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Abstract: Microbial biocontrol agents are efficient and environment-friendly in eradicating plant
pathogenic bacteria. In recent years, Bacillus velezensis has gained popularity as a potential biocontrol
agent in many countries. Several B. velezensis-based biocontrol products, previously identified as B.
amyloliquefaciens or B. amyloliquefaciens subsp. plantarum, have received commercial approval, particu-
larly in China and Europe. In this study, we compiled recent research findings on B. velezensis related
to the production of antimicrobials, volatile organic compounds, induction of disease resistance, and
the effect of this bacterium on plant growth promotion and yield. However, some recent research in-
dicates that this important resource is also linked to several diseases in crops, including peach, onion,
and potato, and the negative aspects of this bacterium in terms of its virulence traits to infect crops
have not been summarized before. In this review, we compile the recent reports of this bacterium in
term of its beneficial properties in agriculture. In addition, we also discuss several reports about its
harmful effect on several crops as well. Therefore, due to the inherent pathogenicity of this bacterium
to several crops, care must be taken when using it in a novel crop cultivation technique.

Keywords: Bacillus velezensis; sustainable agriculture; benefits; deleterious effect

1. Introduction

The world is facing a strong need to develop ecofriendly and sustainable methods to
improve agricultural productivity. Microbial infections of plants pose a primary danger
to global food production and healthy ecosystems. Plant pathogenic microorganisms are
estimated to cause a ~25% loss of the global crop yield each year [1]. In addition, over
the last 50 years, the human population has doubled, and by 2050, it is expected to reach
over nine billion [2]. To fulfill the food demand of this growing population, a considerable
enhancement of agricultural production is required [2]. Changing environmental conditions
with the reduction of agricultural farmlands also pose a negative impact on meeting
the food demand of the increasing population [3]. Moreover, modern agriculture relies
heavily on the intensive use of agrochemicals, such as fertilizers and pesticides, which have
detrimental effects on both the environment and human health [4]. To replace chemical
agents in agriculture, many studies have attempted to identify novel bacterial strains
that can be used as biocontrol and/or biofertilizer alternatives [5]. In 2020, the market of
global biocontrol agent reached to USD 4.0 billion, and the demand is projected to reach
USD 10.6 billion by 2027 [6].

Microbes are detected in almost every ecosystem; thus, all plant and animal species
live on the planet of microbes [7]. Based on how microbes interact with their plant hosts,
plant-associated microbes can be categorized into three groups: helpful, harmful, and
neutral. These microbes continually interact with the host plants and among themselves
to form the plant microbiome [8]. Plant microbiomes linked to increased plant health and
productivity are emerging as alternatives to agrochemical-based approaches. For example,
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in recent years, endophytic microbes are gaining attention of researchers and scientists
due to their ability to produce metabolites that regulate host plant physiology or having
pharmacological significance [9]. Endophytes are microbes (i.e., bacteria or fungi) that
reside in plants asymptomatically. Endophytes may be responsible for host resistance to
pathogens through the synthesis of antimicrobial compounds [10]. Endophytic microbes
have been demonstrated to (i) obtain nutrients from the soil and transfer them to plants
via the rhizophagy cycle and other nutrient-transfer symbioses, (ii) boost plant growth
and development, (iii) reduce host oxidative stress, (iv) protect plants from disease, (v)
discourage herbivore feeding, and (vi) suppress the growth of rival plant species [11]. Some
endophytic plant-growth-promoting bacteria can induce multidrug resistance and viru-
lence genes through horizontal gene transfer mechanisms to other bacterial communities.
Microbes enter the host plant to perform beneficial functions in it as an endophyte; how-
ever, the underlying mechanisms of plant defense by endophytes to achieve harmonious
commensalism remains unclear [7]. B. subtilis BSn5 reduces plant defensive responses
through the production of the antibiotic subtilomycin, which masks self-produced flagellin,
enabling better colonization of BSn5 in Arabidopsis thaliana [7].

