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Abstract: Crop growth is often uneven within an agricultural parcel, even if it has been managed
evenly. Aerial images are often used to determine the presence of vegetation and its spatial variability
in field parcels. However, the reasons for this uneven growth have been less studied, and they might
be connected to variations in topography, as well as soil properties and quality. In this study, we
evaluated the relationship between drone image data and field and soil quality indicators. In total,
27 multispectral and RGB drone image datasets were collected from four real farm fields in 2016–2020.
We analyzed 13 basic soil quality indicators, including penetrometer resistance in top- and subsoil, soil
texture (clay, silt, fine sand, and sand content), soil organic carbon (SOC) content, clay/SOC ratio, and
soil quality assessment parameters (topsoil biological indicators, subsoil macroporosity, compacted
layers in the soil profile, topsoil structure, and subsoil structure). Furthermore, a topography variable
describing water flow was used as an indicator. Firstly, we evaluated single pixel-wise linear
correlations between the drone datasets and soil/field-related parameters. Correlations varied
between datasets and, in the best case, were 0.8. Next, we trained and tested multiparameter non-
linear models (random forest algorithm) using all 14 soil-related parameters as features to explain
the multispectral (NIR band) and RGB (green band) reflectance values of each drone dataset. The
results showed that the soil/field indicators could effectively explain the spatial variability in the
drone images in most cases (R2 > 0.5), especially for annual crops, and in the best case, the R2 value
was 0.95. The most important field/soil features for explaining the variability in drone images varied
between fields and imaging times. However, it was found that basic soil quality indicators and
topography variables could explain the variability observed in the drone orthomosaics in certain
conditions. This knowledge about soil quality indicators causing within-field variation could be
utilized when planning cultivation operations or evaluating the value of a field parcel.

Keywords: spatial variability; within-field variability; soil mechanical resistance; soil physical quality;
drone; UAV; multispectral camera; soil organic carbon; topographic wetness index

1. Introduction

The smart farming concept calls for spatial knowledge about field and soil properties.
Crop growth and development are not homogeneous within a field parcel, even if the field
has been managed evenly. Terms such as “spatial variability” and “within-field variability”
are commonly used to describe this situation [1]. Optical drone-based remote sensing of
agricultural fields is an excellent tool to determine the spatial and temporal variations
in crop stand properties. The reasons for within-field variability need to be considered
to better understand the soil–crop system when cultivation operations are planned, and
thus to control within-field variation, but also when the value of a field parcel is estimated.
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Often, spatial variations in crop growth and yield are related to variations in different
chemical and physical soil properties (e.g., [2–4]). These properties are used to determine
soil quality indicators, including the soil’s chemical (pH, soil organic carbon content (SOC),
and nutrient content), physical (texture, penetration resistance, bulk density, and saturated
hydraulic conductivity), and biological (number of earthworms and microbial biomass)
components [5,6]. The relationships between variability in the measured yield and soil
property/quality indicators have been studied by monitoring soil properties at the field
scale, but this usually requires a large amount of sampling (e.g., [7–10]), making it time-
consuming and laborious.

Remote sensing, either through satellite imagery or low-altitude drones (i.e., unoccu-
pied aerial vehicles (UAVs)), has already been widely employed in different agricultural
applications [11]. Low-cost commercial drones are usually used to collect spectral data to
estimate different crop parameters, such as biomass [12,13] and nitrogen content [14,15], in
order to predict crop yields [16–18] and identify weeds [19,20] or water stress in crops [21].
The popularity of drones is due to their flexibility and cost-efficiency in farm-scale surveys
in comparison to satellite or terrestrial approaches [22].

In contrast to the large number of drone-based studies focusing on crop parameters,
soil-related parameters have been less studied [23]. Recently, Diaz-Gonzalez et al. [5]
reviewed remote sensing and machine learning techniques for soil quality indicator es-
timation, and found 22 studies on the topic. Various chemical, physical, and biological
soil properties, as well as other crop management- and environment-related indicators
such as topography, have been evaluated, but most of the studies utilized spectral data
collected from satellites. A study with drones was conducted in China by Hu et al. [24] to
estimate soil salinity using hyperspectral data and the random forest algorithm (RF). They
achieved the highest correlation for a bare soil test site in comparison to a site with more
vegetation. The capability of multispectral remote sensing to estimate SOC has also been
studied [25,26]. Žížala et al. [25] compared different data sources and concluded that multi-
spectral data collected from UAVs were a suitable and cost-effective alternative for SOC
estimation in comparison to other data sources, such as satellite and aerial hyperspectral
data. Khanal et al. [27] used aircraft to collect RGB and multispectral images from bare soil
fields in a single day in the United States of America. They predicted soil properties using
image data and machine learning and achieved a high correlation coefficient, for instance,
for soil organic matter content (SOM).

