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Abstract: There is a great demand for dragon fruit in China and Southeast Asia. Manual picking
of dragon fruit requires a lot of labor. It is imperative to study the dragon fruit-picking robot. The
visual guidance system is an important part of a picking robot. To realize the automatic picking
of dragon fruit, this paper proposes a detection method of dragon fruit based on RDE-YOLOv7 to
identify and locate dragon fruit more accurately. RepGhost and decoupled head are introduced into
YOLOv7 to better extract features and better predict results. In addition, multiple ECA blocks are
introduced into various locations of the network to extract effective information from a large amount
of information. The experimental results show that the RDE-YOLOv7 improves the precision, recall,
and mean average precision by 5.0%, 2.1%, and 1.6%. The RDE-YOLOv7 also has high accuracy for
fruit detection under different lighting conditions and different blur degrees. Using the RDE-YOLOv7,
we build a dragon fruit picking system and conduct positioning and picking experiments. The spatial
positioning error of the system is only 2.51 mm, 2.43 mm, and 1.84 mm. The picking experiments
indicate that the RDE-YOLOv7 can accurately detect dragon fruits, theoretically supporting the
development of dragon fruit-picking robots.

Keywords: dragon fruit detection; YOLOv7; RepGhost; decoupled head; ECA; picking robots

1. Introduction

China is a large agricultural country. Although it has a very large agricultural planting
area, agricultural production has not yet achieved specialization and scale. The develop-
ment of smart agriculture is an inevitable trend in the future [1]. China is not only one
of the largest dragon fruit producers, but also one of the largest dragon fruit consumers.
However, such a large area of dragon fruit is almost harvested manually, which leads to a
large labor demand. Due to the hard branch, dragon fruit is usually harvested manually by
cutting its branch connected to the root. Such a manual picking method not only requires
special tools, but also may cause injury to workers. Therefore, it is imperative to study the
automatic picking robot of dragon fruit.

Automatic fruit picking is an important part of intelligent agriculture, which can
greatly reduce the labor intensity of workers. Fruit-picking robot is becoming one of
the hottest topics in recent years [2–5]. The vision system is an important part of the
fruit-picking robot, which determines the path and picking point of the picking hand.
Only by accurately identifying and locating the fruit can we design the picking path and
realize automatic picking. Early fruit recognition mostly uses traditional image processing
methods. Most of these methods set some features artificially and then determine whether
the image conforms to these set features, such as color features, shape features, and texture
features. The accuracy of fruit recognition using these methods is generally low, and
the generalization ability is weak, which makes it difficult to apply to picking robots. In
recent years, with the development of deep learning, more and more fruit recognition
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methods based on deep learning have been proposed [6–13]. Different fruit detection
tasks may have different problems, such as small targets, occlusion, false detection, and
complex background. Researchers should design corresponding solutions based on actual
scenarios. Object detection models based on convolution neural networks (CNNs) are
the most commonly used method. They are mainly divided into two types: one-stage
and two-stage. Two-stage models first generate some candidate regions through Region
Proposal Network (RPN), and then classify and locate targets through a convolution neural
network. Its representative models include region-based convolutional neural network
(RCNN) series, and spatial pyramid pooling Network (SPPNet). For example, Liu et al. [14]
proposed an improved Mask RCNN to solve the problem that the characteristics of leaves
and fruits are very similar in cucumber fruit detection. Hu et al. [15] used Faster RCNN to
detect pecan fruit, and the mean average precision of this method reached 95.932%. Wan
et al. [16] proposed a deep learning framework for multi-class fruits detection based on
improved Faster R-CNN, this detection method got higher accuracy and speed compared
with the original model. These above models generally have high accuracy and slow
detection speed due to two stages in detection. One-stage models directly extract features
through a convolution neural network to predict target classification and location. Its
representative models include the you only look once (YOLO) series, single shot detection
(SSD), and RetinaNet. Gai et al. [17] proposed an improved YOLOv4 to detect cherry fruits,
and improved the detection speed and accuracy. Xu et al. [18] proposed an improved CBF
module and replaced the bottleneck CSP module with the Specter module, which improved
the detection accuracy and detection speed of the YOLOv5s model. Similarly, the CIoU
Loss function was used in training YOLOv5s to decrease the missed detection rate and
false detection rate [19]. Kang et al. [20] proposed A3N which is a geometry-aware network
to perform end-to-end instance segmentation and grasping estimation using both color
and geometry sensory data from an RGB-D camera. The instance segmentation accuracy of
A3N achieved 0.873. Cardellicchio et al. [21] used YOLOv5 to effectively identify nodes,
fruit, and flowers on a challenging dataset, and achieved high scores. These one-stage
models may have had low accuracy in the past, but with the continuous improvement
of scientific researchers, the one-stage models can now maintain high accuracy and high
speed at the same time.