Plant-beneficial microorganisms increase agricultural productivity and serve as alter-
natives to artificial pesticides and fertilizers by protecting plants against diseases. Research
is ongoing to identify new microbes from a variety of sources that can be used as biocon-
trol agents. Bacillus and Pseudomonas are the most widely used biological alternatives to
chemical agents. Bacillus-based agro-alternatives are gaining attention owing to their spore-
forming ability that can resist harsh environmental conditions for an extended period [12].
In addition, Bacillus species reportedly have biocontrol potential in the greenhouse, field,
and post-harvest stages of fruit because of their contribution to plant protection through
several mechanisms, including antibiosis, reduced pathogen colonization in the root via
competition, and induction of systemic resistance (ISR) in the host plant [13].

In this study, among many known Bacillus species, the roles of recently characterized
B. velezensis are investigated considering its extensive potential usage in the production of
useful biomaterials as well as its high biocontrol capacity. In addition, we summarize the re-
cent reports about the possibility of disease incidence caused by several B. velezensis strains
in potato, onion, and peach fruits. To our knowledge, this is the first report highlighting
the negative aspects of employing B. velezensis in agriculture.

2. Role of B. velezensis in Controlling Plant Pathogens

Technological developments have prompted a revival of the search for natural an-
tibiotics from bacterial sources, leading to the discovery of various novel antibiotics with
distinctive scaffolds and novel mechanisms of activity to serve as the foundation for novel
antibiotic classes targeting pathogenic microorganisms [14]. Several Bacillus-based bio-
control agents, including B. velezensis, B. subtilis, B. amyloliquefaciens, and B. thuringiensis,
remarkably control plant pathogens by secreting a variety of antimicrobial compounds,
including lipopeptides (LPs), polyketides (PKs), antibiotics, and enzymes, through coloniza-
tion [15,16]. Among these biocontrol agents, B. velezensis can produce diverse secondary
metabolites by producing nonribosomal peptide synthetases (NRPS) and polyketide syn-
thases (PKS) [17]. The effects of NRPS- and PKS-derived antimicrobial compounds from
B. velezensis on plant pathogens are summarized in Tables 1 and 2.
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Table 1. Comparison of gene clusters encoding antimicrobial compounds in several commercial B.
velezensis-based biocontrol agents. The gene clusters in B. velezensis QST71 (Serenade®) are compared
with the genomes of B. velezensis GB03 (Kodiak TM) and B. velezensis 83 (Fungifree AB™).

Gene Clusters of B. velezensis QST713
(NCBI Accession Number: CP025079.1)

Bioactive Compounds
Presence (+)/Absence (−)

Region Bioactive Compounds Type Size (nt) Similarity GB03 (CP049904.1) 83 (CP034203.1)
1 Rhizocticin A NRPS/PKS 78,608 22% - -
2 Surfactin NRPS 66,095 86% + +
3 Butirosin A/Butirosin B PKS 42,244 7% + +
4 Unknown Terpene 18,104 - - -
5 Macrolactin H PKS 88,814 100% + +
6 Bacillaene PKS/NRPS 100,882 100% + +
7 Fengycin NRPS 137,406 100% + +
8 Unknown Terpene 22,883 - - -
9 Unknown PKS 42,100 - - -

10 Difficidin PKS 94,798 100% + +
11 Bacillibactin NRPS 51,501 100% + +
12 Subtilin Lanthipeptide class-I 27,785 100% Lanthipeptide class II:

Mersacidin
Lanthipeptide class III:

