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Abstract: Aerobic rice cultivation offers the potential to reduce irrigated water use. A multitude of
challenges, such as cold sterility, drought stress, and labor shortages, limit its adoption in temperate
rice-growing regions. Increasing the duration and extent of soil moisture tension between irrigation
events has been demonstrated to slow crop development. Delaying panicle initiation (PI) beyond the
optimal window can expose rice to cold nighttime temperatures during the cold sensitive early pollen
microspore, severely reducing yield. Tools to assist Australian temperate farmers and researchers
in the irrigation management of aerobic rice to ensure PI occurs during the optimal window do not
yet exist. Using data collected from an aerobic rice experiment conducted in temperate Australia in
2020-2021 and 2021-2022, a predictive model was built to assist in forecasting PI based on the timing
of irrigation. Estimation of the area on an hourly basis of the cumulative evapotranspiration with
rainfall subtracted from pre-emergent irrigation to PI, defined as the irrigation deficit integral, was
used to account for the frequency, duration, and extent of soil moisture deficit between irrigation
events. The relationship between the irrigation deficit integral and the number of days from pre-
emergent irrigation to PT (R? = 0.91) was used to build a model to predict PI with a root mean square
error of 1.8 days for the validating data set. Furthermore, an example is provided of how the model
can be used as a decision support tool to assist researchers and growers to schedule irrigation of
aerobic rice to ensure PI occurs in a timely manner. This will increase the likelihood of high-yielding
aerobic rice and may enhance the adoption of water-saving rice cultivation.
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1. Introduction

Research has shown a significant delay in rice phenological development under water-
saving cultivation when compared with flooded rice systems [1-6]. Panicle initiation (PI)
marks the end of vegetative growth and the beginning of the reproductive stage in rice
development. Panicle initiation is an important crop development stage as it is the ideal
time to sample and analyze plant nitrogen uptake and apply nitrogen in a relatively efficient
manner as full crop canopy decreases volatilization risk [7]. Predicting PI can help assist
growers in planning farm tasks and organizing contract fertilizer applicators.

The delay to reach PI and anthesis in water-saving rice has been demonstrated to
increase with increasing moisture deficit [1-3,8]. Such delay can expose rice to unfavorable
weather conditions during the cold sensitive early pollen microspore period and result in
severe yield penalties [8]. In temperate Australia, the likelihood of cold-induced sterility can
be reduced by ensuring PI occurs in the first 2 weeks of January [9]. Temperature has been
found to be the primary environmental factor effecting crop development [10,11]; however,
rice can also be photoperiod sensitive [12]. Thermal time has been used to model flooded
rice crop development with common rice models; Oryza2000 [13] and CERES-Rice [14]
have been adapted to different management and environmental conditions. As a result of
the shoot apex being underwater for much of the season in flooded rice, incorporation of
water temperature to model crop development has been found to enhance PI predictions
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in the USA [15]. However, in nonflooded conditions, this is not relevant, with models
required for water-saving rice cultivation. While a PI predictor model has been developed
for flooded and delayed permanent water rice cultivation in Australia [16], it is based on
degree days. Therefore, such a model is majorly limited for adoption in aerobic rice as it
does not account for the frequency, duration, or extent of moisture stress between irrigation
events, which has a major effect on the time to reach PI [2,8]. Solar radiation also influences
crop development [17] with prediction accuracy limited in models only accounting for
thermal time.

The Australian rice industry has set an ambitious target to improve water productivity
from 0.85 to 1.5 t/ML by 2026 [18,19] and identified the transition to aerobic cultivation as
one option to achieve this ambitious target. However, commercial production of aerobic
rice is not yet practiced in temperate Australia, with very few resources available to assist
growers. This short communication aims to demonstrate a potential tool to enhance the
ability of growers to predict PI dates and manage irrigation of aerobic rice to ensure PI
is not delayed beyond optimal. Using data from a 2-year commercial aerobic rice trial
in temperate Australia where various soil moisture deficits were investigated during the
vegetative period, a model was built and verified using data from c.v. Viand, grown in
heavy clay soils, to demonstrate the relationship between cumulative evapotranspiration
between irrigation events and the number of days to reach PI. Examples are provided to
demonstrate how this model could be used to create a decision support tool (DST). The
aim of such DST is to assist fellow researchers and growers in making irrigation decisions
that ensure panicle initiation is not delayed beyond the optimal window. This research will
enhance growers’ ability to maximize yield by reducing the risk of cold-induced sterility
and may increase adoption of aerobic rice cultivation.

