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Abstract: This study aimed to determine the effect of irrigation amount (W), nitrogen (N), potassium
(K), and zinc (Zn) on the net photosynthetic rate (Pn) of closely planted apple trees on dwarf
rootstocks in arid areas of Xinjiang. Taking the “Royal Gala” apple as the experimental material, a
mathematical model for Pn was established using the principle of four-factor five-level quadratic
regression with a general rotation combination design. The results show that: (1) The regression
equations reached significant levels (F = 37.06 > F0.01(11.11) = 4.54). (2) The effect of W, N, K, Zn on
Pn is significant with relative importance W > N > Zn > K. (3) The results of single factor analysis
showed that with an increase in W, N, K, and Zn, Pn exhibits an n-shaped parabolic response. (4) The
positive coupling between W and N is significant, and the positive coupling between W and Zn
is also significant. (5) Analysis of the interaction between sets of three factors revealed that W, N,
and Zn could be combined to best effect, with the maximum value reaching 12.77 µmol·m−2·s−1.
Compared with W × K× Zn and W × N × K, the combination of W × N × Zn reduces W by 9.2%
and 6.3%, respectively, which indicates its suitability for use in the dry and water deficient planting
environment in Xinjiang. (6) Within the 95% confidence level, when W is 258–294.75 mm, N is
33.44–39.51 kg/hm2, K is 53.82–69.39 kg/hm2, and Zn is 6.46–7.84 kg/hm2, the net photosynthetic
rate reaches 11 µmol·m−2·s−1.

Keywords: irrigation fertilizer coupling; net photosynthetic rate; apple tree; regression analysis

1. Introduction

Photosynthesis is the basic link between energy absorption, fixation, material trans-
formation, and distribution in terrestrial ecosystems, an important biochemical process of
material circulation and energy exchange on the surface, and an important factor affect-
ing crop productivity, providing essential nutrients for crop growth [1–4]. Under natural
conditions, in addition to the plant’s own physiological characteristics, the main factors
affecting any change in Pn (net photosynthetic rate) are the amount of irrigation (W) and
fertilization (Ft), but other environmental factors also play a decisive role, which is more
obvious in agricultural crops [5–7]. Therefore, research into the effect of W and Ft on Pn
has always been a hot research issue globally [8].

As an important crop, apple is widely planted, particularly because of its adaptability
to the environment and its high nutritional value [9]. According to recent statistics, China
has become the largest apple producer in the world, with the planting area and output
accounting for about 50% of the global total, and the export volume of apples also ranks
among the top in the world [10,11]. Xinjiang is located in an arid area. In this area there is
sufficient sunlight and a large temperature difference between day and night, resulting in
conditions that are extremely effective for the accumulation of fruit sugar; it has, therefore,
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become an important high-quality apple production base in China [12]. As a new type of
planting mode, dwarfing rootstock combined with close planting has the advantages of
high mechanization potential, early bearing, high quality, and high land utilization rate, and
has become an important approach in apple cultivation [13]. However, the development
of the apple industry in Xinjiang is seriously restricted by limited rainfall, extensive use
of irrigation and fertilizer, and serious salinization of the soil [14,15]. Therefore, it is
very important to study how the interaction between irrigation and fertilization affects
the physiological characteristics of apples during growth and development, in order to
build an effective irrigation and fertilization management model, ensuring the efficient
production and sustainable development of dwarf, closely planted apples in arid areas of
Xinjiang [16–18].

Irrigation and fertilization are important factors affecting crop growth, photosynthetic
characteristics, and production efficiency. Controlling the relationship between W and
Ft can help to promote crop growth, improve Pn, and enhance crop yield and water
and fertilizer use efficiency [19–21]. Of these factors, W is particularly important with
respect to photosynthesis [22]. It has been found that a good soil water environment can
promote the opening of leaf stomata, increase the absorption of CO2 by leaves, facilitate
the transport of photosynthetic products and reduce inhibition of photosynthesis due to
an accumulation of photosynthetic products in leaves [23,24]. Therefore, appropriately
increasing W will promote the Pn of plant leaves [23,25,26]. Soil water deficit will induce
plant roots to produce abscisic acid, which will send inhibition signals to reduce plant
growth, with signals being transmitted to the crown through the xylem under the effect of
water transmission, there will be the closure of the crown stomata, leading to a reduction in
Pn [27–30]. Too much W will lead to poor soil aeration, and decreased root activity, and
will indirectly affect photosynthesis [31]. In addition, the nitrogen concentration in most
plant leaves is closely related to carbon fixation via photosynthesis [32,33]. Research shows
that increasing N can improve the photosynthetic performance of leaves and increase the
Pn, thereby promoting the yield and harvest of crops [34]. However excessive nitrogen
will reduce the activity of key enzymes in photosynthesis, which is not conducive to the
improvement of photosynthetic performance [35–37].

