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Abstract: Accurate inversion of soil hydraulic parameters based on the van Genuchten–Mualem model
has received much attention in soil science research. Herein, a hybrid algorithm method using particle
swarm optimization and vector-evaluated genetic algorithm was used to invert the parameters θs, α, n,
and Ks, with the objective functions of infiltration rate, cumulative infiltration, and soil water content.
Then, numerical experiments were conducted on four typical soils at three initial water content levels
(20, 40, and 60% effective saturation) to verify the accuracy of the inverse method. The results showed
that the inversed soil water retention and conductivity curves were approximately the same as the
real curves, with the root mean square errors of 0.00101–0.00192 cm3·cm−3, 0.00800–0.02519 cm3·cm−3,
respectively, and both the Nash-Sutcliffe coefficients were approximately 1.0. Additionally, laboratory
experiments were also performed to compare with the inversed parameters for verification, within small
root mean squared errors and approximately 1.0 Nash–Sutcliffe coefficients. Furthermore, the method
can also achieve acceptably accurate parameter inversion even with substantial measurement errors
included in the cumulative infiltration, initial water content, and final water content. Thus, the method
is effective and robust and found to be practical in field experiments.

Keywords: parameter estimation; soil hydraulic properties; inverse modeling; vector-evaluated
genetic algorithm; SWMS-2D

1. Introduction

Numerical models describing the flow and transport of water and chemicals through
the vadose zone have been increasingly and extensively applied in field-scale research. When
these models are used to simulate saturated water flow and contaminant transport, it is
critical to have a good understanding of unsaturated soil hydraulic properties, as the outcome
from applying these models depends on the accuracy of model evaluation. Unsaturated
hydraulic conductivity, K(θ) and soil water retention, h(θ) are often required to solve the
Richards equation numerically. However, the extreme spatial heterogeneity of a subsurface
environment confounds measurement of these hydraulic properties [1,2]. Hydraulic properties
may exhibit significant variation over time due to changes in the ionic composition and
concentration of a soil solution, the impact of soil crust and particle dispersion, shrink-swell
phenomena in fine-textured soil, and cultivation or other agricultural activities [3].

The soil water diffusivity, D, and hydraulic conductivity, K, can be measured directly
by laboratory and field methods as a function of water content or pressure head [4,5]. Direct
measurement methods are relatively simple in concept, but several limitations restrict their
practical usage [6]. As a result, the application of direct measurement methods in field
gravity drainage experiments of layered profiles, or medium- and fine-textured soils is
limited. In addition, methods that require equilibrium conditions, such as repeated steady-
state flow situations, are time-consuming. Additionally, additional errors are introduced
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by approximation or interpolation, including linearization to facilitate semi-analytic or
analytic inversion of the flow equation. Lastly, direct inversion methods cannot be used to
obtain information about uncertainty in the estimated hydraulic parameters by means of
closed analytical equations, but to determine them by iterative solution methods, which
also places high demands on computational resources [7].

Parameter optimization methods present a more flexible way to solve the inverse
problems [8,9]. With the rapid development of computer science, machine learning and
optimization algorithms have been widely used in a variety of fields such as machine de-
sign [10,11], image identification [12–14], and data analysis and mining [15,16], providing
additional opportunities for parameter optimization. Optimization procedures facilitate
simultaneous estimation of hydraulic and retention conductivity functions based on tran-
sient flow data [17]. Previous parameter optimization studies mainly concentrated on
solute transport [18,19]. It was first described by Dane and Hruska [20] and Zachmann [21].
Parameter estimation has been increasingly used to estimate hydraulic functions of un-
saturated soil. Parker [22] and Kool [23,24] developed computational models for one-step
laboratory column outflow measurements, whereas Eching and Hopmans [25] and van
Dam [26] developed computational models for multi-step laboratory column measure-
ments. During ponded infiltration experiments, the estimation of soil hydraulic properties
has also received considerable attention [27,28]. At first, inverse methods were mostly ap-
plied to laboratory-type experiments, but they are equally suitable for applications to field
data [29] and a proper combination of laboratory and field data. Inverse procedures have a
significant advantage that researchers can perform a relatively easy detailed error analysis
of the estimated parameters in the context of a parameter optimization problem [7,30].
Although parameter optimization methods have several advantages, there are still some
problems related to parameter uniqueness, convergence, and computational efficiency,
especially at the time of simultaneous estimation of numerous hydraulic parameters [31].

Previously, a novel two-step inverse approach was proposed based on a particle
swarm optimization (PSO) and vector-evaluated genetic algorithm (VEGA) with negative
hydraulic head [32]. However, considering the actual situation that most irrigation activities
in agriculture are the positive water depth, this study focuses on numerical inversion of
soil hydraulic parameters for ponding infiltration, with practical significance. In addition,
with the introduction of new formulations of α/Ks and v/Ks, the efficiency of the inverse
procedure was shown to be improved in this study. Furthermore, laboratory experiments
with three different levels of soil water conductivity were carried out to compare with the
simulated values for verification. An overview of the research flow is shown in Figure 1. In
the following sections, the theoretical foundations and the inverse procedures are described.
This is followed by the numerical and laboratory experiments, the validation of the models,
as well as the precision analysis.
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2. Theoretical Foundation
2.1. Water Flow

Assuming that the air phase plays a non-significant role in the liquid flow process, the
flow equation governing radially symmetric isothermal Darcy flow in a variably porous,
rigid, isotropic, and saturated medium is given by the modified form of the Richards
equation as follows:
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where t is time (min); r is the radial coordinate (cm); z is the depth of soil surface (cm)
with a positive value indicating a downward direction; K(h) is the hydraulic conductivity
(cm·min−1); h is the potential head (cm), and θ is the soil water content (cm3·cm−3).

