soil GHG emissions from intercropping
systems, and (3) to propose three issues (compound effect of multi-technology, indirect
GHG emissions and non-growing season GHG emissions) that should be strengthened in
the study of GHG emissions from cereal-legume intercropping systems.

2. Analysis of the Development Trend of Cereal-Legume Intercropping

The article uses the information visualization software CiteSpace [16] to study the
research related to cereal-legume intercropping between 2000 and 2021 in the Web of
Science core collection (WoSCC) database. The query sets used for the literature search were
TS = (legume OR soybean OR peanut OR pea OR bean) AND (interplant OR intercropping).
Diversity in languages further restricted the search results and document types. Therefore,
only articles written in English were retrieved. Two thousand and two hundred publications
from 2005-2021 were obtained and saved as text files (see Supplementary materials for
details) containing the “full record with citation data”. In the final step, 839 relevant papers
were selected by manual screening one by one (removing the literature about legume
intercropping with noncereal crop plants and ensuring all works of literature were research
articles). At the same time, the CiteSpace version. 5.6.5 was used to remove duplications.

2.1. Annual Trend in Publications and the Top Contributing Institutions

The trend of the number of publications and institutions in the database was analyzed
(Figure 1). As shown in Figure 1, the number of publications in this field was relatively small
and steady before 2016, with an average of 33 per year. After 2017, it increased rapidly, and
the emphasis on cereal-legume intercropping increased; for example, in 2021, there were
137 publications. Figure 2 shows the Institution Collaboration Network in cereal-legume
intercropping from 2005 to 2021. The thicker connection line indicates the closer cooperation
between institutions, and each link between two different institutions is represented by
a spectrum of colors corresponding to the years of occurrence. The 17 colors, from light
gray to red, correspond to 2005 to 2021. The size of the nodes represents the number of
papers published by the author’s institution. The top five institutions were the China
Agricultural University, Sichuan Agricultural University, the Ministry of Agriculture, the
Chinese Academy of Agricultural Sciences, and Wageningen University in the Netherlands.
Previous research results showed that the World Agroforestry Center ranked first in terms of
publication volume in all intercropping fields, followed by the Chinese Academy of Science
and INRA [15]. However, the distribution of research institutions in Figure 2 reflects the
current high level of attention to cereal-legume intercropping research in China, especially
by the China Agricultural University and Sichuan Agricultural University. However, the
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cooperation between these institutions needs to be more cohesive. Further exchanges and
collaboration between different research institutions are required.
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Figure 1. Annual trend in publications on research about cereal-legume intercropping based on data
between 2005 and 2021 from WoSCC.
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Figure 2. Distribution of research institutions in cereal-legume intercropping from 2005 to 2021.

2.2. Research Hotspots and Trend Analysis

The keywords in the paper reflect the main direction and core point of view of the
research content. The keywords with the most substantial citations were used to illustrate
the development and evolution of research directions [17]. We found that 93 keywords
appeared more than 10 times through the data integration of CiteSpace software. The
top 20 keywords with the most robust citation bursts between 2005 and 2021 are shown
in Table 1. From the perspective of burst strength, the top five keywords were “cereal
(5=8.18)", “inorganic N (S = 6.21)”, “tillage (S = 4.85)”, “weed (S = 4.15)”, and “light
(S=4.13)". This indicates that tillage practices, weed control, light resource utilization, and
inorganic nitrogen dynamics in intercropping systems are receiving more attention. In
terms of development time, “cereal”, “weed”, “density”, “nitrogen fixation”, “inorganic
nitrogen”, and “crude protein” appeared earlier, and these were the main areas of early
research in the field of cereal-legume intercropping. “Greenhouse gas emissions” was a
research hotspot between 2013 and 2015. “Weed” had the most prolonged duration and
was the research hotspot between 2005 and 2015. “Intensification”, “soybean”, “light”,
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“crop productivity”, and “climate change” are more recent burst words, which are still
research hotspots from 2019 until now.

Table 1. Top 20 keywords with the most substantial citation bursts between 2005 and 2021.