Although potassium does not directly participate in the synthesis of important organic
substances in plants, it is frequently an activator of enzymes, and thus indirectly partici-
pates in important metabolic activity in plants and has a significant effect on Pn [38–41].
Topdressing with potassium at the fruit expansion stage can improve Pn quality and
yield [42]. Potassium stress will limit transmission, transformation, and other non-stomatal
factors associated with light energy, reduce photosynthetic capacity and cause a decline
in biomass accumulation [43,44]. Zinc is an essential trace element for crops and has im-
portant nutritional and physiological functions playing a role in stabilizing, regulating,
or catalyzing various enzymes [45–47]. Increasing Zn can enhance leaf photosynthesis
and facilitate the transportation of photosynthetic products [48,49]. During the growth of
fruit trees, the loss of Zn will cause IAA synthesis in the plant to cease, and eventually
lead to the development of young leaves and stems of the plant being blocked; this is
usually referred to as “small leaf disease” and “clump leaf disease” and ultimately affects
the photosynthetic ability of leaves [50,51].

In general, the existing research on irrigation and fertilizer regulation has mostly
focused on the effects of W and Ft as individual factors or on different fertilizer ratios on
plant growth, Research into the combined effects of W, N, K, Zn, on photosynthesis is
relatively rare [18,52,53]. Especially in arid areas, it is very important to study the synergistic
effect of irrigation and fertilization. In this study, the apple variety “Royal Gala” on dwarf
rootstock closely planted in the arid region of Xinjiang was used as the experimental
material, in order to determine the effect of irrigation amount (W), nitrogen (N), potassium
(K), and zinc (Zn) on net photosynthetic rate (Pn) of apple trees planted closely with dwarf
stocks in arid areas of Xinjiang. The field experiment was carried out using a four-factor
five-level quadratic regression general rotation combination design [54–56]. The effects
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of W, N, K, and Zn on Pn were analyzed in order to provide reference data and effective
suggestions for extending drip irrigation and the use of closely planted apples on dwarf
rootstock in arid areas of Xinjiang.

2. Materials and Methods
2.1. Overview of the Study Area

The study site is located in the Apple Garden of the 10th Regiment of Alar City, the First
Division of the Xinjiang Production and Construction Corps (40◦39′14′ ′ N, 81◦16′21′ ′ E),
which belongs to a typical inland extremely arid climate zone. The annual precipitation is
about 150 mm, the average annual temperature is about 11 °C, the annual evaporation is
about 2100 mm, the annual sunshine hours amount to about 2900, the frost-free period is
more than 200 days, and the groundwater depth is more than 3 m. The tested soils were
sandy with a field holding capacity of 13.7% from 0 to 120 cm soil depth, an average capacity
of 1.52 g/cm3, organic matter content of 11.05 g/kg, available phosphorus and available
boron contents of 3.20 mg/kg and 0.60 mg/kg, rapid potassium content of 33 mg/kg,
alkaline nitrogen and total nitrogen contents of 10 mg/kg and 176 mg/kg, ammonium
nitrogen and nitrate nitrogen contents of 2.01 mg/kg and 1.00 mg/kg, respectively, PH of
8.71, and EC value of 154.60 µs/cm.

2.2. Experimental Materials

The experiment was conducted from 10 April to 1 September 2022, using “Royal
Gala”, an early maturing apple variety. The M195 rootstock was the trees grafted and the
apple trees used in the experiment were six years old. The total growth period (TGP) was
150 days. The anthesis fruit setting stage (AFS) was from 20 April to 1 May, the young
fruit development stage (YFS) from 2 May to 1 June, the fruit expansion stage (FES) from
2 June to 1 August, and the fruit ripeness stage (FRS) from 2 August to 20 August. The
planting density 2850 plants/hm2, the plant spacing 1 m, and the row spacing 3.5 m. The
drip pipe was set 60 cm from the ground on each side of the fruit trees; the drop head
flow was 4 L/h, the drop head spacing was 50 cm, and the tanks were pressure differential
fertilization tanks, which were individually configured for each test plot. The distribution
of precipitation and daily average temperature is shown in Figure 1. The total precipitation
was 195.3 mm, mainly concentrated in July and August.
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2.3. Experimental Design

W, N, K, Zn were treated as independent variables, and net photosynthetic rate
(Pn) was used as the dependent variable. A total of 23 treatments were set up using a
four-factor five-level quadratic regression general rotation combination design (with 50%
implementation) [54–56]. Each treatment was repeated three times with an experimental
plot area of 35 m2 (10 m× 3.5 m) and 10 apple trees were planted in each plot, 690 apple
trees in total. The irrigation method is drip irrigation. Irrigation was controlled by a water
meter (precision 0.001 m3) during the test. Since 10 April, the water has been irrigated
every 4 days, 30 times. Each test plot was equipped with its own fertilizer tank; fertilizer
was dissolved before application. During the experiment, nitrogen was supplied in the
form of urea (46%), potassium as potassium sulfate (K2SO4 52%) and zinc as zinc sulfate
heptahydrate (ZnSO4, 56%) [57,58]. During the total growth period of the apple, a total
of 15 times fertilization. Fertilize every 8 days. The level coding for the four factors
is presented in Table 1 [56]. Therein, zt represents the coded formula, and x1, x2, x3, x4
represent the coded levels of W, N, K, and Zn, respectively [56]. Five levels were assigned
to W, N, K, Zn, and the coded levels were ±r,±1, 0. The specific irrigation and fertilization
regimes were executed in accordance with Table 2.