As for the detection of dragon fruits, some researchers have made contributions. For
example, the backbone of YOLOv4 was replaced with Mobilenet-v3 to detect dragon fruits,
thereby reducing the model size and improving speed. However, this method makes
the average precision of the model decrease slightly [22]. Zhang et al. [23] proposed an
improved YOLOv5s to accurately detect dragon fruits under different light conditions.
These methods for detecting dragon fruits cannot apply to picking robots, because they only
detect dragon fruits. In real scenes, the diverse postures of dragon fruit make it difficult to
pick by cutting the branch. In this paper, we classify dragon fruit according to postures in
the camera view. Based on the latest YOLOv7 model, this paper proposes RDE-YOLOv7
to improve the accuracy of dragon fruit detection, thus improving the performance of
the dragon fruit-picking robot. We use the RDE-YOLOv7 to build a dragon fruit-picking
system, and carry out spatial positioning verification and picking experiments.

The main contributions of this paper are as follows:

1. Dragon fruits are classified into two categories according to their postures in the
camera view. Some existing methods in deep learning are applied to YOLOv7 to
improve detection accuracy. The introduction of RepGhost and decoupled head are
proved to be effective.

2. We compared the impact of three attention mechanisms on the performance of the
model at different locations of the network, and finally added ECA blocks to the
model to improve the detection accuracy.

3. We have built a dragon fruit picking system, and the validity of this method is proved
by the spatial positioning verification experiment and the picking experiment.
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2. Materials and Methods
2.1. Data Acquisition

The dragon fruit pictures used in this article were taken from orchard Lile agricultural,
Nanjing city. They are taken under different weather conditions (cloudy, sunny), daytimes
(morning, noon, evening, and night), lighting conditions (strong light, weak light, and
artificial light), and shooting distance. Due to the need of picking, we classify dragon fruit
into two categories according to the postures of dragon fruit in the camera. First, when
a dragon fruit grows on the left or right side of its branch, it is named the dragon fruit
in the side (DF_S). Second, when a dragon fruit grows on the front side of its branch, it
is named as the dragon fruit in the front (DF_F). The location of dragon fruit and their
categories were labeled by using LabelImg software before the experiment. In the outdoors,
the variability of light is the main factor affecting the detection performance of the model.
Therefore, we group the original images according to strong light, weak light, and artificial
light. The number of them is 876, 883, and 729, respectively. At last, we divide the image
data into training sets, validation sets, and test sets according to the three light conditions.
The training set is used to train the model, the validation set is used to determine whether
the training result is the best, and the test set is used to test and compare the detection
performance of each model. Table 1 shows the data sets used in this paper.

Table 1. Datasets constructed under different lighting conditions.

Light Conditions Training Set Validation Set Test Set

Strong light 699 65 112
Weak light 715 71 97

Artificial light 582 60 87

2.2. Data Augmentation

The diversity of data ensures better robustness of the model. To improve the robustness
and generalization ability of the model in the experiment, data augmentation of the training
set is needed to improve the learning effect. HSV augmentation, image translation, image
scale, and image flip (left and right) are used to increase the diversity of training data. In
addition, mixup and mosaic data augmentation are also used in training. Their goal is to
have more targets on the newly generated images, to make the data more diversified. The
mosaic data augmentation method can also generate more small targets, thus enhancing
the ability of the model to detect small targets. The image generated by the mosaic data
augmentation method is quite different from the actual one, so it is not used in the later
stage of training. Figure 1 shows the process of mixup and mosaic data augmentation.
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Figure 1. Process of mixup and mosaic data augmentation.

The hyper-parameters of the above data augmentation methods used in the experiment
are shown in Table 2.
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Table 2. The hyper-parameter of data augmentation.

Methods Parameter

Hue 0.015 fraction
Saturation 0.7 fraction

Value 0.4 fraction
Translation +/−20%

Scale +/−10%
Flip 50% probability

Mosaic 0.8 probability
Mixup 0.15 probability

2.3. Methodology
2.3.1. YOLOv7

YOLO is an object detection model widely used in harvesting robots. It may have
various problems when detecting different objects and different scenes [24]. Therefore,
researchers need to improve the model according to the actual scene needs to adapt it to
different scenarios. At present, the improvement direction of the model is mainly to improve
the detection accuracy and detection speed. YOLOv7 is a relatively advanced object detector
at present [25]. It has shown very good results on some public datasets. Figure 2 shows
the network structure of YOLOv7. The structure of YOLOv7 is mainly divided into a
backbone network and a head network. The original image enters the backbone network as
input after some preprocessing. The backbone network is mainly used to extract features,
and the head network is mainly used to further fuse the extracted features. The ELAN
structure in the backbone network makes the deeper network effectively learn and converge
by controlling the shortest and longest gradient path. The MP1 structure integrates two
down-sampling methods: pooling and convolution, which allows the network to choose
the better of the two down-sampling methods. In the head network, a structure named as
ELAN-W is used to learn features after fusion at different scales, and this structure has two
more gradient paths than the ELAN structure.