Keywords Strength Begin End 2005-2021
cereal 8.18 2005 2011 N —
weed 4.15 2005 2015 I
density 3.97 2006 2008 = —
nitrogen fixation 2.79 2006 2010 e e —
inorganic nitrogen 6.21 2007 2011 e cee—
crude protein 2.83 2007 2011 . -
forage 2.89 2008 2010 —
N fixation 3.60 2009 2010 -—
nutrient acquisition 3.21 2011 2014 —
nitrogen fertilization 2.86 2011 2013 —

tillage 4.85 2012 2015 —

greenhouse gas emission 3.21 2013 2015 —
rhizosphere 293 2014 2018 e N
yield advantage 3.50 2015 2019 - =
interspecific interaction 3.69 2017 2019 T
intensification 2.58 2017 2021 —
soybean 3.27 2018 2021 —
light 413 2019 2021 —
crop productivity 3.94 2019 2021 =
climate change 3.13 2019 2021 —

3. Effects of Intercropping on Soil Greenhouse Gas Emissions
3.1. Effects of Intercropping on Soil N,O Emissions

N,O emissions from the soil are an intermediate product in the nitrification—denitrification
reaction [18,19]. Soil physicochemical properties and microbial community diversity are
changed with increased crop diversification, resulting in changes in soil N,O emissions [20].
Differences in N,O emissions can also result from intercropping treatments that use dif-
ferent legume species and cultivars [21]. In contrast to conventional maize cultivation
based on monocropping, the nitrogen fixation of legume crops and the transfer of ni-
trogen between maize and legume crops significantly influenced the nitrogen cycle in
intercropping systems [22]. It was found that maize—peanut intercropping could reduce
soil NoO emissions by 13% compared with maize monoculture [13]. Soil N,O emissions
in maize-soybean intercropping were 32.0% and 47.8% lower than those in maize and
soybean, respectively [23]. It is assumed that the soil water content was the main reason
for the difference in soil NoO emissions in different intercropping systems. There was no
significant difference in the N,O emission flux between monocultures and intercropping
systems when the soil water content was <15% [24]. Under aerobic conditions, other envi-
ronmental and soil physio-chemical factors might be more important than soil moisture.
Excessive soil moisture may lead to loss of dissolved nitrogen, leading to increased indirect
emissions of N,O [10]. Most studies showed that, under the same nitrogen application
level, cereal-legume intercropping significantly reduced soil N,O emissions in the whole
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growth period of crops compared with cereal monoculture [10-13,25]. This may be related
to the improving nitrogen use efficiency in cereal-legume intercropping [11,26].

3.2. Effects of Intercropping on Soil CO, Emissions

The heterotrophic respiration of microorganisms and autotrophic respiration from
roots are the primary sources of CO, emissions in soil. In addition to soil physico-
chemical properties, fertilization, irrigation, and the planting system also affect soil CO,
emissions [27]. However, there are still many uncertainties about the effects of cereal—-
legume intercropping on soil CO, emissions. Dyer et al. [28] reported that, compared
with maize monoculture and soybean monoculture, maize-soybean intercropping signif-
icantly reduced the total soil CO, emissions in the crop growing season by 18.1-20.4%.
Ma et al. [13] concluded that maize-peanut intercropping reduced soil CO, emissions by
23.4%. However, there is still some variance in the results. It was found that there was
no significant difference in soil CO, emissions between intercropping and monoculture
treatments despite the cumulative CO, emissions in maize intercropping treatments being
4.0-8.9% lower than those in maize monoculture treatments during the whole growth
period [29]. Sweet corn and soybean intercropping with crop row ratios of 2:3 and 2:4
increased the CO, emission compared with sweet corn monocropping. Additionally, CO,
emissions were shown to increase with increased nitrogen application rates [30]. Rainfall
variability, differing soil types across test sites, and variable sampling methods may have
added to the inconsistency in the results [29].

4. Effects of Diversified Intercropping on GHG Emissions

Based on the diversification and refinement of basic research on cereal-legume in-
tercropping systems in recent years, we summarized the effects of different management
measures such as the intercrop row ratio and in-crop strip width, crop residue retention,
and no-tillage on GHG (CO; and N,O) emissions from intercropping systems. Methane
emissions were not considered, as emissions from rain-fed farming systems are usually
negligible, and few studies exist.

4.1. Effects of Spatial Arrangements on GHG Emissions in Intercropping Systems

Crop yields in the intercropping systems are closely related to spatial arrange-
ments (mainly border-row proportion, bandwidth (crop rows per strip), and planting
density) [31-33]. The field configuration can influence the efficiency of resource utilization
and GHG emissions. Wang et al. [30] reported that both the GHG emissions intensity and
global warming potential of sweet corn and soybean intercropping with different crop row
ratios did not differ significantly. Dyer et al. [28] observed that different intercropping
ratios (1:2 and 2:3) did not substantially affect soil CO, and N>O emissions. These results
were confirmed by other studies on sweet corn—soybean intercropping [30,34]. In addition,
the 2:2 equal row spacing and narrow row width ratio had no significant effect on soil GHG
emissions [28]. According to the literature we have collected [28-30,34], the border-row
proportion and bandwidth do not significantly affect the GHG emissions of a cereal-legume
intercropping system.