Table 1. Factor level code table for the four factors.

z (xt) z1 (W) z2 (N) z3 (K) z4 (Zn)

z2j(r) 800.0 150.0 300.0 22.5
z0j + ∆j(1) 700.0 135.0 270.0 15.8

z0j(0) 550.0 112.5 225.0 11.3
z0j − ∆j(−1) 400.0 90.0 180.0 6.7

z1j(−r) 300.0 75.0 150.0 0
∆j =

z2j−zij
2r 148.6 22.3 44.6 6.7

xj =
(

zj − z0j

)
/∆j x1 = z1−550

148.6 x2 = z2−112.5
22.5 x3 = z3−225

44.6 x4 = z4
6.7

Table 2. Irrigation and fertilization regimes.

Factors Stage
Factor Levels

−1.682 −1 0 1 1.682

K
(g / 35cm3)

AFS 26.25 31.50 39.25 47.25 52.50
YFS 105.00 126.00 157.00 189.00 210.00
FES 288.75 346.50 431.75 519.75 577.50
FRS 105.00 126.00 157.00 189.00 210.00
TGP 525.00 630.00 785.00 945.00 1050.00

N
(g / 35cm3)

AFS 26.25 31.50 39.38 47.25 52.50
YFS 131.25 157.50 196.88 236.25 262.50
FES 105.00 126.00 157.40 189.00 210.00
FRS 0 0 0 0 0
TGP 262.50 315.00 393.75 472.50 525.00

W
(m 3/ 35cm3)

AFS 0.53 0.70 0.96 1.23 1.40
YFS 1.58 2.10 2.89 3.68 4.20
FES 6.30 8.40 11.55 14.70 16.80
FRS 2.10 2.80 3.85 4.90 5.60
TGP 10.50 14.00 19.25 24.50 28.00
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Table 2. Cont.

Factors Stage
Factor Levels

−1.682 −1 0 1 1.682

Zn
(g /35cm3)

AFS 0 7.10 17.50 27.90 35.00
YFS 0 7.10 17.50 27.90 35.00
FES 0 7.10 17.50 27.90 35.00
FRS 0 0 0 0 0
TGP 0 21.30 52.45 83.70 105.00

Note: TGP represents the total growth period of the apple tree, AFS represents the anthesis fruit setting stage
of the apple tree, YFS represents the young fruit development stage of the apple tree, FES represents the fruit
expansion stage of the apple tree, FRS represents the fruit ripeness stage of the apple tree.

2.4. Data Acquisition and Analysis

(1) Sample collection

At the FRS, we randomly selected three apple trees in each test plot and selected three
leaves from the middle of each tree, east, south, west, and north for the observation of
the net photosynthetic rate, and measured the net photosynthetic rate three times for each
leaf. The Pn was determined using a Li− 6800 portable photosynthesis analysis system
(USA) between 9:00 and 11:00 a.m. During the assay, the photometric flux setting was
1800 µmol·m−2·s−1, and the blade temperature was set to 28 °C.

(2) Construction of regression models

Based on the quadratic regression general rotation combination design, the regression
statistics were generated; with p variables, the general formula of the quadratic orthogonal
regression model is:

ŷ = b0 +
p

∑
j=1

bjXj +
p

∑
j=1

bjjX2
j +

p

∑
i<j

bijXiXj (1)

where ŷ is the response variable; b0 is a constant term; bj is the coefficient for X1; bjj is
the quadratic term coefficient; bij is the interaction term coefficient; p is the number of
dependent variables; 1 ≤ j ≤ p, 1 ≤ i ≤ p and i < p.

The corresponding regression coefficients were calculated:

b0 = A
Na

∑
i=1

yi + E
p

∑
j=1

(
Na

∑
i=1

x2
ijyi

)
(2)

bj = e−1
Na

∑
i=1

xijyi =
Bj

Dj
(3)

bhj = m−1
c

Na

∑
i=1
h>j

(
xihxij

)
yi =

Bhj

Dhj
(4)

bjj = (Fa − G)
Na

∑
i=1

x2
ijyi + G

p

∑
j=1

Na

∑
i=1

x2
ijyi + E

Na

∑
i=1

yi (5)

where A, E, Na, Fa, G, mc, p all represent the necessary parameters of quadratic regression
general rotation combination design, x and y, respectively, represent coding and the corre-
sponding Pn.