2. Materials and Methods
2.1. Model Creation and Validation

Crop data were used from a commercial aerobic rice experiment conducted in the
temperate semiarid climate of the Murrumbidgee Valley in southeastern Australia near
Griffith, NSW (34°17/18” S, 146°03/03” E), during the 2020-2021 and 2021-2022 season as
detailed in [8]. In brief, various irrigation thresholds were investigated using watermark
sensors (Model 200SS, Irrometer Company Inc., Riverside, CA, USA) installed to a depth
of 15 cm and connected to loggers that sent data regularly to the cloud. The irrigation
thresholds were applied during the vegetative period from establishment until PI in a rice
crop grown across 9 bays, providing a total of 18 replicate data sets for analysis. The soil
was a typical rice-growing soil for the region, classified as a self-mulching clay with a brown
A horizon of 30 cm over a dense red B horizon [20]. This temperate region relies on gravity
surface irrigation for rice production as summers are typically hot, with low humidity
and an average in-season rainfall of 150 mm and an evapotranspiration of 1150 mm [21].
C.v. Viand was drill sown at a rate of 130 and 120 kg/ha in years 1 and 2, respectively, and
is a short-season semidwarf variety (106 days sowing to anthesis [22,23]).

Nitrogen (N) was applied as granular urea (46% N) at a rate of 220 kg N/ha as a
three-way split. This rate was determined based on high-yielding rice (>10 t/ha) N require-
ments for a heavy clay soil in the Murrumbidgee region, with consideration for higher
N losses than normal due to aerobic growing conditions. As detailed in [8], in-season
(15 October-30 April) rainfall totaled 175 and 352 mm with a reference evapotranspiration
of 1259 and 1100 mm for years 1 and 2, respectively. Yields ranged from 3.6 to 8.1 t/ha
with 7.95 and 4.65 ML/ha irrigation water applied in Year 1 and 2, respectively. Total
water productivity ranged from 0.37 to 0.93 t/ML, and irrigated water productivity 0.43 to
1.62 t/ML, depending on the irrigation regime and year calculated as per [24]. PI was
declared when the panicle could be identified with the naked eye in three out of 10 tillers [7].
Extending soil moisture deficit from —15 to —40 kPa was found to delay PI by an average
of 14 days, with an irrigation threshold of —70 kPa further delaying PI. The data were com-
bined with hourly reference evapotranspiration (ETo) as calculated from nearby weather
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observations using the standardized ASCE equation [25] to estimate cumulative reference
evapotranspiration between irrigation events up until P1.

To account for the extent, duration, and frequency of soil moisture deficit from pre-
emergent irrigation until PI, the irrigation deficit integral (IDI) for this period was calculated.
The IDI is the summation of the areas formed by the cumulative evapotranspiration
between two time intervals at what time ETo (mm) was calculated (the area of a right-
angled trapezoid) between irrigation events (cumulative ETo resets to zero when there
is an irrigation event). Hourly ETo data were used to create the model, with the IDI
(mm * hour) calculated from pre-emergent irrigation (t = 0) to PI (t = n) according to the
following equation:

t=n (ETcumyj + ETcumyjyq)
7 tji+1
Z 2 X (tj+1 B t]) )
t=0
where ETcum;; is cumulative ETo with rainfall subtracted at time j, when an ETo measure
was taken, and ETcum;j,q is the time of the subsequent ETo measure. An example of a time
interval is shown in Figure 1.