Plant density is one of the leading management practices to affect the yield in cropping
systems [33], especially for intercropping [35]. Therefore, producers often improve the
intercropping yield by increasing the plant density of component crops [36]. Luo et al. [37]
showed that plant density slightly impacted N,O emissions. However, the result obtained
by Yang [38] through a three-year field experiment showed that increasing the maize
density increased the carbon emissions. Other studies on plant density’s effect on GHG
emissions under the intercropping system exist. However, whether increasing plant density
can reduce soil GHG emissions while ensuring viable intercropping production is still
being determined. Further investigations are required to clarify its emission reduction
potential and mechanisms.
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4.2. Effects of Nitrogen Fertilizer Management on GHG Emissions from Intercropping Systems

Optimized nitrogen fertilizer management is essential for crop yields and carbon
sequestration [4,30]. Nitrogen fertilizer application significantly contributes to N,O emis-
sions from agriculture, and mitigating soil N,O emissions is vital for staying below a 1.5 °C
warming threshold [39]. Studies have shown that intercropping with legume crops and
an appropriate pre-plant or basal nitrogen fertilizer split application could significantly
mitigate GHG emissions while ensuring the crop yield. Tang et al. [40] concluded that,
under two rows of sweet corn and four rows of soybean intercropping patterns, a reduction
in nitrogen fertilizer application could significantly reduce the soil mean cumulative N,O
emission in six seasons but had no significant effect under an intercropping pattern of
two rows of sweet corn and three rows of soybean. Fu et al. [41], through a long-term
location experiment, showed that maize-soybean intercropping with reduced nitrogen
application (180 kg/ hmz) could reduce GHG emissions compared to traditional nitrogen
application (240 kg/hm?). However, a recent study concluded that the sweet corn-soybean
2:4 intercropping patterns with 300 kg N ha~! significantly affected crop yields and reduced
net GHG emissions compared to conventional sweet corn farming systems [30].

4.3. Effects of No-Tillage on GHG Emissions from Intercropping Systems

More sustainable cultivation systems, such as no-tillage, are increasingly used world-
wide because of their environmental advantages. Studies on traditional monoculture have
shown that no-tillage management reduced soil disturbance, reduced the loss of soil organic
carbon, and facilitated the utilization of activated carbon by soil microorganisms. Therefore,
soil CO, emissions were suppressed [42]. A meta-analysis showed that no-tillage decreases
GHG emissions with no crop yield tradeoff at the global scale [43]. To evaluate the crop
yield and carbon mitigation of intercropping systems, field experiments of maize—pea inter-
cropping with no-tillage and conventional tillage were carried out by Yang et al. [38]. It was
found that, over the growing season of maize and pea, no-tillage reduced carbon emissions
by an average of 10% compared to conventional tillage, and no-tillage reduced carbon
emissions from the maize strips. The effect of no-tillage on reducing GHG emissions was
also demonstrated in other cereal-legume intercropping systems [44—46]. However, some
scholars believe that the biophysical soil conditions of different no-tillage soil determined
the GHG emissions. A reliable evaluation can only be made based on the local situation [47].
Therefore, more research is required in the future.

4.4. Effects of Crop Residue Retention on GHG Emissions in Intercropping Systems

Crop residue resources are ubiquitous in crop production industries and play a de-
cisive role in conservation and regenerative agriculture for sustainable development and
food security. Crop residue retention in the field is currently the economic utilization of the
residue. It is also essential to improving farmland soil health and carbon sink capacity. Crop
residue retention and the introduction of legume crops will inevitably increase soil biodi-
versity, microbial activities, soil carbon, and nitrogen processes, resulting in changes in soil
GHG emissions and nitrogen availability [9,48]. Long-term field experiments showed that
crop residue retention or the intercropping of legume crops could significantly improve bio-
physical soil properties and increase the soil organic matter content and crop yields [49,50].
The crop residue nitrogen content and C/N influence soil GHG emissions [51,52]. There-
fore, crop residue retention is usually combined with applying nitrogen fertilizer to regulate
soil C/N, reducing GHG emissions and improving nitrogen use efficiency [53].

Crop residue retention promotes soil respiration and increases CO, emissions [53].
The amount of residue retained also significantly affects soil CO, emissions [54]. However,
the mechanisms of soil N,O emission are complex, there are different views on the effect of
residue retention on upland N,O emission, and the influencing mechanisms need to be
clarified [55]. Studies have shown that residue retention can promote soil N,O emissions,
but other studies have concluded that crop residue retention can reduce or not affect soil
N,O emissions [45,56]. In addition, the effects of residue retention on soil N,O emissions
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were significantly correlated with the residue carbon input and crop residue ground cover
depth [57,58]. Therefore, the relationship between the quantity and quality of crop residue
and biophysical soil properties should be considered when studying soil N,O emissions.
There may be an interaction between residue retention and intercropping regarding soil
GHG emissions, but there need to be more relevant studies. More field observations are
still required to accurately evaluate the contribution of residue retention to GHG emissions
and analyze its influencing factors.