In Finland, the on-farm use of drone imaging in crop production is increasing. Sim-
ilarly, the use of soil quality assessments is strongly recommended to farmers to enable
them to analyze the reasons for variations in soil properties that affect soil function and
crop growth, and to plan and implement measures to manage within-field variation. The
objectives of the present study were:

(i) To examine the relationship between multiannual drone orthomosaic datasets and
commonly available soil and field indicators, including field topography, soil texture,
organic matter content, penetration resistance, and soil structural properties, as determined
via a simple Finnish soil quality assessment [28]; and

(ii) To study how well the available soil- and field-related indicators can explain spatial
variability in agricultural fields observed from drone orthomosaic images.

We carried out this case study under real farm conditions to understand how aerial
images and basic soil quality indicators can be used to explain the within-field spatial
variation of a crop stand.

2. Materials and Methods
2.1. Experimental Fields

This study was conducted in four farm fields, of which two were located in Southern
Finland, about 60 km west of Helsinki (i3 and i4, hemiboreal climate zone and growing
zone I), and two were 500 km further north (l1 and l2, middle boreal climate zone and
growing zone V), near the city of Oulu (Figure 1). Fields l1, l2, and i3 were relatively flat in
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comparison to field i4, where the difference between the minimum and maximum elevation
was nearly 6 m (Table 1). Fields l1 and l2 were fine sandy soils that had 2.40% SOC content,
and fields i3 and i4 were classified as loamy clay soils with an SOC content of 2.35–3.23%
(in a 0–20 cm layer). All fields were managed evenly during the experiments, i.e., farming
practices such as sowing and fertilizing were not expected to cause within-field variability.
Precipitation varied greatly depending on the growing season, as shown in Appendix A.
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Figure 1. The locations of the study fields in southern and northern Finland (ETRS-TM35FIN). Fields
i3 and i4 were located in a hemiboreal climate zone and growing zone I, and fields l1 and l2 were
located in a middle boreal climate zone and growing zone V [29,30].

Table 1. Surface area, minimum and maximum elevation (Height System: N2000), and growing
zones [30] of the four experimental fields.

Field l1 Field l2 Field i3 Field i4

Surface area (ha) 2.1 3.8 4.4 2.0
Minimum altitude (m) 3.2 4.5 12.0 14.3
Maximum altitude (m) 4.3 5.3 13.3 20.0

Growing zone in Finland V V I I

2.2. Measurements and Determinations
2.2.1. Drone Data Collection

Multiannual drone data were collected in the experimental fields during 2016–2020
(Table 2). Data were collected using RGB multispectral and hyperspectral cameras (Table 2).
The two multispectral cameras included a band in the green (central wavelength: 550–560 nm),
red (660–668 nm), red-edge (717–735 nm), and near-infrared spectral range (790–840 nm),
and the Micasense Altum camera included an additional blue band (475 nm). The hy-
perspectral FGI2012b camera [31,32] collected 36 spectral bands, but only the four bands
corresponding to those of other multispectral cameras were used in this study. A commer-
cial drone (DJI Phantom 4) and two in-house drones, a hexacopter (FGI Hexa; see details,
e.g., [33]) and a quadcopter (FGI Quadro; see details, e.g., [34]), were used as platforms.

The data were collected to produce geometrically accurate and radiometrically uniform
orthomosaics, where the variability in the field was only related to the object itself, not to the
measurement procedure. The flights were planned according to the following principles:
minimum side overlaps were set at 70%, and forward overlaps at 80%; the flight heights



Agronomy 2023, 13, 669 4 of 17

were set to 120–140 m; data were collected within three hours from solar noon; and the
direction of flight lines was mainly selected to be nearly parallel with the solar azimuth
angle. Additionally, ground control points were placed and measured to support geometric
processing, and reference reflectance panels were placed to support radiometric processing.
Flight height and various sensor parameters resulted in ground sample distances (GSD) of
2–14 cm. The crops cultivated during the data collection stage (Table 2) were silage grass (a
mixture of typical silage grass containing timothy (Phleum pratense L.) and other grasses
(e.g., Festuca pratensis (Huds.) Darbysh. Lolium perenne L., Lolium multiflorum Lam., and
Dactylis glomerata L.), and legumes such as red clover (Trifolium pratense L.)), spring barley
(Hordeum vulgare L.), rapeseed (Brassica napus L. ssp. oleifera (Moench.) Metzg.), winter
wheat (Triticum aestivum L.), and pea (Lathyrus oleraceus Lam.).