ETcum,;,
ETcum,; 1 -

l Irrigation event

l

ETcum = rainfall (mm)

IDI

fi+1
Time

Figure 1. Representation of how the irrigation deficit integral (IDI) was calculated for each time
interval as per Equation (1). The first and last periods between irrigation events are triangles; however,
the trapezoid area was still used in these instances as one side equaled zero.

A random sample of 13 data sets was used to build the linear model, with five random
data sets used for model evaluation. The IDI was found to be correlated to the number
of days from pre-emergent irrigation to PL. This enabled a predictive model to be built,
with the root mean square error (RMSE) calculated between the predicted number of days
to PI and the actual number of days to PI. The model was then substantiated using the
validating data with performance assessed using RMSE.

2.2. Demonstration as a Decision Support Tool

Combining in-season data and long-term average ETo data or forecast ETo, the model
presented provides foundations for a DST to predict whether PI will occur by the desired
date based on a predetermined irrigation schedule. An example of how the model could be
used as a DST was demonstrated using 10-year average daily ETo data at Griffith, NSW,
Australia (BOM 2022) for two aerobic rice fields under different irrigation regimes. Input
data included pre-emergent irrigation date, desired PI date, and ETo irrigation threshold.
Using the number of days from pre-emergent irrigation until the desired PI date, the model
was used to calculate the maximum permissible irrigation deficit integral to ensure timely
PL In this case, IDI was calculated daily (historical ETo data were available on a daily basis),
with the area resulting from a day without an irrigation event being added to the previous
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areas and cumulative ETo resetting to zero when an irrigation event or significant rainfall
occurred. In this case, the area was still calculated as per Figure 1, with the time interval
being daily. In instances where the model predicts that PI cannot be achieved by the desired
date, the DST can recommend to the user for the irrigation threshold to be reduced. The
model was built using short-season semidwarf c.v. Viand grown in heavy clay soils, and
accuracy may be limited in other soil types with different cultivars or seasons.

3. Results and Discussion
3.1. Model Creation and Validation

Daily ETo and rainfall data from year 1 are provided in Figure 2A. An example of
cumulative ETo with rainfall subtracted from pre-emergent irrigation until PI is provided
in Figure 2B for three individual replicates sown on the same day with different irrigation
regimes. The date when PI occurred for the individual replicates is indicated by dots.
Cumulative ETo was reset to 0 mm at the time of irrigation or significant rainfall. The PI
dates and irrigation deficit integral calculated as per Equation (1) for the three replicates are
presented in Table 1 with different colors used to represent the three individual replicates.
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Figure 2. (A) Daily ETo (mm) shown as black dots and rainfall (mm) as blue bars from pre-emergent
irrigation until PI. (B) Cumulative ETo with rainfall subtracted (mm) between irrigation events for
three individual replicates (—15 kPa—green, —40 kPa—blue, —70 kPa—orange) from pre-emergent
irrigation until panicle initiation, which is illustrated by dots. Note that the green and blue lines show
similar cumulative ETo during the first three deficit events. The deficit integral of each replicate was
calculated as per Equation (1).

Table 1. Panicle initiation date and irrigation deficit integral (IDI) of corresponding replicates
presented in Figure 2.

Replicate PI Date IDI
—15 kPa (green) 20 January 2022 2690
—40 kPa (blue) 31 January 2021 3739
—70 kPa (orange) 4 February 2021 4266
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The irrigation deficit integral of the parameterizing data was strongly correlated to
the number of days from pre-emergent irrigation to PI (R? = 0.91, Figure 3A). The linear
relationship was used to predict the number of days until PI in the validating data using
the following equation:

Number of days from pre-emergent irrigation to PI = 0.0104 x IDI + 41.439 )