5. Problems and Prospects

Recent studies have shown that countries with higher effective crop populations and
species diversity have greater temporal stability in terms of total national agricultural
output [59]. Agriculture diversity has been proposed to achieve win-win choices among
ecosystem services in agriculture production [60,61]. There have been many studies on the
effects of cereal-legume intercropping on crop yields. With the intensification of global
climate change, more attention has been given to GHG emissions from intercropping
systems [9,62—-64]. However, the three following aspects still need to be studied:

(1) Compound effect of multi-technology. Through a field experiment conducted
for 12 consecutive years (2006-2017), Chai et al. [65] found that multi-technology (e.g.,
no-tillage or less tillage, crop residue mulching, crop rotation, Nitrogen fertilizer timing,
and other agronomic measures, akin to “conservation agriculture”) in the intercropping
system could significantly increase the yield and optimize ecological benefits. Compared
with traditional monoculture, the integrated intercropping system increased the annual
profit by 15.6-49.9% and the net agricultural income by 39.2% and reduced the environ-
mental footprint by 17.3%. However, most studies on the characteristics of soil GHG
emissions from intercropping are single-factor experiments, and the research on the syner-
gistic effects of cereal-legume intercropping and agronomic conservation practices on GHG
emissions is still minimal, which is not conducive to the evaluation and understanding
of the multi-technology synergistic impacts of conservation and regenerative cropping
systems. Crop residue retention effectively increases the soil organic matter content, es-
pecially in areas where soil fertility is declining (e.g., Northeast China). However, both
experimental and model studies showed that residue retention could stimulate the emission
of NO in dry farmland and become the primary “leakage” factor in the carbon sequestra-
tion process [47,55,66]. However, the mechanism causing the increase in N,O emissions
needs to be clarified [55]. Whether multi-technology could achieve the synergy of crop
productivity and environmental benefits has yet to be well determined.

(2) Indirect GHG emissions. Agricultural carbon footprint theory can systematically
evaluate the direct and indirect carbon emissions caused by human factors in agricul-
tural production, which is essential for sustainable agriculture [67]. Life cycle assessment
(LCA)-based carbon footprint assessment proved to be an efficient method for quantifying
greenhouse gas emissions [68]. Only some studies have considered carbon sequestration
in cropping ecosystems and indirect GHG emissions from inputs such as fertilizers and
pesticides in cereal and legume production [29,69]. Although some studies have shown
that maize intercropping has a higher production efficiency and less of an environmental
footprint in arid northwest China [70,71], most intercropping systems still face a trade-
off between improving productivity and reducing the carbon footprint [72]. This aspect
needs to be more conducive to a comprehensive evaluation of the contribution of various
production and market activities in crop production to GHG emissions and a thorough
evaluation of the future development potential of the cereal-legume intercropping system
as economically and environmentally sustainable.

(8) Non-growing season GHG emissions. According to studies, GHG emissions from
farmland are mainly concentrated in the growing season, but the GHG emissions from
cropland in the non-growing season must be addressed [33]. Our previous study showed
that the NoO emission contribution of farmland soil in the “black soil” region of northeast
China [73] in the non-growing season could reach 15-46% [72]. In years with high snowfall,
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N;O emissions during the spring thaw accounted for 54-76% of the annual total, leading
the yearly emissions [32]. However, understanding the drivers and processes underlying
N,O emissions related to freeze-thaw events in residue retention no-till farming systems
still needs to be vastly improved. Moreover, there are few studies on GHG emissions under
these conditions, which may lead to a miscalculation of the GHG emission reduction effect
of managing the entire intercropping system, especially in seasonal freeze-thaw zones.

Sustainable food production is a fundamental challenge in a global warming scenario.
An intercropping approach to sustainable food production is crucial to overcoming this
global issue. Intercropping has been practiced worldwide in traditional and sustainable
agriculture to feed the growing population. However, compared with conventional cereal
planting systems, the research on the GHG emissions of a cereal-legume intercropping
system in non-growing seasons needs to be more extensive. In situ observations of GHG
emissions from intercropping systems in different regions and research on the synergistic
mechanism of soil carbon sequestration and GHG emission reduction [74,75] should be
strengthened in the future to improve the cereal-legume intercropping technology system
according to local conditions and further explore the GHG emission reduction potential of
cereal crop intercropping systems (Figure 3).
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Figure 3. Schematic diagram of crop residue retention, intercropping, and freeze-thaw effects on soil
organic carbon sequestration and GHGg emissions.
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