1 
 

 
 
Figure 2 
 
 
 

Figure 2. The structure of the YOLOv7 network. The Conv denotes the convolution layer, the BN
denotes the batch normalization layer, and Silu and Sigmoid denote the activation function.
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2.3.2. Attention Mechanism

In the convolutional neural network, the attention mechanism can assign different
weights to different parts of the input feature map, to select the most important infor-
mation from a large amount of information. Efficient channel attention (ECA) [26] is an
efficient attention mechanism as shown in Figure 3. It is a local cross-channel interaction
strategy without dimensionality reduction, which can be efficiently implemented via one-
dimensional convolution. Furthermore, the convolution kernel size of one-dimensional
convolution can be adjusted adaptively according to the number of channels. This atten-
tion mechanism can improve the detection accuracy of the model with few additional
parameters.
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Figure 3. The structure of the ECA block.

In an efficient channel attention block, the input feature first gets the channel vector
through the adaptive average pooling layer, then uses the one-dimensional convolution to
interact with the information between channels, and finally uses the sigmoid activation
function to obtain the weight value of each channel. The input feature adjusts the valof on
the channel dimension according to the obtained weight.

2.3.3. RepGhost Module

The RepGhost module is a lightweight convolution module [27]. It utilizes a re-
parameterization technique to realize feature reuse implicitly by replacing the inefficient
concatenation operator in the Ghost module. Their research proves that Concat operation
is more time-consuming than Add operation. Therefore, the RepGhost module replaces
the Concat operation in the original Ghost module with the Add operation and uses the
activation function after the Add operation to meet the rule of re-parameterization structure.
Figure 4 shows the RepGhost structure.
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Figure 4. The structure of RepGhost and the process of re-parameter. During the training stage, there
are BN branches. During deploying stage, there are only the convolution layer and activation layer.
The process of the re-parameter is generating an equivalent convolution layer on the BN branch,
fusing the convolution layer and BN layer, and fusing convolution layers on the two branches.

2.3.4. Decoupled Head

In the detection head of YOLOv7, classification, regression, and prediction are carried
out simultaneously. Decoupled Head was proposed in the YOLOX model [28]. Compared
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with the head of YOLOv7, the decoupled head uses features for classification, regression,
and prediction, respectively. More convolution layers are added to the decoupled head for
classification, regression, and prediction. Of course, the decoupled head will have more
learning parameters to make the detection accuracy higher. Figure 5 shows the comparison
of decoupled head and coupled head.
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Figure 5. The structure of the decoupled head and coupled head. Compared to coupled head, the
decoupled head has more convolution layers.

2.3.5. RDE-YOLOv7

Figure 6 depicts the RDE-YOLOv7 structure, highlighting the methods employed to
improve the detection accuracy of the YOLOv7 model. Table 3 shows the output size of
each layer.

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

2.3.5. RDE-YOLOv7 

Figure 6 depicts the RDE-YOLOv7 structure, highlighting the methods employed to 

improve the detection accuracy of the YOLOv7 model. Table 3 shows the output size of 

each layer. 

 

Figure 6. The structure of RDE-YOLOv7. RepGhost is used to replace the ELAN structure in the 

backbone. Decoupled head is used in the prediction layers. ECA is introduced into the backbone 

network and head network. 

Table 3. The structure parameter of the RDE-YOLOv7 network. 

Layer ID Layer Name ID of the Input Layer Output Size 

0 CBS - 32 × 640 × 640 

1 CBS 0 64 × 320 × 320 

2 CBS 1 64 × 320 × 320 

3 CBS 2 128 × 160 × 160 

4 RepGhost 3 256 × 160 × 160 

5 ECA 4 256 × 160 × 160 

6 MP1 5 256 × 80 × 80 

7 RepGhost 6 512 × 80 × 80 

8 ECA 7 512 × 80 × 80 

9 MP1 8 512 × 40 × 40 

10 RepGhost 9 1024 × 40 × 40 

11 ECA 10 1024 × 40 × 40 

12 MP1 11 1024 × 20 × 20 

13 RepGhost 12 1024 × 20 × 20 

14 ECA 13 1024 × 20 × 20 

15 SPPCSPC 14 512 × 20 × 20 

16 CBS 15 256 × 20 × 20 

   

   

   

   

         

  1

        

  1

        

  1

        

       

   

        

   

      

   

        

   

      

   

   

  2

   

      

  2

   

      

   

   

            

         

         
           

   

   

   

   

   

   

   

   

Figure 6. The structure of RDE-YOLOv7. RepGhost is used to replace the ELAN structure in the
backbone. Decoupled head is used in the prediction layers. ECA is introduced into the backbone
network and head network.
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Table 3. The structure parameter of the RDE-YOLOv7 network.