Locillomycin
13 Unknown NRPS 69,429 - - -
14 Bacilysin NRPS/PKS 42,418 100% + +

2.1. Antimicrobial Substances Synthesized by B. velezensis to Control Plant Pathogens

B. velezensis is an endospore-forming and free-living soil bacterium first described
by Ruiz-Garcia in 2005, and was previously classified as another Bacillus species before
being reconfirmed as B. velezensis [18]. B. velezensis produces various secondary metabolites
that act against different phytopathogenic microbes. For example, whole-genome analysis
revealed that B. velezensis HNA3 had 12 gene clusters responsible for the synthesis of
14 secondary metabolites. Among the metabolites, five nonribosomal LPs are fengycin,
bacillomycin D, surfactin, mycosubtilin, and bacillibactin; three PKs are macrolactin, dif-
ficidin, and bacillaene; two antimicrobial peptides are bacilysin and amylocyclicin; and
other secondary metabolites include plipastatin, iturin, paenibactin, and paenilarvins [17].
Another genome analysis of B. velezensis QST713 (previously reported as B. subtilis QST713)
revealed that at least 12% of the genome of this bacterium is involved in the biosynthesis,
regulation, and transport of LP and PK molecules (Figure 1). In addition to the antimicrobial
compounds found in B. velezensis FZB42 or B. velezensis SQR9, this bacterium contains two
additional gene clusters that encode rhizocticin- and subtilin-like compounds (ericin) [19].
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Antimicrobial compounds produced by B. velezensis have a wide range of applications
in controlling plant pathogenic microbes. For instance, B. velezensis exerts antagonistic ef-
fects against Ralstonia solanacearum and Fusarium oxysporum through lipopeptides, including
surfactin, iturin, and fengycin [20]. Bacillus spp. wsm-1 isolated from the deep sea exhibited
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strong antifungal action against several pathogenic fungal strains (e.g., Magnaporthe grisea,
Fusarium oxysporum, Colletotrichum fioriniae, and Alternaria alternata) due to the presence
of novel lipopeptide molecule C14 iturin W and C15 iturin W [21]. B. velezensis QST713 is
used industrially as a biocontrol agent in France for the protection of Agaricus bisporus (an
edible mushroom) in a compost micromodel to control Trichoderma aggressivum f. europaeum,
which causes green mold disease. Transcriptomic analysis revealed the upregulation of
several genes, including surfactin (srf AA) and fengycin (fenA), in the presence of fungal
pathogens in compost [22]. The B. methylotrophicus NKG-1 strain inhibited the growth of
tomato mold disease caused by Botrytis cinerea by 60% [23]. Fluorescent-labeled endophytic
B. velezensis CC09, widely distributed in wheat plant tissues including the cortex and xylem
vessels, as well as stems and leaves, conferred the disease control efficacy of 66.67% and
21.68% in the take-all disease caused by Gaeumannomyces graminis var. tritici and spot
blotches of wheat leaves caused by Bipolaris sorokiniana, respectively [24]. Rhizobacterium
B. velezensis SQR9 produces a unique antibacterial compound, bacillunoic acid, that acts
against closely related Bacillus spp. and aids in the formation of a self-protecting shield,
resulting in increased competition in the rhizosphere zone of the root [25]. We previously
demonstrated the bactericidal activity of ethyl acetate extract of B. velezensis Bv-25 against
wild-type and streptomycin-resistant strains of Xanthomonas citri subsp. citri (Xcc), causing
citrus canker disease [26,27].

2.1.1. Phytopathogens Controlled by Difficidin and Bacilysin

Bacterial blight and leaf streak infection caused by X. oryzae pv. oryzae and X. oryzae pv.
oryzicola, respectively, were successfully controlled by difficidin and bacilysin produced by
B. velezensis FZB42 [23]. These compounds downregulated the genes related to pathogenic-
ity, cell division, and cell wall formation of pathogens [28]. Bacilysin inhibits the enzymatic
activity of glucosamine 6-phosphate synthase, which aids in the production of glucosamine
6-phosphate from fructose-6-phosphate and glutamine, two vital components of the bacte-
rial cell wall peptidoglycan [29,30]. Bacilysin production in B. velezensis FZB42 damaged
the hyphal structure of Phytophthora sojae (causing soybean root rot disease), leading to the
loss of intracellular content [26]. However, several B. velezensis FZB42 mutants deficient in
the production of LPs (bacillomycin D and fengycins) and PKs (difficidin, macrolactin, and
bacillaene) did not exhibit antagonistic effects against P. sojae [31].