(3) Data processing and mapping

Data were processed using Microsoft Excel 2020 (Microsoft, Redmond, WA, USA);
frequency analysis and regression analysis were conducted in SPSS 25.0 (IBM SPSS, Chicago,



Agronomy 2023, 13, 1082 6 of 17

IL, USA), and one-way effect plots as well as two- and three-factor interac-tion plots
were produced by Origin 2021 pro (Northampton, MA, USA) and Matlab 2021 (Natick,
MA, USA).

3. Results and Analysis
3.1. Analysis of Pn in Apple Leaves

It can be seen from Table 3 that there are significant differences between T1, T2, T3
T4. The results show that Pn is affected only by the W. Significant differences were found
between T9, T10, and T17, and the Pn response is ranked T17 > T10 > T9. It appears
that fixing N, K, and Zn, and changing W significantly affects Pn. As W increases, Pn
first increases and then decreases. These results indicate that the effect of water fertilizer
coupling on Pn can be altered by changing W and Ft individually. Based on the differences
between treatments (T15, T16, T17), it can be seen that an appropriate increase in Zn can
increase the Pn, when W, N, K are fixed; however, when the application is excessive, it
will inhibit Pn. Fixing N (T3, T4, T7, T8), P (T1, T3, T5, T7), and Zn (T2, T3, T5, T8),
respectively, resulted in the Pn differing significantly, indicating that each factor has a
significant effect on Pn. It follows that an increase in irrigation water and fertilization alone
does not necessarily contribute to fruit tree growth, which in turn favors yield increase,
and that fruit tree growth can be better enhanced and fruit yield improved only by an
appropriate water-to-fertilizer ratio.

Table 3. Net photosynthetic rate (Pn ) change for different treatment.

No.

Factor Code Implementation
Pn

(µmol·m−2·s−1)x1 x2 x3 x4
W

(mm)
N

(kg/hm2)
K

(kg/hm2)
Zn

(kg/hm2)

T1 1 1 1 1 700 135.0 270 15.825 12.960 a

T2 1 1 −1 −1 700 135.0 180 6.675 11.226 ef

T3 1 −1 1 −1 700 90.0 270 6.675 10.428 hi

T4 1 −1 −1 1 700 90.0 180 15.825 10.797 gh

T5 −1 1 1 −1 400 135.0 270 6.675 10.227 ij

T6 −1 1 −1 1 400 135.0 180 15.825 10.106 ij

T7 −1 −1 1 1 400 90.0 270 15.825 10.062 ij

T8 −1 −1 −1 −1 400 90.0 180 6.675 9.517 k

T9 −1.682 0 0 0 300 112.5 225 11.250 9.900 jk

T10 1.682 0 0 0 800 112.5 225 11.250 11.692 d

T11 0 −1.682 0 0 550 75.0 225 11.250 10.119 ij

T12 0 1.682 0 0 550 150.0 225 11.250 11.168 efg

T13 0 0 −1.682 0 550 112.5 150 11.250 11.025 ef

T14 0 0 1.682 0 550 112.5 300 11.250 11.431 de

T15 0 0 0 −1.682 550 112.5 225 0 10.897 fg

T16 0 0 0 1.682 550 112.5 225 22.500 11.659 d

T17 0 0 0 0 550 112.5 225 11.250 12.733 ab

T18 0 0 0 0 550 112.5 225 750.000 12.580 bc

T19 0 0 0 0 550 112.5 225 750.000 12.643 abc

T20 0 0 0 0 550 112.5 225 750.000 12.752 ab

T21 0 0 0 0 550 112.5 225 750.000 12.677 ab

T22 0 0 0 0 550 112.5 225 750.000 12.265 c

T23 0 0 0 0 550 112.5 225 750.000 12.575 bc

Note: Pn is the net photosynthetic rate. T1–T23, respectively, represent 23 treatments set up in the experiment. Pn
is expressed in average values, and different letters indicate significant difference at p < 0.05.

3.2. Regression Analysis

With Pn as the response variable (yPn), and W (x1), N (x2), K (x3), Zn (x4) as in-
dependent variables, regression models were constructed according to general rotation
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combination design and Formula (1) [56]. Coefficients values (b0, bj, bjj, bhj) for the regres-
sion model were obtained according to Formulas (2)–(5), respectively [56].

ypn = 12.5517 + 0.6238x1 + 0.4011x2 + 0.1988x3 + 0.2787x4 − 0.5666x2
1

−0.62x2
2 − 0.4134x2

3 − 0.3955x2
4 + 0.2759x1x2 + 0.0872x1x3 + 0.2097x1x4

(6)

To determine the validity and reliability of the regression models, the regression
coefficients and partial regression coefficients were examined using the F-test. The results
are shown in Table 4. Based on these results, a lack-of-fit test was conducted.