Layer ID Layer Name ID of the Input Layer Output Size

0 CBS - 32 × 640 × 640
1 CBS 0 64 × 320 × 320
2 CBS 1 64 × 320 × 320
3 CBS 2 128 × 160 × 160
4 RepGhost 3 256 × 160 × 160
5 ECA 4 256 × 160 × 160
6 MP1 5 256 × 80 × 80
7 RepGhost 6 512 × 80 × 80
8 ECA 7 512 × 80 × 80
9 MP1 8 512 × 40 × 40
10 RepGhost 9 1024 × 40 × 40
11 ECA 10 1024 × 40 × 40
12 MP1 11 1024 × 20 × 20
13 RepGhost 12 1024 × 20 × 20
14 ECA 13 1024 × 20 × 20
15 SPPCSPC 14 512 × 20 × 20
16 CBS 15 256 × 20 × 20
17 Upsample 16 256 × 40 × 40
18 CBS 11 256 × 40 × 40
19 Concat 17, 18 512 × 40 × 40
20 ELAN-W 19 256 × 40 × 40
21 ECA 20 256 × 40 × 40
22 CBS 21 128 × 40 × 40
23 Upsample 22 128 × 80 × 80
24 CBS 8 128 × 80 × 80
25 Concat 23, 24 256 × 80 × 80
26 ELAN-W 25 128 × 80 × 80
27 ECA 26 128 × 80 × 80
28 MP2 27 256 × 40 × 40
29 Concat 20,28 512 × 40 × 40
30 ELAN-W 29 256 × 40 × 40
31 ECA 30 256 × 40 × 40
32 MP2 31 512 × 20 × 20
33 Concat 15, 32 1024 × 20 × 20
34 ELAN-W 33 512 × 20 × 20
35 ECA 34 512 × 20 × 20
36 REP 27 256 × 80 × 80
37 REP 31 512 × 40 × 40
38 REP 35 1024 × 20 × 20

39 Decoupled head 36, 37, 38
3 × (2 + 4 + 1) × 20 × 20
3 × (2 + 4 + 1) × 40 × 40
3 × (2 + 4 + 1) × 80 × 80

2.4. Evaluation Metrics

To evaluate the performance of the model, Precision (P), recall (R), and mean average
precision (mAP) are used. These above metrics are calculated as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
∫ 1

0
P(R)dR (3)
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mAP =

n
∑

i=1
APi

n
(4)

where TP is the number of positive samples predicted to be positive class. FP is the number
of negative samples predicted to be positive class. FN is the number of positive samples
predicted to be negative class. AP is the area below the PR curve. mAP is the mean AP
value for each category; n represents the number of categories in object detection. In this
paper n = 2.

2.5. Training Parameters and Experimental Environment

The training hyperparameters used in the experiment are shown in Table 4.

Table 4. The hyperparameters in the training process.

Hyperparameters Value

Epoch 300
Initial learning rate 0.01

Batch size 8
momentum 0.937

Weight decay 0.0005
Loss function BCE, CIoU

The GPU of the computer is an NVIDIA GeForce RTX3070Ti. The CPU is AMD Ryzen
7 5800X with an 8-core processor. The operating system was Windows 10 and PyTorch
version 1.10, Python version 3.8, and CUDA version 11 were used.

3. Results
3.1. Experiments of Some Methods Applying to YOLOv7

To improve the detection performance of the YOLOv7 model, some methods that
may influence the detection performance have been used. By comparing with the original
YOLOv7 model, whether these methods have a positive effect on improving the detection
performance of YOLOv7. They are trained and tested under the same condition. Figure 7
shows the variation curves of training loss and validation loss.

 

2 

 
 
 
Figure 7 

Figure 7. The training process of the different methods introduced into YOLOv7.

As shown in Figure 7, in 300 epoch training, although the loss on the training set still
has a downward trend, the loss curve of all the above models on the validation set tends to
be flat, indicating that the model training has converged. We tested these trained models,
and the results are shown in Table 5.
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Table 5. The hyperparameters in the training process.

Methods P(%) R(%) mAP(%)

YOLOv7 85.7 88.7 91.8
YOLOv7-Adam 81.5 88.1 91.1
YOLOv7-SIoU 83.5 90.3 91.5
YOLOv7-Focal 84.0 87.7 91.6
YOLOv7-Ghost 86.1 88.3 91.4

YOLOv7-
GhostSPPCSPC 85.8 89.5 92.1

YOLOv7-RepGhost 86.9 88.8 92.3
YOLOv7-Decoupled 88.4 87.9 92.3

YOLOv7-Adam means training with Adam optimizer, YOLOv7-SIoU means training with SIoU box regression
loss function, YOLOv7-Focal means training with Focal loss function, YOLOv7-Ghost means replacing ELAN with
Ghostbottleneck, YOLOv7-GhostSPPCSPC means replacing SPPCSPC with GhostSPPCSPC, YOLOv7-RepGhost
means replacing ELAN with RepGhost, YOLOv7-Decoupled means using decoupled head.

We can get the following conclusions from Table 5. Compared with the original
YOLOv7, the P, R, and mAP of YOLOv7-RepGhost improved by 1.2%, 0.1%, and 0.5%. The
P and mAP of YOLOv7-Decoupled improved by 2.7% and 0.5%. The P, R, and mAP of
YOLOv7-GhostSPPCSPC improved by 0.1%, 0.8%, and 0.3%. The introduction of these
three methods has significantly improved the detection performance of the network. On
the contrary, the introduction of other methods has no positive effects or little positive
effects on the network, and we will no further use these methods.