In Equation (1), the root water uptake by plant roots was not considered and the porous
medium was assumed to be isotropic. Additionally, it was also assumed that the metric
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head (hi) and initial water content (θi) were the same in the vertical direction. Equation (1)
was solved numerically, followed by the initial and boundary equations (Equations (2)–(5)):

θ(r, z, t) = θi, t = 0 (2)

h(r, z, t) = hi, t = 0 (3)

h(r, z, t) = h0(t), 0 < r < r0, z = 0 (4)

− ∂h(r, z, t)
∂z

− 1 = 0, r > r0, z = 0 (5)

h(r, z, t) = hi , r2 + z2 → ∞ (6)

where r0 is the disc radius; h0 is the time-variable supply pressure head, and hi is the initial
pressure head. The SWMS [33] was used to solve Equation (1) under the previously men-
tioned initial and boundary conditions. Van Genuchten [31] proposed a mass-conservative
iterative scheme on which the numerical solution was based.

2.2. Soil Hydraulic Properties

Prior to the numerical solution of the Richards equation, a parametric model of
unsaturated soil hydraulic properties was selected by the parameter optimization approach.
In this study, the unsaturated soil hydraulic functions of the van Genuchten–Mualem
model [34] was adopted to describe the soil water conductivity curve (SWCC) and soil
water retention curve (SWRC):

Se =
θ − θr

θs − θr
=

1
(1 + |αh|n)m , (7)

K(θ) = KsSe
l
[

1− (1− S
1
m
e )

m]2
, (8)

where m = 1 − 1/n; Ks is the saturated hydraulic conductivity (cm·min−1); l is an empirical
shape parameter equal to 0.5; n is an empirical parameter associated with the pore-size
distribution; α is an empirical parameter inversely associated with the air-entry pressure
(cm−1); θr is the residual water content level (cm3·cm−3); θs is the saturated water content
level (cm3·cm−3); Se is the effective saturation.

3. Inverse Procedure
3.1. Inverse Problem and Hybrid Optimal Algorithm

As shown in Equations (7) and (8), h(θ) and K(θ) are highly related to the effective
saturation, Se. Equation (7) demonstrates that the parameters θr and θs have a collinear
relationship that cannot be inverted simultaneously. Moreover, θr is relatively small and
can be obtained through the application of a transfer function to other physical soil char-
acteristics [35–37]. Hence, the value of θr is set as the true value in the following inverse
procedure. In the van Genuchten–Mualem model, the three parameters α, n, and Ks exhibit
a complex nonlinear relationship, especially the parameters α and Ks which have a wide
range of the order of magnitude, making it harder to be used in an inverse model.

During the infiltration process, potential head (h), infiltration rate (v), cumulative
infiltration (Q), and soil water content (θ) can be used to estimate soil hydraulic parameters,
but it is difficult to measure h. Thus, soil hydraulic parameters can be inverted based on
θ, Q, and v in this study. Table 1 displays the soil hydraulic parameters of 12 typical soils
obtained from RETC. Figure 2 details three kinds of parameter-pair relationships: α-Ks (a),
α-n (b), and v-Ks (c). Figure 2a demonstrates that with the increase of α, the corresponding
n increases linearly and Ks increases sharply. Thus, it is necessary to consider correlations
between these parameters in future research; otherwise, analysis of physical mechanisms is
unreasonable and difficult to perform in the inverse model. Therefore, the ratio of α/Ks



Agronomy 2023, 13, 726 5 of 24

can be used in the inverse model. To improve the presentation of the inverse work, a
comprehensive summary of the scopes of soil hydraulic parameters (Ks, n, α, θs, and θr)
and the ratio of α/Ks were mostly taken from the Unsated Soil Database (UNSODA) [38],
as well as from a further 192 published available literatures, as shown in Table 2, covering
the majority of soil conditions.

Table 1. Soil hydraulic parameters for the van Genuchten–Mualem model (RETC).

Texture Class
θr θs α n l Ks α/Ks

cm3·cm−3 cm3·cm−3 cm−1 - - cm·min−1

Sand 0.045 0.43 0.145 2.68 0.5 0.49500 0.293
Loamy sand 0.057 0.41 0.124 2.28 0.5 0.24317 0.510
Sandy loam 0.065 0.41 0.075 1.89 0.5 0.07367 1.018

Loam 0.078 0.43 0.036 1.56 0.5 0.01733 2.077
Silt 0.034 0.46 0.016 1.37 0.5 0.00417 3.840

Silt loam 0.067 0.45 0.020 1.41 0.5 0.00750 2.667
Sandy clay loam 0.100 0.39 0.059 1.48 0.5 0.02183 2.702

Clay loam 0.095 0.41 0.019 1.31 0.5 0.00433 4.385
Silty clay loam 0.089 0.43 0.010 1.23 0.5 0.00117 8.571

Sandy clay 0.100 0.38 0.027 1.23 0.5 0.00200 13.500
Silty clay 0.070 0.36 0.005 1.09 0.5 0.00033 15.000

Clay 0.068 0.38 0.008 1.09 0.5 0.00333 2.400
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Table 2. Inverse scope of soil hydraulic parameters.