FI f =
Sr/ f I f

Se/ fe
= 4.04 < F0.05(5, 6) = 4.36 (7)

Table 4. Analysis of variance for the regression relationships.

Source Df SS MS F Value p Value

x1 1 5.314 5.314 82.62 0.0001 **
x2 1 2.197 2.197 34.16 0.0001 **
x3 1 0.540 0.540 8.39 0.015 *
x4 1 1.061 1.061 16.49 0.002 **
x2

1 1 5.103 5.103 79.33 0.0001 **
x2

2 1 6.109 6.109 94.97 0.0001 **
x2

3 1 2.717 2.717 42.23 0.0001 **
x2

4 1 2.486 2.486 38.65 0.0001 **
x1x2 1 0.609 0.609 9.47 0.011 *
x1x3 1 0.061 0.061 0.95 0.352
x1x4 1 0.352 0.352 5.47 0.039 *

Regression 11 ( fr) 26.225 (Sr) 2.384 Fr = 37.06 0.0001 **
Residual error 11 ( fR) 0.708 (SR) 0.064

Lack-of-fit 5 ( f I f ) 0.546 (SI f ) 0.109 FI f = 4.04 0.059
Error 6 ( fe) 0.162 (Se) 0.027
Sum 22 26.225

Notes: * indicates significant at the 0.05 level, ** indicates significant at the 0.01 level; SS indicates stdev square,
MS is mean square, Df is degree of freedom.

The lack-of-fit of the regression model was not significant, indicating that the four
factors selected in this experiment are meaningful for investigating the change in Pn of
apple and suitable for estimation. For the regression equations, the test was as follows:

Fr =
Sr/ fr

SR/ fR
= 37.06 > F0.01(11, 11) = 4.54 (8)

This indicates that the relationship between four factors (W, N, K, Zn) and Pn was
significant (P < 0.01), and the regression model could well reflect the correlation between
independent variables and dependent variables. In addition, Table 4 also shows that partial
regression coefficients in the model reached significant or extremely significant levels for
all but the x1x3(W·K) interaction term. Further indicating that the single factor variations
in W, N, K, and Zn were strongly related to the variation in Pn and there was a strong
correlation between the quadratic term and Pn; W × N coupling and W × Zn coupling had
significant effects on Pn.

(1) Main effect analysis

Regression models were subjected to principal factor analysis. There was no correlation
between the coefficients of the linear term in the model and the linear term coefficients and
the interaction term coefficients were also uncorrelated. Therefore, the effect of the linear
term for each factor on Pn was determined by comparing the magnitude of the absolute
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value of the regression coefficients. The results showed that W and N had the greatest
important effect on Pn, followed by K and Zn, respectively, and that all factors had a
positive effect on Pn. It can be concluded from the linear term coefficient that Pn increased
with the increasing application until the maximum tested application was reached.

The quadratic coefficients of W, N, K, and Zn were all negative. With increasing W, Pn
showed first an increasing and then decreasing trend, appearing as an n-shaped parabolic
curve. We believe that the optimal solution for W, N, K, and Zn is at the highest point of
the parabolic curve when Pn reaches its peak value. Because of the correlation between
the quadratic term coefficients in the orthogonal trial designs, the absolute value of the
coefficients cannot be used directly to compare the magnitude of the quadratic term effect,
and therefore, further analysis and validation are required. The coefficients of the W × N
coupling, W × K coupling, and W × Zn coupling were all positive, therefore, increasing
their combined effect is important to increase net photosynthesis in fruit trees, showing a
positive interaction, indicating that the factors can work synergistically to increase Pn.

(2) Single factor effects

The “dimension reduction method” was used to simplify the regression model, coding
one factor within the range of investigated values, with the remaining factors all set to zero;
this approach eliminates the influence of other factors on the analysis of the target factor. A
single-factor model was obtained after dimension reduction elimination:

y = 12.5517 + 0.6238x1 − 0.5666x2
1 (9)

y = 12.5517 + 0.401x2 − 0.62x2
2 (10)

y = 12.5517 + 0.1988x3 − 0.4134x2
3 (11)

y = 12.5517 + 0.2787x4 − 0.3955x2
4 (12)