Table 2. Overview of drone data: data collection date (Date), camera type: RGB or multispectral
(MS) (* the camera collected 36 bands but only four of them were used in this study), sensor model,
drone, original ground sample distance at the ground level (GSD), and crop type in the field during
data collection.

Date Sensor Type Sensor Model Drone GSD (cm) Crop

l1
14 June 2017 RGB Phantom RGB DJI Phantom 4 5.5 Grass
20 June 2017 RGB Phantom RGB DJI Phantom 4 5.5 Grass
20 June 2017 MS Parrot Sequoia DJI Phantom 4 14 Grass
19 July 2017 RGB Phantom RGB DJI Phantom 4 5.5 Grass
9 July 2020 RGB Sony a7 FGI Quadro 2 Barley
9 July 2020 MS Micasense Altum FGI Quadro 6 Barley

l2
14 June 2017 RGB Phantom RGB DJI Phantom 4 5.5 Barley
19 July 2017 RGB Phantom RGB DJI Phantom 4 5.5 Barley
19 July 2017 MS Phantom RGB DJI Phantom 4 14 Barley
9 July 2020 RGB Sony a7 FGI Quadro 2 Grass
9 July 2020 MS Micasense Altum FGI Quadro 6 Grass

i3
2 June 2016 RGB Samsung NX500 FGI Hexa 4 Rapeseed
22 June 2016 RGB Samsung NX500 FGI Hexa 4 Rapeseed
22 June 2016 MS * FGI2012b FPI FGI Hexa 14 Rapeseed
21 July 2016 RGB Samsung NX500 FGI Hexa 4 Rapeseed
28 June 2019 MS Micasense Altum FGI Quadro 5 Wheat
16 July 2020 RGB Sony a7 FGI Quadro 2 Barley
16 July 2020 MS * Rikola FGI Quadro 10 Barley

i4
2 June 2016 RGB Samsung NX500 FGI Hexa 4 Pea
2 June 2016 MS * FGI2012b FPI FGI Hexa 14 Pea
22 June 2016 RGB Samsung NX500 FGI Hexa 4 Pea
22 June 2016 MS * FGI2012b FPI FGI Hexa 14 Pea
21 July 2016 RGB Samsung NX500 FGI Hexa 4 Pea
21 July 2016 MS * FGI2012b FPI FGI Hexa 14 Pea
28 June 2019 MS Micasense Altum FGI Quadro 5 Barley
16 July 2020 RGB Sony a7 FGI Quadro 2 Barley
16 July 2020 MS * Rikola FGI Quadro 10 Barley

2.2.2. Drone Data Processing

Drone data were geometrically processed using photogrammetry and structure-from-
motion (SfM) algorithms, described, for instance, by Wu et al. [35], and for the FGI2012b
camera data, the processing followed the pipeline described by Näsi et al. [36]. The drone
data were mainly collected under stable illumination conditions, but if partially cloudy
images occurred, they were excluded from the orthomosaic calculations to produce radio-
metrically uniform orthomosaics (Figure 2). Orthomosaics were additionally converted to
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reflectance values, utilizing reference panels with nominal reflectance values of 0.05, 0.10,
and 0.50 to ensure that different datasets were comparable. In the next phases of this study
(statistical analysis), only one band of each camera was used as there was no significant
difference between the results for each band. From the RGB datasets, the green band was
selected, and from the MS datasets, the NIR band was selected. The spectral responses for
all RGB cameras were typical of consumer cameras; additionally, the center wavelength
was close to 530 nm, and the FWHM (full width at half maximum) was 100 nm [37,38]. The
center wavelengths of the NIR bands were 790–840 nm, and the FWHM was 10–40 nm.
The selected bands were considered to best indicate the amount of vegetation in the fields.
The crops in the fields were in different growth stages, and especially in datasets collected
before mid-June in I2, i3, and i4, the canopy was in the early growth stage, and bare soil
was dominant instead of crop vegetation (Figure 2).
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2.2.3. Soil and Topography Data Collection