Scope θs α n l Ks α/Ks v/Ks
- cm−1 - - cm·min−1 - -

minimum 0.35 0.001 1.05 0.5 0.00010 0.2 2
maximum 0.55 0.200 3.00 0.5 0.60000 20 60

A correct and relatively small range of parameters is critical for determining optimal
values. Even when a restrictive range of α/Ks is employed, the range of Ks remains
relatively large (6000 times of difference in magnitude), which is difficult to use in an
optimal algorithm. During the infiltration process, the saturated conductivity (Ks) strongly
influences the infiltration rate (v). The relationship between Ks and v for 12 typical soils with
three depths (2, 3, and 5 cm) of ponding water is illustrated in Figure 2c. The infiltration
rate was obtained using SWMS-2D, for which cumulative infiltration was simulated every
5 min. All the datasets were found to range from approximately 2 to 60, providing a narrow
range (30 times), compared with the original range of Ks for the inverse algorithm. Hence,
the ranges of both α/Ks and v/Ks were employed in the inverse procedure.

During the parameter inversion process, the objective function ψ is minimized and
used to structure a response surface. The function can be expressed by one or a combina-
tion of θ, v, and Q. Most relevant studies have formulated objective functions to estimate
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parameters using various combinations of θ, v, and Q, which can be used to transform
into a single-objective optimization problem from a multi-objective optimization problem.
However, it is difficult to determine a reasonable weight for the combination of objective
functions, and a combined objective function may well enhance the difficulty of searching
for a global optimization solution and the complexity of minimum response surface do-
mains. A hybrid method of PSO and VEGA was adopted to solve the inverse estimation.
The standard deviation (σ) of the observed data of θ, v, or Q dividing the root mean squared
error (RMSE) was called the objective function:

ψ = RMSE/σ =

√
1

m− 1

m

∑
i=1

(Y(ti, β)−Y∗(ti))
2

√
1

m− 1

m

∑
i=1

(
Y∗(ti)−Y∗(ti)

)2
(9)

where m is the number of measurement sets (θ, v, and Q); β is the vector of optimized
parameters (Ks, n, and α); Y is the corresponding model prediction data under the parameter
vector β; Y* is the specific type of measurement data at time ti.

The hybrid optimal VEGA-PSO algorithm presents a highly effective optimization
method. Holland [39] developed a global stochastic search technique called the genetic
algorithm (GA). Eberhart and Kennedy [40] developed PSO, an evolutionary optimization
algorithm from the research on bird foraging behavior. In this study, multiple objectives are
still present in the inverse problems of real soil hydraulic parameters, including infiltration
rate (v), soil water content (θ), and cumulative infiltration (Q). The main problem in multi-
objective optimization is that inverting a single objective tends to cause unacceptable
outcomes for other objectives as the objectives conflict with each other. It is often difficult to
select weights precisely and accurately for the objectives in many practical problems, even
for a researcher familiar with the problem domain. Compared to a single-objective GA,
VEGA provides a straightforward and efficient way for solving multi-objective problems.
More details about the hybrid optimal algorithm for inverse parameters may be found in
our previous paper [32].

The above-mentioned analysis focused on the parameters of Ks, n, α, and θs, with θr as
its true value. The response surface of different parameter planes (Ks-θs, α-θs, n-θs, n-Ks, α-Ks,
and α-n) was calculated for four types of soil (clay, silt, loam, and sand) with three initial soil
water content levels (20, 40, and 60% effective saturation), to analyze the interaction in the
objective function ψ of Ks, n, α, and θs. Each parameter domain was equally classified into
50 discrete points, and each response surface yielded 2500 (50× 50) grid points. All operations
were performed in a Windows 7 Ultimate environment using 32 GB of RAM and an Intel®

XEON® CPU E5-2683 2.00 GHz processor. A 28-core server was used for computing through
the algorithm.

3.2. Numerical and Laboratory Experiment Methods
3.2.1. Numerical Experiment

The SWMS-2D software [33] was used to generate infiltration data in this study. For
the time-variable supply pressure head, h0 (2 cm), the first 3 h (180 min) of the infiltration
process were only taken into account. We concentrated on four soils: clay, silt, loam, and
sand, with three θinitial, (represented by 20, 40, and 60% effective saturation) for the inverse
modeling. The initial hi was calculated from each soil type’s corresponding parameters, as
shown in Table 1.

3.2.2. Laboratory Experiment

Experimental soil samples from depths of 0–60 cm were obtained from the Key Lab-
oratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of China
(34◦170 N and 108◦040 E). Based on the USDA Soil Taxonomy System, soil samples were
clay loam with particle size distributions of 27.30% 0–0.002 mm, 42.53% 0.002–0.020 mm,
and 30.17% 0.02–2.00 mm. The experimental soils were air-dried, followed by screening
through a mesh of 2 mm. Subsequently, they were compressed into a soil bin at a bulk
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density of 1.30 or 1.35 g cm−3 to simulate in situ bulk density. Water was mixed with the
soil to achieve the desired experimental soil water conductivity (SWC) values of 10, 20,
and 30% for the respective bulk density before the soil was compacted into the bin. A
homogeneous soil profile was then created by loading and compacting the soil into the bin
at a layer of 5 cm. The experiment was designed to determine the irrigation volume. In this
way, a Marriotte bottle was placed to maintain an infiltration depth of 3 cm (Figure 3). Cu-
mulative infiltration was recorded for each minute of infiltration. Eventually, soil samples
were gathered from side holes, and SWC was determined by recording the weight loss of
samples after 24 h of oven drying at 105 ◦C.
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3.3. Evaluation Criteria