A B
100 95
é E o é # Model data
e = 80 ‘....‘ ' B 90 & Validating data
g 5 b £ 8 gs
o 60 = 2
= 5 ¥ =0.0104x + 41.439 w 8o
= 40 R2=0.9061 e 80
rg =0 o A
w0 - e 75 RMSEp=2.1days
5 & 20 E g :
g 5 0 T g 70
-E &0 boE RMSEv =18 days
= E 0 1000 2000 3000 4000 5000 6000 L w65
Sl 8 65 70 75 80 85 90 95

Irrigation deficit integral from pre-emergent
irrigation until PI Predicted PI (days after pre-emergent irrigaiton)

Figure 3. (A) Irrigation deficit integral from pre-emergent irrigation until PI versus the number of
days from pre-emergent irrigation until PI (n = 13). (B) Modelled versus predicted number of days to
PI with black dots representing parameterizing data and red dots the validating data. The RMSE of
the parameterizing data (RMSEp) totaled 2.1 days and the validating data (RMSEv) 1.8 days.

The modelled data recorded a parameterizing RMSE of 2.1 days, and the validating
data achieved an RMSE of 1.8 days. The modelled and observed number of days to reach
PI is plotted in Figure 3B to illustrate the model fit.

3.2. Demonstration of the Model as a Decision Support Tool

Soil moisture tension was used to initiate irrigation in the data used to create the
model; however, farmers and researchers alike may choose to schedule irrigation based on
cumulative evapotranspiration thresholds as conducted by [6].

Required input parameters for the model to be used as a DST are colored gray in
Table 2. It must be noted that the irrigation threshold chosen by the user is not applied
to the second or third irrigation events as these are determined by agronomic reasons
(e.g., plant emergence and herbicide application). These generally occur 10 days after the
previous irrigation and, therefore, were used for this example.

Based on the user-entered dates, calculation of the number of days from pre-emergent
irrigation to PI can be performed, and the maximal irrigation deficit integral calculated
using the model. Using long-term average ETo (mm) and resetting cumulative ETo at
the time of an irrigation event, the forecast irrigation deficit integral can be calculated
(Table 3). It can be seen in Table 2 that the cumulative irrigation deficit was forecast to
be 3680 and 4370 on 7 January for Fields A and B, respectively. However, the model
calculated a maximal irrigation deficit integral of 4036 to achieve target PI on time (Table 3).
Therefore, it is forecast that only Field A will achieve PI on time, and a reduced irrigation
threshold or earlier per-emergent irrigation should occur in Field B for PI to occur within
the desired window (Table 3). To improve accuracy during the season, integration of
actual in-season ETo could be incorporated, with forecast ETo used to assist in shorter-term
irrigation scheduling.
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Table 2. Demonstration of the model used as a decision support to test whether PI is predicted to
occur before the desired date based on input parameters from Table 2. The colored background is
used to highlight when an irrigation event was scheduled as a result of surpassing the respective

ETo threshold.
Field A: ETo Threshold = 100 Field B: ETo Threshold = 120
Long-Term Cumulative ]?aily Cunilulettive Cumulative ]?aily Cun.mla.tive
Date Daily Av ET, (mm) Irrigation Irrigation ETo (mm) Irrigation Irrigation
ETo ° Deficit Integral ~ Deficit Integral Deficit Integral ~ Deficit Integral