2.1.2. Phytopathogens Controlled by Bacillomycin D

B. velezensis LM2303 exhibited strong antifungal activity against F. graminearum and
suppressed the disease incidence of Fusarium head blight, with a control efficiency of 72.3%
under greenhouse conditions [32]. The B. velezensis SQR9 mutant, which lacks a gene cluster
encoding bacillomycin D, displayed minor antagonistic action against F. oxysporum (respon-
sible for vascular wilt in cucumber plants), suggesting that bacillomycin D has antifungal
activity against F. oxysporum [33]. Additionally, bacillomycin D produced by wild-type B.
velezensis SQR9 serves as a signaling molecule in the development of biofilms through the
acquisition of iron molecules [28]. Another study showed that bacillomycin D stimulates the
transcription of the iron ABC transporter (FeuABC) by binding to its transcription factor Btr
(iron transport regulator). In this mechanism, SQR9 raises the level of intracellular iron and
activates KinB-Spo0A-SinI-SinR-dependent biofilm matrix component production [34,35].
In biofilm formation, microbial cells aggregate to form a collective living mass embedded in
a self-produced extracellular matrix [36]. Bacillomycin D produced by B. velezensis FZB42
exhibited strong antifungal activity against F. graminearum, which causes Fusarium head
blight. Electron microscopy analysis revealed that bacillomycin D (30 µg/mL) causes
exterior damage to fungal hyphae and conidia with irregular shapes, loosening of cell walls,
and shriveled trunks [37]. The iturin family members, bacillomycin D and iturin A, share
structural similarities with the seven amino acids in the cyclic lipopeptide molecule [38].
AI-2 synthetase translated from luxS in B. velezensis SQR9 is responsible for quorum sensing;
therefore, deletion of this gene decreased the ability to build biofilms, motility, and root
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colonization in the mutant strains. Adding this gene to the mutants restored the wild-type
function, indicating that AI-2 positively influences root colonization of the SQR9 strain by
quorum sensing [39].

2.1.3. Phytopathogens Controlled by Fengycins

The fengycin family comprises β-hydroxy fatty acids with 16–19 carbon atoms long
side chains [33]. Fengycin has two isomers, fengycin A and fengycin B. Fengycin A contains
one D-alanine, one L-isoleucine, one L-proline, one D-allo-threonine, two L-glutamatic acids,
one L-glutamine, one D-tyrosine, one L-tyrosine, and one D-ornithine, whereas fengycin
B has one D-valine in place of one D-alanine [38]. Fengycins are a class of antifungal LPs
compounds commercially available as the primary component of the fungicide Serenade®

obtained from B. velezensis QST713 [40]. Fengycin produced by B. velezensis suppressed
mycelial proliferation of F. solani with a half-maximal inhibitory concentration (IC50) of
5.58 µg/mL, superior to that of two commercial fungicides viz. thiram (IC50 41.24 µg/mL)
and hymexazol (IC50 343.31 µg/mL) [41]. Fengycins presumably change the shape and
permeability of the fungal cell membrane by interacting with membrane sterols and phos-
pholipid molecules [42]. Fengycin isolated from B. velezensis Bs006 at a concentration of
50 µM in potato dextrose medium significantly inhibited the development of the hyphae of
F. oxysporum f. sp. physali, which causes Fusarium wilt disease in golden berries [43].

Table 2. Antimicrobial compounds from B. velezensis acting against phytopathogens.

B. velezensis Strains Antimicrobial Compounds Target Pathogens (Plant Diseases) References

B. velezensis FZB42 Bacillomycin D F. graminearum (Fusarium head blight) [37]

B. velezensis FZB42 Difficidin and bacilysin
X. oryzae pv. oryzae (bacterial blight of

rice); X. oryzae pv. oryzicola
(bacterial leaf streak)

[28]

B. velezensis FZB42 Bacilysin P. sojae (soybean root rot disease) [31]

B. velezensis Y6 and F7 Surfactin, Iturin and Fengycin R. solanacearum (tomato wilt);
F. oxysporum (banana wilt) [20]

B. velezensis SQR9 Bacillomycin D F. oxysporum
(cucumber vascular wilt) [33]

B. velezensis MEP218 Fengycins X. axonopodis pv. vesicatoria
(bacterial spot disease) [44]

B. velezensis G341 Bacillomycin L and Fengycin A Alternaria panax, F. oxysporum,
B. cineria, Phytophthroa capsici [45]

B. velezensis WRB-ZX-001
and WRB-ZX-002 Iturin A Aspergillus fumigatus [46]

B. velezensis CC09 Iturin A
G. graminis var. tritici
(take-all disease) and

B. sorokiniana (spot blotch of wheat)
[24]

B. velezensis FJAT-46737 Fengycins R. solanacearum [47]

B. velezensis Fengycins F. solani
(basal stem rot in passion fruit) [41]

B. velezensis NJN-6 Bacillomycin D F. oxysporum [48]
B. velezensis NJN-6 Macrolactin R. solanacearum [48]

Note: Several B. amyloliquefaciens strains, such as B. amyloliquefaciens SQR9, B. amyloliquefaciens MEP218, and
B. amyloliquefaciens FZB42, were reclassified and reported as B. velezensis.