To evaluate the similarity of the inverted and real SWRCs and SWCCs, a number of
points (i.e., 50) were selected on the inverted and real curves. For SWRCs, points with the
same suction were selected; for SWCCs, points with the same conductivity were selected.
Afterwards, the soil water content levels were calculated at each point. The statistical
indices of the Nash–Sutcliffe coefficient (NS), percent bias (PBIAS), RMSE, and mean
absolute error (MAE) were used to quantify the similarity between the inverted and real
SWRCs and SWCCs, which are defined as follows:

MAE =
1
m

m

∑
1

∣∣∣∣∣θinv
i − θreal

i

∣∣∣∣∣, (10)

RMSE =

√
1

m− 1

m

∑
i=1

(
θinv

i − θreal
i
)2, for i = 1, 2 . . . n, (11)

PBIAS =
m

∑
i=1

(
θinv

i − θreal
i

)
/

m

∑
i=1

θreal
i , (12)

NS = 1−
m

∑
i=1

(
θinv

i − θreal
i

)2
/

m

∑
i=1

(θreal
i − θreal

i )
2

(13)

where θi
real is the ith point of the soil water content of the real SWRCs and SWCCs, with the

same conductivity and suction; θi
inv is the ith point of the soil water content of the inverted

SWRCs and SWCCs; m is the number (50) of selected points in the inverted and real SWRCs
and SWCCs.
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4. Results and Discussion
4.1. Response Surface and Uniqueness

The objective function surfaces of 12 typical soils had similar shapes (Table 1). There-
fore, only the response surface of loam with 40% initial soil water content was shown in
this paper. Figure 4 presents the response surface of parameter planes α-n (a), α-Ks (b),
n-Ks (c), n-θs (d), α-θs (e), and Ks-θs (f), with the remaining two parameters as the real values,
which were determined using the objective function ψ(θfinal). Clear visual observation was
facilitated by selecting logarithmic coordinates for Ks and α.

Figure 4a shows a surface with a wide valley resulting from high n and low α, whereas
Figure 4b,c show narrow and long valleys for α-Ks and n-Ks. As can be observed from
the first three valley contours in Figure 4a–c, it remains difficult to determine the optimal
stability values of Ks, n, and α from ψ(θfinal) even though the other two parameters are
identified. In Figure 4d–f, however, smooth uniform rings with distinct extreme values
in each minimum circle were shown on all three response surfaces (θs-Ks, θs-α, and θs-n),
suggesting that the true value of θs may be obtained using the objective function ψ(θfinal).

The feasibility of applying ψ(Q) and ψ(v) as the objective functions to inverse the
remaining parameters (Ks, n, and α) through the response surface was then analyzed based
on the present method. The results are shown in Figures 5 and 6. It can be seen from
Figure 5a–c that the response surfaces corresponding to α-n, α-Ks, and n-Ks have obvious
global optimal characteristics, indicating that it is possible to invert α, n, and Ks according
to the objective function of ψ(v) after θs is determined. Furthermore, the regions where
the optimized results (α, n and Ks) are close to the true values in each response surface
(Figure 5a–c) are enlarged, as indicated in Figure 5d–f. It can be seen from Figure 5e,
f that there are obvious global optimal solutions in response surfaces of n-Ks and α-n.
However, the response surfaces show some bubbles in the global optimal solution area,
which indicates that the optimal solutions are not unique. Thus, it is demonstrated that
the solutions are non-unique if only ψ(v) is applied as the objective function to inverse α, n,
and Ks simultaneously.

Moreover, taking ψ(Q) as the objective function, Figure 6a–c illustrates that the optimal
solutions of n-Ks, α-Ks, and α-n response surfaces are narrow and long regions, which
are relatively small compared to Figure 4a–c. Meanwhile, the above similar approach is
adopted to enlarge the regions where the inversion results of α, n, and Ks are close to the
true values in each response surface (Figure 6a–c). It is further proved that the optimal
solution range of the response surfaces of n-Ks, α-Ks, and α-n is smaller with ψ(Q) as the
objective function, as shown in Figure 6d–f.

In summary, with the ψ(θfinal) as the objective function, the genetic algorithm (GA) is
applied to inverse θs; if ψ(v) or ψ(Q) is used as the objective function separately, the response
surface of α-n (Figure 5e), n-Ks (Figure 5f), and α-Ks (Figure 6d) shows that synchronous
inversion of α, n, and Ks is feasible, but the solutions are not unique. However, the stability
of the inversion results can be improved if both ψ(v) and ψ(Q) are used as the objective
functions simultaneously. The detailed objective function and solution method used in the
inversion process of soil hydraulic characteristic parameters are the same as our previous
paper (Yi-bo Li et al., 2018).
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Figure 6. Contours of the objective function ψ(Q) of loam with θinitial as 40% effective saturation. The hydraulic parameters of loam: Ks = 0.0173 cm·min−1; n = 1.56;
α = 0.036 cm−1; θs = 0.43 cm3·cm−3; θr = 0.078 cm3·cm−3. Results are plotted in the parameter planes of (a,d) α-Ks, (b,e) α-n, and (c,f) n-Ks. The global scale is
depicted in (a–c), while the local scale near the minimum is depicted in (d–f).
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4.2. Inverse Solution and Analysis of the Numerical Experiment
4.2.1. Inverse Solutions

A total of 12 case studies were conducted using four typical RETC soils (clay, silt, loam,
and sand) with three initial water content levels, to validate the feasibility of the method. The
12 case results of the parameter inversion are summarized in Table 3, indicating that the inverted
and real values were similar for each parameter.