3.2. Ablation Experiments

Through the experiment in Section 3.1, we found that introducing one of RepGhost,
decoupled head, and GhostSPPCSPC can improve the detection performance of the model.
Therefore, we conduct ablation experiments to explore whether the fusion of these methods
can further enhance the performance of the YOLOv7 network. Taking the original YOLOv7
as the baseline, we introduced RepGhost, Decoupled, and GhostSPPCSPC into the network
in turn. The experiment results are shown in Table 6.

Table 6. Ablation experiment of RepGhost, decoupled head, and GhostSPPCSPC.

RepGhost Decoupled Head GhostSPPCSPC P(%) R(%) mAP(%)

× × × 85.7 88.7 91.8√
× × 86.9 88.8 92.3√ √

× 89.8 90.6 92.8√ √ √
86.1 91.2 92.6

The experiment results in Table 6 show that the introduction of RepGhost improves
the P, R, and mAP by 1.2%, 0.1%, and 0.5%. The introduction of RepGhost and decoupled
head improves the P, R, and mAP by 4.1%, 1.9%, and 0.8%. When GhostSPPCSPC is further
introduced, the detection performance of the model declines. Therefore, we name the model
which introduced RepGhost and decoupled head as RD-YOLOv7 and try to introduce
attention mechanisms into the RD-YOLOv7 to further improve detection performance.

3.3. Experiments of Different Attention Mechanisms in Dragon Fruit Detection

Using RepGhost and decoupled head can improve the detection accuracy of the
YOLOv7 model. However, how to extract and fuse features more accurately is still a
potential problem. Thus, we try to add different attention mechanisms at different positions
in RD-YOLOv7 to increase the weights of effective features. Convolutional block attention
module (CBAM), coordinate attention (CA) and ECA are added to the RD-YOLOv7 model.
The attention mechanism is a plug-and-play module. Its position in the network will also
affect the detection performance. Therefore, we add these attention mechanisms to two
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positions in the network which are after each RepGhost in the backbone network and after
each ELAN-W structure in the head network. The experiment results are shown in Table 7.

Table 7. Experiment results of different attention mechanisms in different positions.

Base Model Plug
Position

Attention
Mechanism P(%) R(%) mAP(%)

RD-YOLOv7

RepGhost
CBAM 85.2 89.6 91.8

CA 87.6 89.0 92.4
ECA 90.1 88.9 92.7

ELAN-W
CBAM 86.1 90.3 92.5

CA 83.6 88.5 91.7
ECA 88.9 91.2 93.0

Both
CBAM 82.5 91.7 92.3

CA 84.7 86.2 92.0
ECA 90.7 90.8 93.4

As shown in Table 7, the introduction of CBAM and CA in RD-YOLOv7 will reduce
the detection performance. After introducing ECA into the backbone network, the P of
RD-YOLOv7 is increased by 0.3%. After introducing ECA into the head network, the R
and mAP of RD-YOLOv7 are increased by 0.6% and 0.2%. When ECA is introduced in
both the two positions at the same time, the performance of the model is significantly
improved, where P is improved by 0.9%, R is improved by 0.2%, and mAP is improved by
0.6. The results mean that the ECA is the best attention mechanism in RD-YOLOv7, and
the model can learn the parameter in the ECA by itself. In the training stages, the ECA
block in different positions may play a different role in the model. By introducing ECA into
both the backbone network and head network, the final model named RDE-YOLOv7 is
proposed. The RDE-YOLOv7 improves the P, R, and mAP by 5.0%, 2.1%, and 1.6%.

3.4. Experiments under Different Light Conditions

In the natural environment, the drastic change of light is an important factor that
affects the detection accuracy of the model. To verify that the RDE-YOLOv7 model has high
detection accuracy under different light conditions. Use the images taken under different
lighting conditions in Table 1 for experiments. The experiment results are shown in Table 7.

The results in Table 8 show that the RDE-YOLOv7 proposed in this study has high
detection accuracy under different lighting conditions. In addition, the proposed model
also has high detection accuracy in detecting the two categories of dragon fruit. The
experimental results show that the model is robust enough to detect dragon fruit under
different light conditions, which makes it possible for the picking robot to pick all day long.
Figure 8 shows some visualization results of detecting dragon fruit under different light
conditions by using the RDE-YOLOv7 model.

Table 8. The detection results of RDE-YOLOv7 under different light conditions.

Light Condition Class P(%) R(%)

Strong light DF_F 91.7 92.1
DF_S 90.6 90.1

Weak light DF_F 92.1 92.5
DF_S 91.0 91.6

Artificial light DF_F 89.5 89.2
DF_S 89.3 89.3
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3.5. Experiments under Different Blur Conditions

When performing the picking task in the orchard, the image captured by the camera
may be blurred when the robot is moving. Therefore, to verify the fault tolerance of RDE-
YOLOv7 on blurred images, we randomly select 100 images from the test set and use
Gaussian blur to process these images, the kernel size of Gaussian blur is set to 51, 101, 151
for generating images with different blur degrees. The larger the Gaussian kernel, the more
blurred the generated image. Then, 300 blurred images are used to test. Table 9 shows the
experiment results of detecting the 300 blurred images.