The soil properties of the four fields were determined from different sampling points
in 2019–2021. This was carried out soon after sowing or late in autumn in order to ensure
suitable soil moisture conditions for conducting measurements and observations. Sampling
points (10–12 per field) were chosen based on the drone orthomosaics of the fields to find
spatial variation. Figure 3 shows the distribution of the soil sampling points of all the
fields. From these points, the soil penetrometer resistance was determined as the median of
15 measurements (7.5 m × 7.5 m area) from a depth of 0–50 cm with 1 cm intervals, using a
hand penetrometer from Eijkelkamp. The size of the cone used in the measurements was
1.0 cm2 (angle: 60 deg). In the present study, mean values of 5–15 cm and 20–40 cm were
used in the analyses.
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Figure 3. Locations of soil sampling points marked with red dots, and the topography (DTM
produced from drone datasets) is visualized using a color scale (the minimum height for each parcel
is presented in Table 1) and contour lines with 1 m intervals for the four study fields (l1, l2, i3, and i4).

From the same sampling points, at which the penetrometer resistance was determined,
soil samples were taken from a topsoil layer of 0–20 cm to determine the soil texture (sieving
and pipette methods, ISO 11277:2009) and organic carbon content (volatile solids method
and oven-drying at 550 ◦C). The physical quality of soil from a soil pit was evaluated by
determining 8 (l1 and l2) and 8–10 (i3 and i4, respectively) points of soil penetrometer
resistance, according to Finnish soil quality assessment parameters [28]. A soil pit of
40 cm × 50 cm was dug to a depth of 40 cm, and soil moisture conditions during the field
observations were evaluated. From the pits, observations of soil layers, topsoil properties
(general structure, aggregation, aggregate shape and size, earthworm burrows, sealing of
soil surface, and degradation of crop residue), and subsoil properties (general structure,
soil breakage, earthworm burrows, and root channels) were evaluated using a scale of 0–2.
Scaled evaluations were recorded on a data collection form for soil quality assessments [28]
to grade the topsoil biological indicators (A), subsoil macroporosity (B), compacted layers
in the soil profile (C), topsoil structure (D), and subsoil structure (E) on a scale of 0–10
(0 = worst, 10 = excellent). A and B represent the biological properties of soil and C, D, and
E describe the soil’s physical quality [28].

Topography can have a particularly great effect on soil moisture conditions; therefore,
a topographic wetness index (TWI) was calculated from the digital terrain models (DTMs)
and included as an indicator to explain the within-field variability in the parcels. The DTMs
were generated from the drone-based photogrammetric point clouds (Figure 3). From the
time series of each parcel, the DTM of the date with the shortest crop growth was selected
to ensure that the DTM accurately represented the topography of the soil. Topographic
wetness indices describe water flow, and these reach high values in valleys and low values
on ridges [39]. In this study, the implementation of a modified SAGA wetness index was
used to calculate the TWI.

2.2.4. Soil and Field Indicator Determinations

The soil penetrometer resistance was higher in the upper subsoil (20–40 cm) than in
the topsoil (5–15) (Table 3), which was also found by, e.g., Alakukku ([40], clay soil) and
Pietola ([41], coarse soil). The penetration resistance of the coarse subsoil of fields l1 and
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l2 was clearly higher than that of the clay soil of fields i3 and i4, similarly to the results
of Pietola [41]. The mean values of indicators C to E for the top- and subsoil properties
of fields l1 and l2 were good, but biological indicators A and B were clearly low (Table 3).
One reason for this was the low number of earthworms found in the field observations.
Fields i3 and i4 presented higher biological indicators (A and B) and lower soil physical
quality than fields l1 and l2 (Table 3). Indicator E, describing the subsoil structure, was
lower for field i4, which indicated that the subsoil texture was coarser in field i4 than in
field i3. For all fields, the standard deviation of the values of C was the highest compared
to other indicators (Table 3). The standard deviation of the TWI was the highest in field
i4 (Table 3), which was expected, because it had the greatest variation in its topography,
including a slope, a valley, and a ridge (Figure 3).