Table 3. Inverted parameters of four typical soils with three initial water content levels.

Category
θr θs α n Ks

cm3·cm−3 cm3·cm−3 cm−1 - cm·min−1

Sand

20%
0.0450

0.4296 0.1654 2.7732 0.5005
40% 0.4296 0.1421 2.8061 0.4911
60% 0.4331 0.1546 2.8622 0.5024

Real Value 0.0450 0.4300 0.1450 2.6800 0.4950

Loam

20%
0.0780

0.4296 0.0426 1.7440 0.0162
40% 0.4319 0.0373 1.5798 0.0176
60% 0.4284 0.0610 1.7601 0.0187

Real Value 0.0780 0.4300 0.0360 1.5600 0.0173

Silt

20%
0.0340

0.4568 0.0202 1.3790 0.0050
40% 0.4567 0.0190 1.3758 0.0047
60% 0.4611 0.0150 1.3684 0.0037

Real Value 0.0340 0.4600 0.0160 1.3700 0.0042

Clay

20%
0.0680

0.3845 0.0053 1.0923 0.0022
40% 0.3788 0.0047 1.0919 0.0020
60% 0.3814 0.0038 1.0805 0.0018

Real Value 0.0680 0.3800 0.0080 1.0900 0.0033

4.2.2. Analysis of Inverse Solutions

Table 4 lists the real and inverted parameter values that were employed to draw SWRCs
and SWCCs, respectively (Figure 7). SWRCs were labeled as a1, b1, c1, and d1; SWCCs
were labeled as a2, b2, c2, and d2. There are small differences between the real and inverted
parameter values of Ks, n, and α, however, the real and inverted SWCCs and SWRCs are the
same, indicating that the inverse approach is robust and effective.

Table 4. Soil water content errors calculated from SWRCs and SWCCs for the four typical soils.

Soil
From h(θ) From K(θ)

MAE RMSE PBIAS (%) NS MAE RMSE PBIAS (%) NS

Sand 0.00152 0.00192 0.3774 0.9993 0.00501 0.00818 3.2074 0.9929
Loam 0.00086 0.00101 −0.0102 0.9998 0.01468 0.02519 −7.3756 0.9645

Silt 0.00164 0.00188 −0.3742 0.9996 0.00536 0.00800 −2.1942 0.9975
Clay 0.00083 0.00123 0.1650 0.9998 0.00830 0.01214 −3.2121 0.9935

The error evaluation metrics NS, PBIAS, RMSE, and MAE were used to estimate the differ-
ence between the inverted and real curves, in order to further assess the robustness and accuracy
of the proposed inverted approach. An average of 50 points was selected from the conductivity
curves, K(θ) and suction curves, h(θ), followed by a calculation of the corresponding 50 soil
water content levels. The calculated error evaluation indicators are shown in Table 4. The MAE,
RMSE, and PBIAS values for the SWRCs were extremely small (0.00086–0.00164 cm3·cm−3,
0.00101–0.00192 cm3·cm−3, and 0.0102–0.3774%, respectively); the values for conductivity curves
were also small (0.00501–0.01468 cm3·cm−3, 0.00800–0.02519 cm3·cm−3, and 2.1942–7.3756%,
respectively), and the value of NS was relatively large (approximately 1.0). These values verify
that the inverted method developed in this study is applicable to the inverse modeling of soil
hydraulic characteristics [41,42]. Furthermore, the values indicate that the inverse method may
be used to estimate the robustness and precision of SWRCs and SWCCs.
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40% effective saturation; square: 60% effective saturation; line: true value): (a) sand; (b) loam; (c); silt, and (d) clay. The ranges of y-axis vary depending on the
different soil textures.
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4.3. Inverse Solutions with Measurement Errors

There are always errors during the process of instrumentation, calibration, and other
factors in practice. Hence, both the system and random errors in the initial and final water
content levels, as well as the random error in the cumulative infiltration, were considered
to evaluate. Table 5 shows the stability of the inverse solution. Firstly, the two system errors
were set as +0.02 for θinitial and −0.02 for θfinal, and the random error was set as 0.05 of
the standard deviation (5.0%). The two random errors were then superimposed on the
cumulative infiltration after being set as 0.02 and 0.05 of the standard deviation. All the
inversion computations performed in the error-free inverse method were repeated for the
four typical soils with θinitial (40% effective saturation).

Table 5. Inverted parameters of both system and random errors in initial and final water content
levels for the four typical soils.