Table 9. The detection results of RDE-YOLOv7 under different blur conditions.

Gaussian Kernel P(%) R(%) mAP(%)

0 91.8 91.1 93.3
51 89.8 90.7 92.7

101 89.4 76.2 86.1
151 75.1 59.3 62.4

As shown in Table 9, when the Gaussian kernel with the size of 51 is used for blur
processing, the detection precision, recall, and mAP of the RDE-YOLOv7 model are de-
creased by 2.0%, 0.3%, and 0.6% respectively. when the Gaussian kernel with the size of 101
is used for blur processing, the detection precision, recall, and mAP of the RDE-YOLOv7
model are decreased by 2.4%, 14.9%, and 7.2% respectively. when the Gaussian kernel
with the size of 151 is used for blur processing, the detection precision, recall, and mAP
of the RDE-YOLOv7 model are decreased by 16.7%, 31.8%, and 30.9% respectively. The
experiment results show that the image with a low blurring degree has little impact on the
RDE-YOLOv7 model and can be ignored, the image with a medium blurring degree has a
great impact on the recall of the RDE-YOLOv7model, which lead to missing detection of
some fruits. When the blurring degree of the image is high, the detection precision and
recall of the RDE-YOLOv7 model will decrease significantly. At this time, there may be
many fruits that are misidentified and missed. Figure 9 shows some detection results of
images processed with different Gaussian kernels.
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Figure 9. The detection results of images with different Gaussian kernels.

3.6. Experiments for the Best Confidence Threshold in Real Detection

For a picking robot, the error detection rate should be greatly reduced, because the
error detection will make the manipulator drive the end-effector to some error positions,
which may damage the fruit or even the manipulator. It is better to miss-picking than
to error-picking. So, P is more important than R. In real detection, we need to set the
confidence threshold and intersection over the union (IoU) threshold. The IoU threshold is
used for non-maximum suppression (NMS), and we set it to 0.5. The confidence threshold
is used to determine whether there is an object in the prediction box. When the confidence
of a prediction box is bigger than the set threshold, it is considered that there is an object
in the box. If the confidence threshold is set too small, some negative samples may be
considered dragon fruits, which leads to error picking. If the confidence threshold is set too
big, some dragon fruits will be considered negative samples, which leads to miss-picking.
In the above experiments, the importance of P and R was not considered when calculating
the metrics. The principle we follow is to ensure a certain R and try to improve the P. To
select the best confidence threshold in real detection, we set different confidence thresholds,
use the RDE-YOLOv7 to detect the images in the test set, and calculate the P and R. The
test results are shown in Table 10.

Table 10. The experiment results of RDE-YOLOv7 with different confidence thresholds.

Confidence Threshold P(%) Increase(%) R(%) Decrease(%)

0.1 76.2 - 95.8 -
0.2 80.7 4.5 93.6 2.2
0.3 83.6 2.9 92.4 1.2
0.4 85.6 2.0 91.7 0.7
0.5 88.7 3.1 91.2 0.5
0.6 91.3 2.6 89.8 1.4
0.7 91.8 0.5 86.7 3.1
0.8 92.4 0.6 76.4 10.3
0.9 94.5 2.1 53.4 23.0

The results in Table 10 show that the greater the confidence setting, the higher the
accuracy and the lower the recall rate. When the set confidence threshold is below 0.6,
the p value increases rapidly and the R-value decreases slowly, which is because some
negative samples and dragon fruit with low detection probability are gradually suppressed.
When the set confidence threshold is bigger than 0.6, the p value increases slowly and the
R-value decreases rapidly, which is because a small number of dragon fruits with incorrect
classification and most dragon fruits with correct detection are gradually suppressed.
Finally, we set the confidence threshold to 0.6 in real detection.
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3.7. Experiments of Spatial Positioning

For a picking robot, accurate target positioning is necessary. To verify the high posi-
tioning accuracy of RDE-YOLOv7 proposed in this paper, we have conducted positioning
verification Experiments. The equipment used in the experiment includes a manipulator,
stereo camera, and edge computer. Their product models are S6H4D_Plus, Zed Mini, and
Jetson AGX Orin. After camera calibration and hand-eye calibration, the experimental steps
are as follows: (1) Detect the image collected by the camera to obtain the two-dimensional
coordinates of the image; (2) calculate the point cloud chart and conduct coordinate trans-
formation to obtain the three-dimensional coordinates of the target in the manipulator
coordinate system; (3) send a motion command to the manipulator to make it move to the
calculated coordinate position; (4) record the coordinates of the manipulator on the teaching
pendant and the calculated coordinates. The coordinates displayed by the teaching pendant
are real coordinates, and the calculated coordinates are positioning coordinates. Repeat
the experiment several times according to these steps. Tables 11 and 12 show the spatial
positioning experiment results of RDE-YOLOv7 and YOLOv7.

Table 11. The spatial positioning experiment results of RDE-YOLOv7.