A single-factor plot of Pn effects was produced from the single-factor model de-
scribed above (Figure 2). From calculations, we know that the corresponding Pn is
9.9 µmol·m−2·s−1, 10.123 µmol·m−2·s−1, 11.047 µmol·m−2·s−1, and 10.964 µmol·m−2·s−1,
respectively, when the single-factor minimum coded level for W, N, K, Zn is −1.682
within the experimental design. When the coded level increased to 0, the correspond-
ing Pn values all increased to 12.552 µmol·m−2·s−1. The corresponding Pn reached its
maximum value within the range of the experimental design when the coded values of
W, N, K, and Zn increased to 0.799, 0.493, 0.323, and 0.561, the corresponding applica-
tions were 669.775 mm, 123.586 kg/hm2, 236.298 kg/hm2 and 13.815 kg/hm2, respectively,
and the Pn values were 12.689 µmol·m−2·s−1, 12.599 µmol·m−2·s−1, 12.573 µmol·m−2·s−1

and 12.584 µmol·m−2·s−1. When the coded levels were increased to 1.682, the corre-
sponding Pn for each factor decreased to 11.998 µmol·m−2·s−1, 11.471 µmol·m−2·s−1,
11.715 µmol·m−2·s−1, and 11.902 µmol·m−2·s−1, respectively. It follows that the maximum
Pn that can be achieved under a single-factor influence and the coded levels of that single
factor are not the same, but the trend of change in Pn is similar under each in-factor influ-
ence, showing a gradual increase in Pn with increasing levels for W, N, K, and Zn before
the maximum levels are reached, after which the Pn again exhibits a gradually decreasing
trend. This indicates that excessive irrigation and fertilization do not promote Pn but rather
have an inhibitory effect.
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Figure 2. Effect on net photosynthetic rate (Pn) of irrigation amount (W), nitrogen application amount
(N), potash application amount (K), and zinc application amount (Zn).

The sensitivity of individual single factors to Pn can be judged by examining the curve
of the parabola: the tighter the curve, the more sensitive the Pn is to the factor, and the
greater the extent to which it is affected. Figure 2 reveals that the single factor effect plots
in relation to Pn are parabolic and n-shaped, and the sensitivity ranking of the factors to
the Pn is: W > N > Zn > K.

(3) Two-factor interaction effect analysis

Fixing the coding value of two factors to zero, we can model the interaction between
the other two factors with respect to the Pn:

y = 12.5517 + 0.6238x1 + 0.4011x2 − 0.5666x2
1 − 0.62x2

2 + 0.2759x1x2 (13)

y = 12.5517 + 0.6238x1 + 0.1988x3 − 0.5666x2
1 − 0.4134x2

3 + 0.0872x1x3 (14)

y = 12.5517 + 0.6238x1 + 0.2787x4 − 0.5666x2
1 − 0.3955x2

4 + 0.2097x1x4 (15)

Figure 3 represents the above models. Figure 3a shows that the effects of W × N
coupling can be represented as a domed surface. That is, when other factors are set to
zero, Pn changes are represented by a parabola as W and N increase, and the interaction
coefficient is 0.2759. This suggests that the interaction between W and N promotes Pn.
When the coded levels for W and N were 0.68 and 0.48, respectively, Pn reached its
maximum of 12.85 µmol·m−2·s−1. The actual levels for W and N were 652 mm and
123.3 kg/hm2, respectively. With a continuing increase in W and N application, Pn began
to decline.
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Figure 3. Combined effects of pairs of factors ((a): W × N, (b): W × Zn, (c): W > K ) on net
photosynthetic rate (Pn ).

Figure 3b,c show similar effect trends for the W × Zn coupling and W × K coupling.
With respect to the degree of effect W > K, Zn. When the W was at its middle or upper
level, the Pn remained at a high level. When the W was at a lower level, increasing
the Zn or K had little effect on Pn. The W × Zn coupling produced a maximum Pn of
12.82 µmol·m−2·s−1 with coded levels of 0.64 and 0.52, respectively. The corresponding
W and Zn actual levels are 646 mm and 13.63 kg/hm2, respectively. For W and K, Pn
reached a maximum value of 12.76 µmol·m−2·s−1 when the coded levels were 0.56 and
0.28, respectively. The corresponding W and K actual levels are 634 mm and 237.6 kg/hm2,
respectively.