2.1.4. Bacteriocins Produced by B. velezensis

Bacteriocins in several bacterial species are ribosomally synthesized proteinaceous
substances with antimicrobial effects on other bacteria or occasionally against closely re-
lated species of producer strains [49]. Bacteriocins generally act on the bacterial cell wall
by inducing pore formation or inhibiting cell wall biosynthesis in target cells [50]. Bacte-
riocins have four classes: class I, including peptides that are ribosomally produced and
undergo extensive post-translational modifications; class II, including small heat-stable
and unmodified peptides; class III, including large antimicrobial peptides (now known as
bacteriolysins); and class IV, including complex bacteriocins containing carbohydrate or
lipid moieties [49]. Recently, lactococcin Lcn972, a novel class II bacteriocin, was discovered
from B. velezensis HN-Q-8 and expressed in E. coli to obtain the compound. This bacteriocin
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exerted a significant inhibitory effect (minimum inhibitory concentration 10.58 µg/mL)
against Streptomyces scabies, which causes common potato scab disease. The stability test
showed that Lcn972 is highly stable against UV radiation, high temperature (4–121 ◦C),
and long-term storage at room temperature for 16 days [51]. B. velezensis FZB42 produces
plantazolicin, a ribosomally synthesized complex molecule that exhibits antibacterial ef-
fects against bacterial and fungal pathogens. A cluster of 12 genes in B. velezensis FZB42 is
essential for the production, modification, export, and self-immunity of this natural com-
pound [52]. Amylocyclicin is another ribosomally synthesized bacteriocin by B. velezensis
FZB42, and a cluster of six genes is responsible for its production, modification, export, and
self-immunity [53].

3. Bioactive Enzymes Produced by B. velezensis

Bacillus species are known for the production of numerous types of extracellular
enzymes involved in self-defense, metabolic support, and maintaining a normal physi-
ological state [48]. However, this genus is the most important source of proteases and
proteolytic enzymes resistant to temperature, pH, organic solvents, and oxidizing en-
zymes [54]. B. velezensis BS2, isolated from sea squirt jeotgal, produced fibrinolytic enzymes
(131.15 mU/µL) at 96 h in tryptic soy broth. From B. velezensis BS2, the gene aprEBS2
encoding the main fibrinolytic protein was cloned and overexpressed in B. subtilis WB600.
The modified B. subtilis WB600 strain exhibited 1.5 times as much fibrinolytic activity as
the wild-type B. velezensis BS2 [49]. The purified protein exhibited strong α-fibrinogenase
and moderate β-fibrinogenase activities.

Chitinases have attracted attention lately as potential biopesticides because they
can control insects, fungi, and nematodes simultaneously. Chitinases can break down a
variety of pest tissues, including the peritrophic matrix and cuticle in insects, eggshells
in nematodes, and cell walls of fungal phytopathogens. Chitin is a major constituent of
the fungal cell wall and consists of β-1-4-linked N-acetyl-D-glucosamine units, the most
abundant polymers in nature after cellulose [55]. Chitinase exhibits antifungal action
through the disruption of fungal cell wall structures; however, the growth of chitinase-
resistant fungi is unlikely to occur. Chitinase enzymes catalyze the hydrolysis of glycosidic
linkages and convert chitin into water-soluble chitin oligosaccharides [56]. When the chiA
gene-encoding chitinase from B. velezensis was expressed in E. coli, the recombinant rBvChiA
protein displayed antifungal activity against F. falciforme, the causative agent of black pepper
disease. Therefore, B. velezensis could be developed as a chitinolytic bacterium for efficient
crop protection against pathogenic fungi and the reduction of chemical pesticides to control
pests [57].