No
Real Coordinates (mm) Positioning Coordinates(mm) Absolute Error (mm)
Xr Yr Zr Xp Yp Zp Xe Ye Ze

1 41.54 156.92 382.14 42.36 155.18 383.06 0.82 1.74 0.92
2 52.68 245.64 351.48 54.78 246.62 350.40 2.12 0.98 1.08
3 482.36 287.48 375.36 478.89 289.00 374.05 3.47 1.52 1.31
4 471.62 78.52 368.71 473.54 81.14 367.87 1.92 2.62 0.84
5 465.12 396.47 385.34 467.93 399.31 384.59 2.81 2.84 0.75
6 62.34 194.83 378.43 64.98 192.89 376.49 2.64 1.94 1.94
7 457.82 167.49 357.69 460.29 165.14 355.22 2.47 2.35 2.47
8 468.97 241.39 348.15 472.24 237.98 345.29 3.27 3.41 2.86
9 68.26 96.18 362.62 69.90 95.34 363.16 1.64 0.84 0.54
10 57.69 128.37 378.94 59.42 126.61 377.27 1.73 1.76 1.67
11 52.48 329.67 341.26 55.76 326.78 343.09 3.28 2.89 1.83
12 47.62 156.98 352.76 50.56 153.31 353.70 2.94 3.67 0.94
13 437.68 357.81 349.28 440.44 353.49 352.55 2.76 4.32 3.27
14 462.84 285.74 368.81 459.77 282.99 372.30 3.07 2.75 3.49
15 46.98 86.45 384.74 48.55 84.11 387.22 1.57 2.34 2.48
16 452.69 187.43 357.69 451.35 189.40 355.31 1.34 1.97 2.38
17 467.59 245.34 379.38 471.26 243.48 381.22 3.67 1.86 1.84
18 487.32 387.41 364.59 484.03 384.15 363.83 3.29 3.26 0.76
19 67.76 156.74 357.95 70.38 154.15 359.64 2.62 2.59 1.69
20 59.71 109.48 375.64 62.42 106.51 379.39 2.71 2.97 3.75

The X in the header represents the left and right coordinates in the camera view, Y represents the up and down
coordinates in the camera view, and Z represents the depth coordinates.

The spatial positioning experiment results of RDE-YOLOv7 in Table 11 show that the
maximum absolute errors of XYZ in three directions are 3.67 mm, 4.32 mm, and 3.75 mm
respectively, and the minimum values are 0.82 mm, 0.84 mm, and 0.54 mm respectively, and
the average values are 2.51 mm, 2.43 mm, and 1.84 mm respectively. The spatial positioning
experiment results of YOLOv7 in Table 12 show that the maximum absolute errors of XYZ
in three directions are 3.82 mm, 4.24 mm, and 3.54 mm respectively, the minimum values
are 1.34 mm, 1.65 mm, and 0.87 mm, and the average values are 2.60 mm, 2.81 mm, and
2.06 mm respectively. The average positioning error of RDE-YOLOv7 is smaller than that
of YOLOv7, which to some extent indicates that RDE-YOLOv7 has higher positioning
accuracy. In addition, the small error in X and Y directions indicates that the RDE-YOLOv7
model is accurate in positioning. The spatial positioning experiment results show that the
error value is relatively stable and there is no abnormal situation, and the error value is
within 5 mm, which is tolerable by the picking system.
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Table 12. The spatial positioning experiment results of YOLOv7.

No
Real Coordinates (mm) Positioning Coordinates (mm) Absolute Error (mm)
Xr Yr Zr Xp Yp Zp Xe Ye Ze

1 52.71 241.32 344.72 54.24 243.81 342.50 1.53 2.49 2.22
2 58.49 167.93 381.23 56.08 165.95 382.94 2.41 1.98 1.71
3 471.71 247.75 358.12 474.73 251.09 356.84 3.02 3.34 1.28
4 62.92 104.65 372.84 64.84 106.30 370.70 1.92 1.65 2.14
5 458.36 284.32 353.31 462.18 280.73 354.23 3.82 3.59 0.92
6 459.24 312.57 343.67 456.07 315.41 345.10 3.17 2.84 1.43
7 65.31 194.78 353.89 62.64 191.86 351.55 2.67 2.92 2.34
8 461.34 258.88 382.39 463.83 261.36 379.28 2.49 2.48 3.11
9 454.87 348.36 368.78 452.64 345.70 367.12 2.23 2.66 1.66
10 473.87 276.94 374.05 475.78 275.15 375.17 1.91 1.79 1.12
11 61.39 127.71 359.67 60.05 131.52 361.51 1.34 3.81 1.84
12 56.73 211.82 363.82 59.76 209.72 360.95 3.03 2.10 2.87
13 449.21 174.64 351.29 451.97 171.23 354.83 2.76 3.41 3.54
14 67.82 119.54 383.91 71.56 122.73 382.26 3.74 3.19 1.65
15 59.72 109.87 377.18 62.65 107.39 374.56 2.93 2.48 2.62
16 69.18 328.44 372.72 66.50 326.52 371.85 2.68 1.92 0.87
17 468.82 374.17 349.07 470.40 377.96 350.99 1.58 3.79 1.92
18 485.18 229.40 357.77 482.54 225.16 361.20 2.64 4.24 3.43
19 71.23 166.93 371.84 67.99 170.15 369.30 3.24 3.22 2.54
20 56.98 248.89 368.38 59.84 246.51 366.46 2.86 2.38 1.92

The X in the header represents the left and right coordinates in the camera view, Y represents the up and down
coordinates in the camera view, and Z represents the depth coordinates.