Texture
Class

Error
Source

Error Category
θr θs α n Ks

cm3·cm−3 cm3·cm−3 cm−1 - cm·min−1

Sand

θinitial

RE 5.0%

0.0450

0.4292 0.1430 2.6512 0.4912

SE
θi + 0.02 0.4352 0.1389 2.6931 0.4959
θi − 0.02 0.4096 0.1281 2.6988 0.4912

θfinal

RE 5.0% 0.4296 0.1455 2.6780 0.4867

SE
θf + 0.02 0.4423 0.1464 2.6874 0.4943
θf − 0.02 0.4004 0.1449 2.6994 0.4877

Real Parameter 0.0450 0.4300 0.1450 2.6800 0.4950

Loam

θinitial

RE 5.0%

0.0780

0.4435 0.0376 1.5437 0.0185

SE
θi + 0.02 0.4712 0.0404 1.5799 0.0189
θi − 0.02 0.3866 0.0341 1.5151 0.0191

θfinal

RE 5.0% 0.4266 0.0365 1.5265 0.0188

SE
θf + 0.02 0.4798 0.0362 1.5761 0.0164
θf − 0.02 0.3893 0.0328 1.5151 0.0162

Real Parameter 0.0780 0.4300 0.0360 1.5600 0.0173

Silt

θinitial

RE 5.0%

0.0340

0.4546 0.0159 1.3768 0.0040

SE
θi + 0.02 0.5035 0.0233 1.4474 0.0067
θi − 0.02 0.4218 0.0136 1.2787 0.0028

θfinal

RE 5.0% 0.4640 0.0167 1.3493 0.0046

SE
θf + 0.02 0.5072 0.0179 1.2825 0.0056
θf − 0.02 0.4051 0.0143 1.2177 0.0033

Real Parameter 0.0340 0.4600 0.0160 1.3700 0.0042

Clay

θinitial

RE 5.0%

0.0680

0.3965 0.0087 1.0854 0.0036

SE
θi + 0.02 0.4241 0.0105 1.1220 0.0051
θi − 0.02 0.3522 0.0062 1.0729 0.0022

θfinal

RE 5.0% 0.3774 0.0079 1.0824 0.0032

SE
θf + 0.02 0.4296 0.0112 1.1015 0.0056
θf − 0.02 0.3514 0.0054 1.0681 0.0018

Real Parameter 0.0680 0.3800 0.0080 1.0900 0.0033

SE = system error; RE = random error; RE 5.0% = standard deviation of random error equal to 0.05.

4.3.1. Inverse Solution Analysis Based on Initial and Final Water Content

The inverse parameter values (Ks, n, α, and θs) of the four typical soils are shown in
Table 5. The system and random errors were superimposed on the error-free data, leading
to only small deviations from the real parameters. It can be seen from Table 5 that most
values of the inverse parameters were close to the real values, indicating that the approach
is appropriate for practical application.



Agronomy 2023, 13, 726 15 of 24

SWRCs and SWCCs were plotted to estimate the effective measurement error of the
inverted value, as shown in Figures 8 and 9. The results of SWRCs and SWCCs show
that the effective measurement error is still acceptable though there are small differences
between the system and random error curves and the real value curves.

Table 6 displays the error evaluation metrics NS, PBIAS, and RMSE that were used
to estimate the difference between the inverted results with measurement errors and the
real values. An average of 50 points was selected from the conductivity curves, K(θ)
and the suction curves, h(θ), followed by a calculation of the corresponding 50 soil water
content levels. Table 6 presents the results of error evaluation indicators: minimal RMSEs
(0.0053–0.0346 from h(θ), 0.0004–0.0216 from K(θ)); small PBIASs (0.3181–14.5628 from h(θ)
0.1721–9.3637 from K(θ)), and large NSs (0.9322–0.9979 from h(θ), 0.9697–1.0000 from K(θ)).
The results suggest that the approach is applicable to the estimation of soil hydraulic
properties.

4.3.2. Inverted Solution Analysis Based on Cumulative Infiltration

Random errors only occurred during the process of cumulative infiltration; therefore,
two standard deviations of 0.02 and 0.05 for random errors were analyzed in the inverted
values (Table 7). Small deviations were found between the inverted values calculated from
the values with measurement errors and the real values.

Figure 10 shows SWRCs and SWCCs based on the inverse values with two random
errors. The inverse method is robust and reasonable for the inversion of soil hydraulic
parameters, due to that, there are small differences between the inverted and real values of
these curves. Table 8 details the assessment criteria NS, PBIAS, and RMSE for the inverted
and real values. The robustness and effectiveness of the inverse method are represented by
large NS, small PBIAS, and RMSE.

4.4. Inverse Solution and Analysis of Laboratory Experiment
4.4.1. Inverse Solution Based on Experimental Infiltration Data

Comparisons of parameter estimation results for the sandy loam are depicted in
Table 9. Two h(θ) curves and K(θ) curves with hydraulic parameters inversed from the
laboratory experiments are presented in Figure 11a1,a2,b1,b2, respectively. Figure 11a,b
represent the results of two bulk densities (1.30 and 1.35 g cm−3) with three initial soil
water contents. The three soft dotted lines (circle—18.92%, triangle—26.17%, and square—
31.74%) were determined separately by using the VEGA–PSO inverse method, and the
solid line was then determined from all three datasets from the laboratory experiments
and using the same inverse method. Figure 11 illustrates that despite the small differences
between the three sets of parameter values and the solid lines, they are close to each
other. Table 10 displays RMSE, PBIAS, and NS for each inverse value and unified value.
The robustness and effectiveness of the inverse method are represented by large NS, small
PBIAS, and RMSE. Therefore, the results proved that the method proposed in this paper can
be applied in laboratory experiments to invert the soil hydraulic parameters. Meanwhile,
it is more intuitive to compare the two curves, h(θ) curves and K(θ) curve, to check the
accuracy of the inversion than to compare the values of the individual soil hydraulic
parameters individually.