4. Production of Volatile Organic Compounds (VOCs) and Induction of ISR by
B. velezensis

Microbial VOCs are organic compounds that play a key role as signals in intra- and
inter-kingdomic interactions over distances of >20 cm. These small compounds (<300 Da),
containing up to two functional groups, can easily diffuse in air and water [58]. VOCs
produced by bacteria include alcohols, carbonyl compounds, hydrocarbons, aromatic com-
pounds, and sulfur- and nitrogen-containing compounds, all of which exhibit a broad range
of structural diversity [58]. B. velezensis strains can produce several VOCs, as shown in
Figure 2. The VOCs produced by B. velezensis NGJN-6 (NCBI accession no. CP007165.1)
inhibited the growth of F. oxysporum f. sp. cubense, which causes soil-borne fungal diseases.
The development of F. oxysporum was entirely suppressed by two VOCs, benzothiazoles
phenol and 2,3,6-trimethyl phenol [59]. VOCs produced by B. velezensis VM11 exhibited
antifungal activity against Sclerotinia sclerotiorum through the deposition of reactive oxygen
species in mycelial cells. Transmission electron microscopy analysis revealed ultrastructural
malformations in S. sclerotiorum through the loosening of cell walls, swelling of vacuoles,
loss of cell walls, disintegration of hyphal walls, and movement of cytoplasmic materi-
als [60]. B. velezensis ZSY-1 produced 29 distinct VOCs as identified using GC-MS analysis,
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and these VOCs included pyrazine (2, 5-dimethyl), benzothiazole (4-chloro-3-methyl), and
phenol-2,4-bis (1,1-dimethylethyl), which showed antifungal effects against A. solani and B.
cinerea. These VOCs are also considered promising biocontrol agents for controlling tomato
fungal diseases, such as early blight and gray mold [61].
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Plants respond to various types of diseases through ISR, which increases the expression
of defense-related genes to protect against a variety of plant pathogens. Bacillus species can
elicit systemic resistance in plants through the secretion of different types of molecules. B.
velezensis can protect host plants by triggering an immune response in host organs through
ISR. For instance, B. velezensis CC09, when injected into the roots of wheat plants, acts as a
“vaccine” that shields them from two leaf and root diseases. Another VOC, 2,3-butanediol,
produced by B. velezensis can produce ISR in the host plant. The antifungal activity of
iturin A may be an indirect effect of systemic resistance generated by B. velezensis CC09
in wheat plants [24]. Endophytic B. velezensis YC7010 enhanced plant defense against the
brown plant hopper, one of the most serious insect pests reducing rice yield remarkably.
Transcriptome analysis revealed that B. velezensis elicits ISR via salicylic-acid- and jasmonic-
acid-dependent pathways. Further research showed that ISR was induced by the novel
lipopeptide compound, bacillopeptin X [62].

B. velezensis GJ11 may induce potent ISR against P. syringae pv. tomato DC3000 in-
fection in A. thaliana by producing acetoin (3-hydroxy-2-butanone). When the genes bdh
(2,3–butanediol dehydrogenase) and gdh (glycerol dehydrogenase) were knocked out to
create mutant strains of GJ11, only the GJ11∆bdh strain produced high levels of acetoin. The
host plants treated with GJ11∆bdh triggered strong ISR against the pathogenic P. syringae
pv. tomato DC3000 [63]. B. velezensis can trigger the genes for the accumulation of plant-
defense-related compounds (such as hydrogen peroxide) and defense enzymes (such as
SOD, CAT, and POD), protecting the host pepper leaves against gray mold disease caused
by B. cineria [64]. qPCR analysis revealed that applying B. velezensis QST713-based bio-
fungicide induced the expression of host plant defense-related genes in canola plants [60].
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The canola plants treated with this QST713-based biofungicide exhibited increased gene
expression for numerous plant-defense-related pathways, including ethylene, jasmonic
acid, and phenylpropanoids, by 2.2–23 folds compared with the controls treated with only
distilled water [65]. In addition, the expression of PR genes, such as MdPR1 and MdPR5, in
response to apple fruit treatment by B. velezensis P2-1 did not reduce the quality of apple
fruits [66].

5. Plant Health and Growth Promotion by B. velezensis

B. velezensis T20E-257, isolated from tomato, can produce 2,3-butanediol, which aids
in the promotion of plant growth and health when applied as a pure compound [58,67].
Inoculation of the crop with B. velezensis WRN031 promotes plant growth [68]. Fluores-
cence microscopy indicated that GFP-labeled B. velezensis WRN031 accumulated in the
maturation zones of the primary and lateral roots of maize. Furthermore, the presence of
two nonvolatile stereoisomers of acetylbutanediol in the soil rhizosphere greatly increases
rice and maize root length [68]. The genome of B. velezensis HNA3 contains genes involved
in the production of indole acetic acid (IAA; also referred to as auxin), responsible for
plant growth promotion [17]. The application of B. methylotrophicus NKG-1 (actual species
as B. velezensis) to tomato seedlings increased seedling fresh weight (by 27.4%), seedling
length (by 12.5%), and root length (by 57.7%), indicating the strain’s potential as a biofer-
tilizer or biocontrol agent in the commercial sector [23]. B. velezensis SQR9 in cucumber
roots enhanced the secretion of D-galactose (chemoattractant), a signal for the interactions
between SQR9 and host plants. D-galactose is crucial for bacterial root colonization and
plant-growth-promoting activities in the rhizosphere [69].