Table 3. Overview of soil/field indicators. Soil texture and soil organic carbon content (SOC) in a layer
of 0–20 cm. The estimates for the topsoil and upper subsoil quality properties (scale 0–10, indicating
worst to excellent), prepared utilizing a soil quality assessment commonly used in Finland [28]:
A = topsoil biological indicators, B = subsoil macroporosity, C = compacted layers in soil profile,
D = topsoil structure, E = subsoil structure, TWI = topographic wetness index. Mean of 10–12 samples
for soil texture, SOC, and penetration resistance, and of 8–10 samples for soil quality properties in all
fields; values in parentheses indicate standard deviations (STDs).

Soil/Field Indicator Acronym Field l1 Field l2 Field i3 Field i4

Texture (%), particle size (mm)
Clay, <0.002 clay 11.5 (2.6) 6.9 (1.8) 40.3 (1.8) 33.2 (12.7)

Silt, 0.002–0.019 silt 27.8 (10.2) 20.8 (4.5) 29.7 (1.9) 26.8 (9.4)
Fine sand, 0.02–0.19 f_sand 53.8 (8.2) 66.1 (7.4) 26.2 (2.3) 33.0 (14.1)

Sand, 0.2–2 sand 6.9 (5.4) 6.2 (4.2) 3.8 (0.6) 7.4 (5.9)

SOC (%) SOC 2.40 (0.86) 2.40 (0.51) 2.35 (0.57) 3.23 (1.11)
Clay/SOC (ratio) C_SOC 5.1 (1.2) 2.9 (0.8) 18.4 (6.3) 10.2 (1.8)

Penetrometer resistance (MPa)
5–15 cm pen05_15 1.8 (0.5) 1.4 (0.4) 1.6 (0.6) 1.5 (0.3)

20–40 cm pen20_40 3.7 (0.9) 4.3 (0.9) 2.1 (0.3) 2.5 (0.8)

Soil quality properties
A A 4.9 (1.4) 5.2 (2.4) 7.3 (1.4) 7.2 (1.9)
B B 2.6 (2.0) 0.8 (1.3) 5.8 (2.3) 6.1 (2.2)
C C 8.1 (2.9) 6.6 (3.9) 7.8 (3.6) 5.3 (5.1)
D D 8.9 (1.3) 8.0 (3.5) 5.8 (2.5) 6.0 (1.7)
E E 8.8 (1.8) 8.4 (3.3) 6.5 (2.4) 4.6 (3.6)

Topography
Topographic wetness index TWI 4.1 (0.3) 6.6 (0.4) 8.8 (0.6) 8.4 (2.9)

2.2.5. Data Preprocessing

The data preprocessing pipeline is shown in Figure 4. To study the variation in
the entire field, the soil parameters collected from 10–12 points around the fields were
interpolated to create thematic raster maps for the entire field. We selected the inverse
distance weighting (IDW) spatial interpolation method, following the guidelines given
by Li and Heap [42]. We also considered the geostatistical method of ordinary kriging
and, based on variograms, the soil samples followed spatial autocorrelation; however, due
to the small number of samples, this structure was not always clear. We used classical
IDW [43] with a distance coefficient of p = 2, which is the most commonly used version of
IDW [44] and which provided visually suitable results. Radočaj et al. [45] also observed
similar interpolation accuracy for soil parameters using ordinary kriging and IDW.

The original spatial resolution of the drone orthomosaics was 2–14 cm (Table 2),
which means that even small details related to farming operations, such as tractor tracks,
were visible. To avoid these external effects, all orthomosaics were resampled (average
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downsampling) to 5 m GSD. After resampling, we had 797 data points from the smallest
field and 1778 data points from the largest field available for analysis.
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data. IDW = inverse distance weighting, GSD = ground sample distance (pixel size on the ground).

2.2.6. Statistical Analysis and Machine Learning

The coefficient of variation (CV) was used to measure variability in the field parcels.
This is a commonly used and simple metric to measure spatial variability in field parcels [1].
The Pearson correlation coefficient (r) values between all 14 different soil/field-related
parameters and drone orthomosaics were calculated in a pixel-wise manner.

To investigate how soil/field-related indicators could explain the within-field variabil-
ity in the drone orthomosaics, multi-parameter, non-linear models were established using
the random forest (RF) algorithm [46]. RF was selected because it has been successfully
used in remote sensing studies, mainly because it is relatively insensitive to feature selection
and hyper-parameter optimization [47]. In addition, RF measures the importance of input
variables to the model. The resampled pixel data were divided so that 75% were used
to train and 25% were used to test the models. The test dataset, which was not used in
training, was used to evaluate the performance of the models using r and the coefficient
of determination (R2) as the evaluation measures. The time range of the drone datasets
(2016–2020) was wider than that of the soil measurements (2019–2021). However, the
change in the determined soil properties was slow, and the effect of this difference on
the analysis was evaluated to be small; therefore, we considered that this generalization
was justified.