4.4.2. Comprehensive Analysis of the Inverse Solution of Experimental Results

To further validate the use of the inverse solution with laboratory experimental data,
the cumulative infiltration and final water content were compared between the inverse
values (unified values) and the measured values. Figure 12 depicts comparisons of the
cumulative infiltration for bulk densities of 1.30 and 1.35 g cm−3. Small deviations can
be seen among the six graphs, which may be due to errors in the experiments. Figure 13
shows the distribution of final water content in the six experiments.
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Agronomy 2023, 13, 726 18 of 24
Agronomy 2023, 13, x FOR PEER REVIEW 20 of 26 
 

 

(a1) (b1) (c1) (d1) 

(a2) (b2) (c2) (d2) 

Figure 10. Comparison of SWRCs (a1,b1,c1,d1) and diffusivity curves (a2,b2,c2,d2) with system and random errors for different treatments and calculation using 
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Figure 10. Comparison of SWRCs (a1,b1,c1,d1) and diffusivity curves (a2,b2,c2,d2) with system and random errors for different treatments and calculation using the
objective function f (Q) (circle: 5.0% random error; triangle: 2.0% system error; square: −2.0% system error; line: true value): (a) sand; (b) loam; (c); silt, and (d) clay.
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Table 6. Soil water content errors calculated from inverted SWRCs and diffusivity curves given the
system and random errors in initial and final water content levels for the four typical soils.

Source Texture
Class

Error
Category

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS
cm3·cm−3 % - cm3·cm−3 % -

θinitial

Sand
RE 5.0% 0.0080 1.8284 0.9972 0.0011 0.4762 0.9999

SE
θi + 0.02 0.0103 3.1152 0.9953 0.0077 3.3904 0.9953
θi − 0.02 0.0098 −3.1523 0.9958 0.0055 −2.3993 0.9976

Loam
RE 5.0% 0.0161 6.1450 0.9855 0.0064 2.4884 0.9961

SE
θi + 0.02 0.0346 14.3209 0.9331 0.0105 4.0688 0.9895
θi − 0.02 0.0092 −3.5072 0.9953 0.0082 −3.1945 0.9935

Silt
RE 5.0% 0.0177 7.6049 0.9878 0.0007 −0.3194 1.0000

SE
θi + 0.02 0.0177 7.8793 0.9880 0.0134 5.7917 0.9884
θi − 0.02 0.0234 −7.4628 0.9787 0.0216 −9.3637 0.9697

Clay
RE 5.0% 0.0053 −2.3265 0.9972 0.0004 0.1721 1.0000

SE
θi + 0.02 0.0261 14.5628 0.9322 0.0098 4.3160 0.9884
θi − 0.02 0.0136 −7.3473 0.9815 0.0041 −1.8139 0.9979

θfinal

Sand
RE 5.0% 0.0069 −1.4174 0.9979 0.0036 −1.5807 0.9990

SE
θi + 0.02 0.0250 9.2426 0.9723 0.0077 3.3904 0.9953
θi − 0.02 0.0162 −6.2018 0.9884 0.0089 −3.9233 0.9937

Loam
RE 5.0% 0.0071 −0.3181 0.9972 0.0068 2.6550 0.9955

SE
θi + 0.02 0.0220 −3.7115 0.9730 0.0152 5.9101 0.9779
θi − 0.02 0.0139 −1.9505 0.9892 0.0118 −4.5645 0.9868

Silt
RE 5.0% 0.0073 0.7388 0.9979 0.0061 2.6592 0.9976

SE
θi + 0.02 0.0146 4.0437 0.9918 0.0122 5.3064 0.9903
θi − 0.02 0.0175 −1.2681 0.9882 0.0157 −6.8252 0.9839

Clay
RE 5.0% 0.0067 1.9355 0.9956 0.0059 −2.5968 0.9958

SE
θi + 0.02 0.0107 −2.6996 0.9886 0.0080 3.5332 0.9922
θi − 0.02 0.0111 −3.8752 0.9877 0.0126 −5.5379 0.9809

SR = system error; RE = random error; RE 5.0% = standard deviation of random error equal to 0.05.

Table 7. Inverted parameters with random errors in cumulative infiltration for the four typical soils.

Texture
Class

Error
Category

θr θs α n Ks

cm3·cm−3 cm3·cm−3 cm−1 - cm·min−1

Sand

2.0%
0.0450

0.4314 0.1416 2.6903 0.4930
5.0% 0.4314 0.1475 2.6988 0.4987

Real
Parameter 0.0450 0.4300 0.1450 2.6800 0.4950

Loam

2.0%
0.0780

0.4285 0.0341 1.6466 0.0144
5.0% 0.4285 0.0365 1.7919 0.0124

Real
Parameter 0.0780 0.4300 0.0360 1.5600 0.0173

Silt

2.0%
0.0340

0.4623 0.0147 1.2996 0.0043
5.0% 0.4623 0.0160 1.3817 0.0039

Real
Parameter 0.0340 0.4600 0.0160 1.3700 0.0042

Clay

2.0%
0.0680

0.3812 0.0104 1.0862 0.0046
5.0% 0.3812 0.0074 1.0901 0.0027

Real
Parameter 0.0680 0.3800 0.0080 1.0900 0.0033

2.0 and 5.0% = standard deviation of random error equal to 0.02 and 0.05, respectively.
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Table 8. Soil water content errors calculated from inverted SWRCs and conductivity curves with
random errors in cumulative infiltration for the four typical soils.