B. velezensis SQR9 colonizes plant roots and secretes metabolites to attract indigenous
plant-beneficial bacteria such as P. stutzeri XL272 (Figure 3). This dual consortium forms
biofilms and shares the extracellular matrix and metabolites, thus promoting plant growth
and alleviating salt stress [70]. Colonization of B. velezensis SQR9 into the plant root is
very important for their specific function, which is controlled by the two-component signal
transduction system DegS/U. To improve colonization into the root, scientists recently con-
structed a genetically engineered xylose-inducible degQ strain B. velezensis SQR9XYQ [71].
Green house experiments and RT-qPCR analysis indicated that phosphorylation of DegU
can be activated by xylose present in cucumber and tomato root exudates. In addition,
root colonization, biofilm formation, and biocontrol efficiency were greatly improved in
the engineered strains compared to wild-type strain SQR9 [71]. Tomato plants treated
with B. velezensis 83 in greenhouse cultivation produced 254.0 tons/hectare/year (64.0%
fresh quality tomato), which was 184.0 tons/hectare/year (55.0% fresh quality tomato) in
control without B. velezensis treatment [72]. The application of rhizobacterial B. velezensis
GB03 increased the growth of Codonopsis pilosula, a traditional Chinese herbal medicinal
plant. In addition, the treatment of medicinal plants with B. velezensis GB03 doubled the
concentration of the secondary metabolite lobetyolin (polyacetylenes), used for treating
stomach ulcers [73], and also increased the amino acids in the roots. The application of
B. velezensis NJN-6 to banana plants has beneficial effects, including biocontrol potential
against banana Fusarium wilt disease through the secretion of the LPs compound iturin
A. Further, plant-growth-promoting hormones, such as IAA and gibberellin A3 (GA3),
were detected when the B. velezensis NJN-6 strain was incubated with Landy broth with
L-tryptophan and in root exudates of banana plants [74].
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Figure 3. Sequential events that take place in the rhizosphere following the application of biocontrol
agent B. velezensis. Root colonization of B. velezensis through (i) chemotaxis, (ii) adhesion, (iii)
aggregation, and (iv) biofilm formation. LP- and PK-type compounds synthesized by B. velezensis
have an effect on pathogenic microbes in the rhizosphere (v) and overall plant growth promotion and
defense response of the plants increased (vi).

Antagonism between the two bacterial strains in terms of the swarming assay in-
fluences the cooperative behavior of B. velezensis SQR9 (∆spoA) + B. velezensis FZB42 in
the cucumber rhizosphere, which is advantageous for plants, especially for the enhanced
production of IAA, acetoin, and LPs. Deletion of the spoA gene diminishes the likelihood of
antagonism in SQR9, required for sporulation, antimicrobial chemical synthesis, and the
production of extracellular matrix [75]. Halotolerant B. velezensis XT1, isolated from a saline
habitat in Spain, exhibited plant-growth-promoting activities when introduced directly
into the soil. Strain XT1 enhanced the aerial fresh weights of tomato, pepper, pumpkin,
and cucumber plants by 53, 63.6, 129.2, and 100.8%, respectively. This bacterium is capable
of fixing nitrogen, producing siderophores, solubilizing phosphate, and producing many
enzymes, including urease and 1-aminocyclopropane-1-carboxylate deaminase, as well as
volatile metabolites, such acetoin and 2,-butanediol [76].