3. Results
3.1. Correlation Analysis of Single Variables

The Pearson correlation coefficients (r) between preprocessed drone orthomosaics and
rasterized soil/field indicators were calculated for all datasets (Figure 5). On fields l1 and
l2, the correlations were mainly below 0.55. The highest negative correlation (−0.54) in
field l1 was observed between the topsoil biological indicators (A) and both the green and
NIR bands collected in July 2020, when spring barley was grown in the field. Positive
correlations were relatively low in all cases, yielding, at best, 0.38.
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Figure 5. The correlation coefficients between drone datasets and soil properties for all datasets
collected in experimental fields l1, l2, i3, and i4. * indicates that the correlation was significant
based on the Wald Test with t-distribution (p < 0.05). A = topsoil biological indicators, B = subsoil
macroporosity, C = compacted layers in soil profile, D = topsoil structure, E = subsoil structure,
pen05–15 = mean soil penetration resistance in the 5–15 cm layer, and pen20–40 = in the 20–40 cm
layer, SOC = soil organic carbon content, C_SOC = clay/soil organic carbon ratio in the 0–20 cm layer.

In field l2, the highest correlations were achieved for the soil texture parameter sand
(r = 0.43) and for the topography variable TWI (r = −0.45), with the gRGB dataset collected
on 14 June 2017.

The correlations were higher for fields i3 and i4 than for fields l1 and l2 (Figure 5). In
field i3, the highest correlation was between the NIR orthomosaic band of July 2020 and soil
quality indicators B (macropores in subsoil, r = −0.61) and D (topsoil structure, r = −0.60).
The highest positive correlation (r = 0.57) was observed between silt content and the RGB
dataset from July 2020.

In field i4, significantly high correlations occurred in many cases, particularly between
fine sand and the 2016-06-02_ms dataset (r = 0.81), and between the TWI and the same
dataset, which showed a negative correlation (r = −0.81). The same soil properties were
relatively highly correlated with drone datasets collected in July 2016 and June 2019. TWI
appeared to be negatively correlated with the multispectral dataset, especially during the
rainy growing season in 2016, when the crop (pea) was suffering under wet conditions.

3.2. Multi-Parameter Non-Linear Models

In field l1, multi-linear RF models explained 40%–84% (R2 = 0.40–0.84) of the variability
in the drone data (Table 4). Typically, when the field had more variability based on
the CV, the R2 value was also higher. Especially for the datasets collected in 2017, the
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topography variable was among the most important indicators that contributed to the
models. Furthermore, other soil variables, such as silt content and various soil quality
indicators, were ranked among the three most important variables (Table 4).

Table 4. Coefficient of variation (CV), R2, and r values of random forest models (the highest values of
each field is bolded) and the three most important features affecting the model (datasets for RGB or
multispectral (MS) cameras in fields l1, l2, i3, and i4). Acronyms of soil indicators as in Table 3.

Dataset CV R2 r Three Most Important Features

2017-06-14_RGB_l1 0.854 0.401 0.638 silt TWI C_SOC
2017-06-20_MS_l1 0.072 0.656 0.815 TWI E C

2017-06-20_RGB_l1 0.587 0.553 0.746 C TWI sand
2017-07-19_RGB_l1 0.514 0.457 0.678 B TWI C_SOC
2020-07-09_MS_l1 0.060 0.841 0.918 A silt TWI

2020-07-09_RGB_l1 0.055 0.732 0.857 A f_sand pen20–40

2017-06-14_RGB_l2 0.843 0.572 0.763 clay TWI C_SOC
2017-07-19_MS_l2 0.115 0.619 0.790 E TWI silt

2017-07-19_RGB_l2 0.240 0.220 0.519 SOC TWI clay
2020-07-09_MS_l2 0.071 0.441 0.668 clay TWI f_sand

2020-07-09_RGB_l2 0.233 0.189 0.459 TWI pen_20–40 C_SOC

2016-06-02_RGB_i3 0.108 0.883 0.941 silt sand B
2016-06-22_MS_i3 0.104 0.774 0.882 pen20–40 pen05–15 D