15/10/2022 6.2 0.0 0.0 0 0.0 0.0 0
16/10/2022 6.3 6.3 3.1 3 6.3 3.1 3
17/10/2022 5.0 11.2 8.7 12 11.2 8.7 12
18/10/2022 5.6 16.9 14.0 26 16.9 14.0 26
19/10/2022 5.8 22.6 19.7 46 22.6 19.7 46
20/10/2022 6.0 28.6 25.6 71 28.6 25.6 71
21/10/2022 6.1 34.7 31.7 103 34.7 31.7 103
22/10/2022 6.2 40.9 37.8 141 40.9 37.8 141
23/10/2022 6.0 46.9 43.9 185 46.9 439 185
24/10/2022 5.7 52.6 49.8 234 52.6 49.8 234
25/10/2022 6.6 0.0 26.3 261 0.0 26.3 261
26/10/2022 57 5.7 29 264 57 29 264
27/10/2022 6.1 11.9 8.8 272 11.9 8.8 272
28/10/2022 6.1 18.0 14.9 287 18.0 14.9 287
29/10/2022 6.2 24.2 211 308 242 211 308
30/10/2022 6.2 30.3 27.2 336 30.3 27.2 336
31/10/2022 6.0 36.4 33.3 369 36.4 33.3 369
1/11/2022 6.9 43.3 39.8 409 43.3 39.8 409
2/11/2022 6.9 50.2 46.8 456 50.2 46.8 456
3/11/2022 5.5 55.7 53.0 508 55.7 53.0 508
4/11/2022 6.4 0.0 27.9 536 0.0 27.9 536
5/11/2022 6.2 6.2 3.1 539 6.2 3.1 539
6/11/2022 6.5 12.7 9.5 549 12.7 9.5 549
7/11/2022 59 18.6 15.7 565 18.6 15.7 565
8/11/2022 6.5 25.1 21.9 586 25.1 21.9 586
9/11/2022 6.6 31.8 28.4 615 31.8 28.4 615
10/11/2022 7.2 38.9 35.3 650 38.9 35.3 650
11/11/2022 6.8 45.7 42.3 693 45.7 423 693
12/11/2022 6.9 52.7 49.2 742 52.7 49.2 742
13/11/2022 6.0 58.7 55.7 798 58.7 55.7 798
14/11/2022 6.7 65.3 62.0 860 65.3 62.0 860
15/11/2022 6.5 71.9 68.6 928 71.9 68.6 928
16/11/2022 59 77.8 74.8 1003 77.8 74.8 1003
17/11/2022 7.0 84.8 81.3 1084 84.8 81.3 1084
18/11/2022 7.7 92.5 88.7 1173 92.5 88.7 1173
19/11/2022 8.2 100.7 96.6 1269 100.7 96.6 1269
20/11/2022 8.9 0.0 50.3 1320 109.5 105.1 1375
21/11/2022 9.4 9.4 47 1324 118.9 114.2 1489
22/11/2022 7.9 17.2 13.3 1338 126.8 122.8 1612
23/11/2022 6.8 241 20.7 1358 0.0 63.4 1675
24/11/2022 6.7 30.8 27.4 1386 6.7 3.3 1678
25/11/2022 7.3 38.1 34.4 1420 14.0 10.4 1689
26/11/2022 6.8 449 41.5 1462 20.8 17.4 1706
27/11/2022 7.4 52.3 48.6 1510 28.2 24.5 1731
28/11/2022 8.3 60.6 56.5 1567 36.5 32.4 1763
29/11/2022 7.8 68.4 64.5 1631 44.3 40.4 1803
30/11/2022 8.3 76.7 72.5 1704 52.6 48.5 1852
1/12/2022 7.6 84.2 80.5 1784 60.2 56.4 1908
2/12/2022 7.3 91.5 87.9 1872 67.4 63.8 1972
3/12/2022 7.3 98.8 95.2 1967 74.8 71.1 2043
4/12/2022 7.5 106.3 102.6 2070 82.2 78.5 2122

5/12/2022 7.3 0.0 53.1 2123 89.5 85.9 2208
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Table 2. Cont.