Texture
Class

Error
Category

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS
cm3·cm−3 % - cm3·cm−3 % -

Sand
2.0% 0.0024 0.9524 0.9997 0.0007 0.2774 0.9997
5.0% 0.0017 −0.4835 0.9999 0.0007 0.2774 0.9999

Loam
2.0% 0.0073 −2.6803 0.9970 0.0007 −0.2678 1.0000
5.0% 0.0205 −7.2361 0.9765 0.0007 −0.2678 1.0000

Silt
2.0% 0.0212 9.5425 0.9826 0.0011 0.4451 0.9999
5.0% 0.0023 −0.6324 0.9998 0.0011 0.4451 0.9999

Clay 2.0% 0.0022 0.9520 0.9995 0.0006 0.2432 1.0000
5.0% 0.0011 0.4907 0.9999 0.0006 0.2432 1.0000

2.0 and 5.0% = standard deviation of random error equal to 0.02 and 0.05, respectively.

Table 9. Inverse solution results for the sandy loam in laboratory experiments.

Bulk
Density

Category θr θs α n Ks
cm3·cm−3 cm3·cm−3 cm−1 - cm·min−1

1.30

18.92%
0.0785

0.48354 0.00810 1.59852 0.01314
26.17% 0.47984 0.00789 1.78034 0.01131
31.74% 0.48102 0.00668 1.84100 0.01157
Unified
Value 0.0785 0.4830 0.0074 1.6785 0.0124

1.35

18.92%
0.0730

0.51158 0.00659 1.89324 0.01200
26.17% 0.49996 0.00660 1.66160 0.01195
31.74% 0.50281 0.00610 1.86946 0.01323
Unified
Value 0.0730 0.5020 0.0062 1.8126 0.0129

Table 10. Error analyses for three initial water content levels.

Bulk
Density

Initial
Water

Content

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS
cm3·cm−3 % - cm3·cm−3 % -

1.30
18.92% 0.0171 −4.8737 0.9899 0.0012 0.4614 0.9999
26.17% 0.0155 −3.8097 0.9917 0.0008 −0.3145 0.9999
31.74% 0.0057 1.3477 0.9989 0.0002 −0.0679 1.0000

1.35
18.92% 0.0187 2.7418 0.9901 0.0039 −1.3463 0.9990
26.17% 0.0059 −0.1101 0.9990 0.0029 −1.0163 0.9994
31.74% 0.0086 0.5048 0.9979 0.0032 1.1095 0.9993
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5. Conclusions

This study investigated the inverse determination of soil hydraulic properties based
on the van Genuchten–Mualem model and data from simultaneously measured cumulative
infiltration and final water content. The proposed two-step inverse estimation method was
employed to compare numerically simulated values and measurements from laboratory
experiments, indicating that the data were consistent. Moreover, new formulations of
α/Ks and v/Ks were applied in the inverse procedure to reduce the scope of Ks, increasing
the efficiency of the method. After the inverse procedure was performed, the GA with
θfinal was used to determine the saturated water content θs. Finally, the soil characteristic
parameters Ks, n, and α were accurately inversed by using the VEGA-PSO-based multi-
objective optimization method according to the infiltration rate, final water content, and
cumulative infiltration.

In terms of validating the accuracy of the model, no separate comparison of the
values of each soil hydraulic parameter was made, while considering that the parameters
previously influenced each other, and two curves h(θ) and K(θ) were plotted for accuracy
analysis. Additionally, the model was verified in the case of measurement errors (system
error and random error) that exist in the practical situation.
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The general agreement between the numerical simulations and inverse solutions for
h(θ) and K(θ) suggested that the proposed inverse method is very effective. The results
obtained directly from laboratory experiments were also found to agree with the inverse
solutions. The robustness and practicability of the proposed method were validated given
that the accuracy of results was acceptable. However, further investigation is required
for the inhomogeneity of soil water content distribution and soil texture. Moreover, the
estimation of soil hydraulic parameters on field plot and large spatial scale needs more
thorough research. Li, Y.-B.; Liu, Y.; Ma, X.-Y.
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3. van Genuchten, M.T.; Šimůnek, J. Evaluation of Pollutant Transport in the Unsaturated Zone, Regional Approaches to Water Pollution in

the Environment; Springer: Dordrecht, The Netherlands, 1996.
4. Green, R.E.; Ahuja, L.R.; Chong, S.K.; Klute, A. Hydraulic conductivity, diffusivity, and sorptivity of unsaturated soils: Field

methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; American Society of Agronomy:
Washington, DC, USA, 1986; pp. 771–798.

5. Klute, A.; Dirksen, C. Hydraulic conductivity of saturated soils: Field methods. Methods Soil Anal. 1986, 5, 687–734.
6. Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; van Dam, J.C. Uncertainty in the determination of soil hydraulic

parameters and its influence on the performance of two hydrological models of different complexity. Hydrol. Earth Syst. Sci. 2010,
14, 251–270. [CrossRef]

7. Vrugt, J.A.; Stauffer, P.H.; Wöhling, T.; Robinson, B.A.; Vesselinov, V.V. Inverse Modeling of Subsurface Flow and Transport
Properties: A Review with New Developments. Vadose Zone J. 2008, 7, 843–864. [CrossRef]
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