(4) Three-factor interaction effect analysis

By setting the value of one factor in the fixed model to zero, the combined effect
of the other three factors on Pn can be examined. The model was, thus, used to derive
the relationships shown in Figure 4. Figure 4a. reveals the combined effects of W, K,
and Zn on the Pn: when coded levels reach 0.496, 0.187, and 0.221, respectively, the
corresponding actual levels are 624.33 mm, 233.42 kg/hm2, and 12.06 kg/hm2, and the
Pn reaches 12.75 µmol·m−2·s−1. Figure 4b. reveals that when the Pn reaches its highest
value, 12.77 µmol·m−2·s−1, under the combined effects of W, K, and Zn, the corresponding
coded levels are 0.454, 0.222 and 0.231, respectively, and the actual levels are 618.06 mm,
117.5 kg/hm2 and 12.31 kg/hm2. Compared with Figure 4a, the maximum Pn exhibits little
difference. The Zn is increased by 4.5% and the W is decreased by 9.2%. Figure 4c shows
the combined effect of W, N, and K on the Pn. The maximum Pn is 12.76 µmol·m−2·s−1.
When the Pn reaches its maximum, the coded levels for each factor are 0.483, 0.216, and
0.189 respectively; the corresponding actual levels are 622.51 mm, 117.36 kg/hm2, and
233.51 kg/hm2. By comparing Figure 4c to Figure 4b, it can be seen that when the Pn
reached its maximum, W increased by 6.2%. Contrasting Figure 4a–c, it can be found that
the maximum Pn values for the W × Zn× K coupling, W × K× N coupling, W × Zn× N
coupling do not differ much, but in the case of W× Zn×N coupling, the W required for Pn
to reach a maximum is minimal, which is more suitable for the arid conditions in Xinjiang.
This demonstrates that the combined effect of W × Zn× N coupling can be manipulated
to deliver the best results. This may be related to the content of soil nitrogen and zinc in
the experimental plot, or it is possible that under the experimental conditions, Pn is more
sensitive to the changes in N and Zn in the soil. It may also be that the synergy between
soil water and nitrogen and zinc is strong, so the promotion of Pn is more obvious than
other water and fertilizer combinations.
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Figure 4. Combined effects of trios of factors ((a): W × Zn× K, (b): W × K× N, (c): W × Zn× N )
on net photosynthetic rate (Pn ).

(5) Optimal combination scheme

The regression model was based on five levels (−1.682, −1, 0, 1, 1.682) and we
used simulation optimization and frequency analysis, resulting in 129 irrigation fertilizer
couplings with Pn > 11 µmol·m−2·s−1, accounting for 20.6% of the total test protocol. It
can be seen from Table 5 that when the value range for each factor value reflects the 95%
confidence interval for W-coded levels (0.72–0.965), N-coded levels (0.486–0.756), K-coded
levels (0.196–0.542) and Zn-coded levels (0.411–0.72), the corresponding actual level of
W, N, K, and Zn are 658–694.75 mm, 123.44–129.51 kg/hm2, 233.82–249.39 kg/hm2 and
13.13–14.54 kg/hm2, respectively.

Table 5. Optimization scheme and frequency of target output.

Code
x1 x2 x3 x4

t f t f t f t f

1.682 36 0.279 25 0.194 25 0.194 18 0.140
1 51 0.395 46 0.357 36 0.279 41 0.318
0 39 0.302 49 0.380 39 0.302 41 0.318
−1 3 0.023 9 0.070 25 0.194 18 0.140
−1.682 0 0 0 0 4 0.031 0 0

total 129 1 129 1 129 1 129 1
Weighted average 0.843 0.621 0.369 0.565

95% Confidence interval 0.720–0.965 0.486–0.756 0.196–0.542 0.411–0.720
Application rate 658.00–694.75 mm 123.44–129.51 kg/hm2 233.82–249.39 kg/hm2 13.13–14.54 kg/hm2

Notes: t indicates times, f indicates frequency.

4. Discussion

Photosynthesis is the main driving force affecting dry matter assimilation and organ
formation, and it is the basis of plant production [59,60]. Irrigation and fertilizer are
important factors affecting crop photosynthesis. Appropriate irrigation and fertilizer
management can change the environmental conditions for crop growth and improve crop
Pn [61,62].

This study has shown that soil moisture has a significant positive effect on the Pn; that
is, with increased W, the Pn first showed an increasing trend. This is consistent with the
research results of Liao et al. [63] and Zhen et al. [64]. An increase in soil moisture promotes
the synthesis of hormones and related enzymes in plants, enhances the material transport
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capacity, and accelerates the transport rate of photosynthetic products, whilst, at the
same time, the stomata open, the transpiration rate increases, and the Pn increases [65,66].
However, when the W increases beyond a certain threshold, the Pn decreases. This may be
because too much soil moisture leads to poor soil ventilation and decreased root activity,
thus affecting water transmission in plants, and indirectly inhibiting photosynthesis [67].