Field A: ETo Threshold = 100 Field B: ETo Threshold =120
Long-Term Cumulative ]?aily Cun.mla.tive Cumulative ]?aily Cun.lulaftive
Date Daily Av ET, (mm) Irrigation Irrigation ETo (mm) Irrigation Irrigation
ETo ° Deficit Integral ~ Deficit Integral Deficit Integral ~ Deficit Integral
6/12/2022 7.3 7.3 3.6 2127 96.8 93.1 2301
7/12/2022 7.8 15.0 11.1 2138 104.5 100.6 2401
8/12/2022 7.5 22.5 18.8 2157 112.0 108.3 2510
9/12/2022 7.7 30.3 26.4 2183 119.8 115.9 2625
10/12/2022 8.1 38.3 34.3 2217 127.8 123.8 2749
11/12/2022 8.3 46.6 424 2260 0.0 63.9 2813
12/12/2022 8.2 54.8 50.7 2310 8.2 41 2817
13/12/2022 8.5 63.3 59.0 2369 16.7 125 2830
14/12/2022 7.9 71.1 67.2 2437 24.6 20.6 2850
15/12/2022 7.3 78.5 74.8 2512 31.9 28.2 2879
16/12/2022 8.2 86.7 82.6 2594 40.1 36.0 2915
17/12/2022 8.6 95.3 91.0 2685 48.7 44.4 2959
18/12/2022 9.8 105.1 100.2 2785 58.5 53.6 3013
19/12/2022 9.5 0.0 52.5 2838 68.0 63.2 3076
20/12/2022 9.3 9.3 47 2842 77.3 72.6 3148
21/12/2022 8.2 17.5 13.4 2856 85.5 81.4 3230
22/12/2022 8.6 26.1 21.8 2878 94.0 89.7 3320
23/12/2022 8.3 34.4 30.2 2908 102.3 98.2 3418
24/12/2022 9.0 43.4 38.9 2947 111.3 106.8 3525
25/12/2022 8.3 51.6 47.5 2994 119.6 115.5 3640
26/12/2022 8.7 60.3 56.0 3050 128.3 124.0 3764
27/12/2022 9.4 69.8 65.1 3115 0.0 64.2 3828
28/12/2022 10.0 79.8 74.8 3190 10.0 5.0 3833
29/12/2022 9.2 89.0 84.4 3275 19.2 14.6 3848
30/12/2022 8.8 97.7 93.3 3368 28.0 23.6 3871
31/12/2022 8.5 106.2 102.0 3470 36.4 32.2 3904
1/01/2023 8.4 0.0 53.1 3523 44.9 40.6 3944
2/01/2023 8.8 8.8 4.4 3527 53.6 49.2 3993
3/01/2023 9.0 17.8 13.3 3541 62.6 58.1 4052
4/01/2023 8.9 26.7 22.2 3563 715 67.1 4119
5/01/2023 8.0 34.7 30.7 3593 79.5 75.5 4194
6/01/2023 8.3 42.9 38.8 3632 87.8 83.7 4278
7/01/2023 9.1 52.0 47.5 3680 96.9 92.3 4370
Table 3. Input data required from growers (grey) for the decision support tool with positive outcomes
displayed in green and negative outcomes in red.
Lo Modelled Max Forecast
Fi ETo Lrrigation Pre-]?me}'gent Target PI Number of Irrigation Deficit  Irrigation Deficit
ield Threshold Irrigation Date Days to Integral to Integral by Outcome
(mm) Date Target PI Achieve Target PI Target PI
A 100 15/10/2022 7/1/2023 84 4036 3680
B 120 15/10/2022 7/1/2023 84 4036 4370

4. Conclusions

This communication demonstrates a relationship between the summation of the ar-
eas formed by the cumulative evapotranspiration between irrigation events, here called
irrigation deficit integral, and the number of days required to achieve PI in aerobic rice
systems. The model built from two seasons of data using c.v. Viand in a heavy clay soil was
able to predict the number of days to PI within 1.8 days using the irrigation deficit integral.
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Aerobic rice cultivation may provide a significant opportunity for the Australian rice indus-
try to improve water productivity; however, growers require assistance as they transition
from permanently flooded rice. The model presented can be used as a decision support
tool for future researchers and growers as a starting point to make irrigation decisions
aimed at ensuring PI is achieved within the desired window. However, accuracy may be
limited with different cultivar selection or soil types. Nevertheless, it offers the potential to
maximize the likelihood of a successful rice yield and may enhance the adoption of aerobic
rice cultivation. As research and adoption of aerobic rice culture continues in temperate
Australia, more data can be included to test and refine the model across seasons, cultivars,
and soil types.
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