3.8. Dragon Fruits Picking Experiments

To directly prove the effectiveness of the RDE-YOLOv7 model proposed in this paper,
we have carried out some simulated picking experiments in the laboratory. The picking
system is mainly composed manipulator, Zed Mini, Jetson AGX Orin, control box, and
end-effector. Figure 10 shows the picking system.
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Figure 10. The dragon fruit picking system.

The manipulator is controlled to drive the end-effector to the target position. Zed Mini
is a stereo camera, and it is used for image acquisition and 3D positioning. Jetson AGX
Orin is used to inference the image and compute the point cloud chart. The control box
is used to control some controlling elements and make the end-effector cut the branch. In
this experiment, because DF_S cannot be picked directly according to the coordinates, only
DF_F with successful recognition is picked.
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The experiment steps are as follows: (1) start the program; (2) detect and spatially
locate the DF_F; (3) send motion command to the manipulator; (4) pressure sensor contacts
branch to trigger cut action. Place the dragon fruit at different positions in the camera view,
and repeat the experiment many times. Figure 11 shows the picking process.

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 18 
 

 

 

Figure 10. The dragon fruit picking system. 

The manipulator is controlled to drive the end-effector to the target position. Zed 

Mini is a stereo camera, and it is used for image acquisition and 3D positioning. Jetson 

AGX Orin is used to inference the image and compute the point cloud chart. The control 

box is used to control some controlling elements and make the end-effector cut the branch. 

In this experiment, because DF_S cannot be picked directly according to the coordinates, 

only DF_F with successful recognition is picked. 

The experiment steps are as follows: (1) start the program; (2) detect and spatially 

locate the DF_F; (3) send motion command to the manipulator; (4) pressure sensor con-

tacts branch to trigger cut action. Place the dragon fruit at different positions in the camera 

view, and repeat the experiment many times. Figure 11 shows the picking process. 

 

Figure 11. The process of picking dragon fruits. 

In picking experiments, the average time required to infer an image using RDE-

YOLOV7 is 27.1 ms, which meets the real-time requirements. In addition, it takes about 

15 s for the manipulator to pick a dragon fruit and back to the original position. 

4. Conclusions 

This study proposes a dragon fruit detection method named RDE-YOLOv7, which 

can more accurately detect dragon fruits in complex scenes. RepGhost and decoupled 

head are introduced into YOLOv7 to replace the ELAN and coupled head for better de-

tection performance, and they are proven to improve P, R, and mAP by 4.1%, 1.9%, and 

               

          

           

           

                 

        

           

               

                                    

                                    

Figure 11. The process of picking dragon fruits.

In picking experiments, the average time required to infer an image using RDE-
YOLOV7 is 27.1 ms, which meets the real-time requirements. In addition, it takes about
15 s for the manipulator to pick a dragon fruit and back to the original position.

4. Conclusions

This study proposes a dragon fruit detection method named RDE-YOLOv7, which
can more accurately detect dragon fruits in complex scenes. RepGhost and decoupled head
are introduced into YOLOv7 to replace the ELAN and coupled head for better detection
performance, and they are proven to improve P, R, and mAP by 4.1%, 1.9%, and 1%. ECA
is proven to be the best attention mechanism among CBAM, CA, and ECA. It is added
into the backbone network and head network to pay more attention to the targets which
further improve P, R, and mAP by 0.9%, 0.2%, and 0.6%. RDE-YOLOv7 is constructed by
introducing RepGhost, decoupled head, and ECA block into YOLOv7.

The following results are obtained by analyzing the experimental results. Compared
with the original YOLOv7, RDE-YOLOv7 improves P, R, and mAP by 5.0%, 2.1%, and 1.6%.
RDE-YOLOv7 also has good performance in detecting dragon fruits under different light
conditions, which is of great significance to the outdoor all-day work of the picking robot.
In addition, RDE-YOLOv7 can detect dragon fruits in slightly blurred images.

A dragon fruit-picking system is constructed in this paper. The results of Spatial
positioning experiments show that the positioning accuracy of the vision system formed
by RDE-YOLOv7 is very high. The coordinate positioning errors in the space of the vision
system are only 2.51 mm, 2.43 mm, and 1.84 mm, which can lead the manipulator to drive
the end-effector to reach the accurate position. The picking experiments have proved that
the RDE-YOLOv7 proposed in this paper can be used to pick dragon fruit.

A high-precision object detection model can significantly improve fruit-picking robots’
picking efficiency and accuracy. In future research, the fruit will not only be detected from
the two-dimensional image, but also the point cloud image calculated by the stereo camera
may be able to identify and locate the fruit more accurately.
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