Under the conditions of this experiment, the effects of the linear term and quadratic
term for N, K, and Zn reached significant levels. Single-factor analysis showed that, with
increased applications, Pn first increased and then declined. The effects of the three factors
on the Pn were ranked as follows: N > Zn > K. This may be because all three factors
participate in photosynthesis in plant leaves, but they have different functions. Braun
et al. [68] reported that the presence of K+ helps to maintain the transmembrane proton
gradient of chloroplasts and thylakoids under light, keeping the chloroplast interstitium at
the higher PH required for CO2 assimilation, promoting photophosphorylation and CO2
assimilation, and improving the Pn. Makino et al. [37] and Sperling et al. [69] reported that
nitrogen is the main element in chloroplasts, present in chloroplasts, proteins, and lamellar
membranes and playing an important role in photosynthesis. Zinc is an important compo-
nent and activator of many enzymes in photosynthesis, and also an essential nutrient for
protein, nucleic acid, and sugar metabolism in chloroplasts [70–72]. After zinc application,
the stomatal resistance of plant leaves decreases, stomatal conductance increases, and the
transpiration and Pn of leaves increases [48,73]. Wang et al. [70,74] also found that a lack
of zinc will lead to a decrease in chlorophyll content, stomatal conductance, intercellular
concentration, and Pn, and a reduction in plant photosynthetic performance. These re-
search results support, to some extent, the results of our experiment. However, with the
continuous application of nitrogen, potassium, and zinc, the effective content of the three
elements in the soil increases, and the plants can also absorb a lot, thus promoting their
growth. At the same time, due to the initial content of nitrogen, potassium, and zinc in the
soil at the experimental site, the three elements reached the optimum threshold at different
application rates, and the activities of photosynthesis-related enzymes were reduced due
to non-stomatal factors, which further led to the inhibition of plant photosynthesis with
increasing application rates [75].

A large number of studies have shown that the coupling of water and fertilizer
indirectly affects the photosynthetic rate of plant leaves by expanding leaf area, increasing
leaf transpiration rate, increasing stomatal conductance, increasing intracellular water
concentration, and reducing intracellular carbon dioxide concentration [76]. Wang et al. [77]
showed that water/nitrogen coupling had a significant positive effect on the Pn of leaves,
which is similar to the results of the current study. The reason may be that, with the
increase in irrigation and nitrogen fertilizer application, the available nitrogen in the soil
increase. Because there is sufficient soil water, the nutrient transport efficiency of the
tree is significantly improved. Therefore, the combined effect of the two factors is that
the absorption of nitrogen increases, and it is quickly and effectively transported to the
leaves, promoting the synthesis of chlorophyll and thus enhancing the Pn [78–80]. With
regard to the interaction between W and Zn, we found that when there was limited W,
the Pn remained at a low level with increasing Zn, and when there was more W, the Pn
increased somewhat with the appropriate increase in Zn. This shows that water plays the
dominant role in the interaction between W and Zn. Some studies have shown that the
effect of applying zinc fertilizer on plant biomass is better when there is sufficient water.
Spraying ZnSO4 on the leaf surface can improve the leaf water conditions [48,49]. Water
and potassium are important factors affecting plant photosynthesis [81].

Some studies have shown that when soil moisture content increases, soil mechanical
resistance decreases, which facilitates the flow of nutrients, thus promoting the absorption
of nutrients by the root system. Potassium itself promotes photosynthesis. Studies by
Nieves-Cordones have shown that under the condition of insufficient potassium fertilizer
supply, excess energy in plants can induce the production of more reactive oxygen species,
destroy chloroplast structure, accelerate chloroplast decomposition, and then inhibit photo-



Agronomy 2023, 13, 1082 13 of 17

synthesis. These negative effects caused by potassium deficiency will be improved with
the increase in potassium application. The results of this experiment showed that the
photosynthetic rate of apple leaves increased significantly with the increase in irrigation
amount under the condition of constant potassium application. The results showed that
the increase in irrigation water promoted the absorption of potassium in apple trees. There
was a significant coupling effect between irrigation amount and potassium application
amount, and it had a positive effect on Pn increase. So, the combined effect of W and K has
a somewhat synergistic effect on the Pn [43,82–84].

It should be pointed out that due to spatial and temporal differences in the coupling of
irrigation and fertilizer, different regions, soil textures, and soil nutrient contents will lead
to different conclusions from such testing. Therefore, in both production and application,
we must adapt measures to local conditions and consider the prevailing conditions if we
are to gain the best effect.

5. Conclusions

With drip irrigation of closely planted dwarf stock in the arid area of Xinjiang, W,
N, K, and Zn, had significant effects on the Pn of apple trees, but the influence of each
factor on the Pn differed and can be ranked: W > N > Zn > K. By examining the
interaction between irrigation and each of the fertilizers, we found the following ranking of
effects: W × N > W × Zn > W × K. Applying zinc can improve the Pn, thus enhancing the
storage of nutrients in the tree and promoting growth and development, and thus further
improving the yield of apple trees.

The test simulation optimization and frequency analysis showed that with W in the
range 258–294.75 mm, N in the range 33.44–39.51 kg/hm2, K in the range
53.82–69.39 kg/hm2, and Zn in the range 6.46–7.84 kg/hm2, within the 95% confidence
level, the net photosynthetic rate reaches 11 µmol·m−2·s−1. This is the best irrigation and
fertilizer management plan, under the test conditions.

Based on previous research results and our data, we consider that the indicators and
methods targeted by this test have certain limitations. More plant physiological growth
indicators are required to establish the relationship between irrigation and fertilizer factors
and various growth indicators. Finally, the relationship between yield and economic
benefits should be established to better serve the development of commercial agriculture
and forestry.
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