Several commercially available B. velezensis-based biocontrol agents can shield plants
from a wide range of bacterial and fungal diseases. For example, Rhizo Vital® controls R.
solani, Botrybel controls B. cinerea, Serenade® controls T. aggressivum, Kodiak™ controls F.
oxyspourum and R. solani, and Taegro® controls P. infestans [18]. To combat the fungus B.
cinerea in tomato leaves and post-harvest fruits, B. velezensis 83 is marketed in Mexico as a
foliar biofungicide (Fungifree ABTM) [72]. B. velezensis AK-0 exhibited biocontrol potential
against Colletotrichum gloeosporioides, which causes bitter rot in apples. The genome of AK-0
exhibits eight potential gene clusters [77]. Pot experiments with B. velezensis FJAT-46737
crude LPs (e.g., iturins, fengycins, and surfactins) at a concentration of 1.0 mg/mL exhibited
reduced mortality of tomato plants with a control efficacy of 96.2% against bacterial wilt
caused by R. solanacearum [47].
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6. Deleterious Nature of B. velezensis in Agriculture

In sustainable agriculture, B. velezensis-based biocontrol agents are a promising alterna-
tive to conventional pesticides; however, the potential negative effects of this microorganism
remain poorly understood. Bacillus species may swim and swarm (a coordinated behavior
in which billions of flagellated bacteria move towards a solid surface) and produce biofilms,
all of which are associated with its pathogenicity [78]. In 2008, bacterial rot in onion bulbs
was discovered in warehouses in South Korea, and the causal agent was identified as B.
amyloliquefaciens [79]. However, our laboratory reidentified this pathogen as B. velezensis
by 16S sequence analysis and comparative research on B. amyloliquefaciens [18,79]. In 2017,
the pathogen causing soft rot in potatoes was initially identified as B. amyloliquefaciens
F10-1 based on 16S rRNA sequence analysis; however, molecular characterization of gyrB
gene clustered B. amyloliquefaciens F10-1 as B. amyloliquefaciens subsp. plantarum, which is
actually B. velezensis [80]. B. velezensis zk1 was the dominant bacterium causing rot in peach
fruits [81]. B. velezensis zk1 infection lowered the activities of many free-radical-scavenging
enzymes, including superoxide dismutase, polyphenol oxidase, catalase, and peroxidase, in
the host peach plants, thereby damaging peach chloroplasts, mitochondria, and respiratory
chains. These combined actions disrupt the normal physiological metabolism of peach
fruits, causing rot [81]. These reports suggest that several B. velezensis strains could also
act as pathogens in several important agricultural and horticultural crops. Therefore, care
must be taken to apply Bacillus-based biocontrol agents into the agriculture system and
should be investigated broadly prior to application as biofertilizer. However, we did not
find any reports of B. velezensis-based commercial biocontrol agents that caused disease in
agricultural products.

Previously, several other Bacillus spp. were also reported to cause diseases in agricul-
tural products. For instance, a B. cereus spp. complex consisting of B. cereus, B. thuringiensis,
and B. pacificus was responsible for the bacterial leaf spot disease in peach (Prunus persica L.),
which is cultivated widely in the world [82]. B. pumilus was reported to cause fruit rot on
muskmelon (Cucumis melo) in China [83]. B. subtilis is considered to be a universal cell
factory for the microbial production of enzymes, chemicals, and antimicrobial metabolites
for industry, agriculture, and medicine [84]; however, several B. subtilis strains were also
reported to cause disease. For example, B. subtilis G7, which was isolated from a deep-sea
hydrothermal vent, has numerous virulence genes that can kill mice and fish [85]. B. subtilis
HFBF_B11 isolated from the brain tissue of ducklings caused pathogenicity in animals [86].
B. cereus was considered harmless for about 80 years before being accepted as a human
pathogen (causing intestinal and extraintestinal diseases) [87].

7. Conclusions

The application of biocontrol agents based on B. velezensis in agriculture can have sev-
eral beneficial effects on crop growth and protection. To manage pathogenic phytobacteria,
B. velezensis can exert strong controlling activities based on its high antimicrobial activities
with fast-growing aspects, which can be crucial for its application in sustainable agriculture;
however, this bacterium was also identified as the causal agent of several plant diseases.
In previous reports, only the beneficial effects of B. velezensis were highlighted; however,
in this study, we also summarized several harmful reports of this bacterium because this
bacterium can be pathogenic to onions [79], potatoes [80], peach fruits [81], etc. Therefore,
a more careful approach is required before applying it as a biofertilizer to crop species,
cultivars, and breeds in agricultural fields.
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