2016-06-22_RGB_i3 0.081 0.894 0.947 D silt pen05–15
2016-07-21_RGB_i3 0.070 0.681 0.827 D sand silt
2019-06-28_MS_i3 0.063 0.496 0.711 pen05–15 silt TWI
2020-07-16_MS_i3 0.178 0.949 0.975 pen05–15 D B

2020-07-16_RGB_i3 0.174 0.868 0.932 pen05–15 pen20–40 silt

2016-06-02_MS_i4 0.204 0.897 0.947 TWI SOC C/SOC
2016-06-02_RGB_i4 0.086 0.825 0.913 pen05–15 TWI E
2016-06-22_MS_i4 0.097 0.654 0.817 B TWI sand

2016-06-22_RGB_i4 0.107 0.738 0.861 D pen05–15 C
2016-07-21_MS_i4 0.100 0.746 0.874 pen05–15 silt A

2016-07-21_RGB_i4 0.139 0.768 0.877 pen05–15 SOC TWI
2019-06-28_MS_i4 0.099 0.849 0.923 TWI A B
2020-07-19_MS_i4 0.080 0.544 0.743 TWI A pen05–15

2020-07-19_RGB_i4 0.062 0.323 0.573 SOC silt TWI

In field l2, the RF model using the MS dataset collected in July 2017 resulted in R2 = 0.62
(Table 4). Other models yielded lower R2 values. Topography and soil clay content were
the most common variables among the three most important predictors that contributed
to the models. Based on these results, the R2 values were lower in fields l1 and l2 in years
when the crop was grass (2017 and 2020, respectively (Tables 2 and 4)). This may have
been due to the better resilience of grass to variations in soil and growing season weather
conditions compared to annual crops.

In field i3, the RF models explained 77–95% (R2 = 0.77–0.95) of the variability in the
drone datasets (Table 3). High R2 values (>0.80) were achieved in all datasets collected
in 2016 and 2020. In the 2019 dataset, the R2 value was the lowest (0.77), but it was
still relatively high. The most important variables that contributed to the models were
penetrometer resistance, especially from topsoil (pen05–15), soil quality indicators B (subsoil
macroporosity) and D (topsoil structure), and soil silt content (Table 4).

In field i4, R2 varied from 0.32 to 0.90. The RF models were able to relatively effectively
explain the variability in all datasets collected during 2016–2019, but in 2020, R2 was lower
(R2 0.32). On the other hand, in 2020, the variability in the field was lower than in other
years based on the CV measurements (Table 4). The topographic variable (TWI), SOC,
penetrometer measurements, and soil biological indicators in the topsoil were the most
common variables to occur among the three most important variables.
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4. Discussion
4.1. Assessment of the Correlations and Multi-Parameter Models

In this study, we evaluated the relationship between drone image data and soil/field
properties, with a focus on how topography and basic soil quality indicators could explain
spatial variability in agricultural fields observed from drone orthomosaics. Firstly, we
presented pixel-wise linear correlations between drone datasets and soil-related param-
eters. Secondly, we trained and tested multi-parameter non-linear RF models, where all
14 available soil/field-related indicators were used as features to explain the multispectral
(NIR band) and RGB (green band) drone datasets.

The Pearson correlation coefficients between individual indicators and drone datasets
were not consistent in the examined fields over the years, i.e., there were no indicators which
strongly correlated with all datasets throughout all seasons and years. The fact that spatial
variation was not similar across all datasets affected the correlations. We calculated the
CVs of drone orthomosaics in the fields and noted that they varied between the four fields;
however, they varied even more within the same field when comparing datasets collected
in different years and at different times within a growing season. Similarly, the temporal
variability in yield maps was found to be greater than their spatial variability, which was
especially attributable to the variation in precipitation between years [48]. Indeed, in
the present study, one likely reason for the variation in correlations was that the studied
crops differed in terms of how they responded to the prevailing weather conditions [49]
depending on soil properties and indicators (Appendix A).

Multi-parameter RF models using 14 soil indicators explained the variability in the
drone data well (R2 > 0.50), for the most part, when annual crops were grown. The crop-
related variation in drone images could also be attributed to aspects other than soil, such
as lodging, mistakes in crop sowing and management, pests and diseases of plants, and
extreme weather conditions (wetness/dryness) (e.g., [8]). The number of soil sampling
points (10–12 per field) was probably too small to capture the field variation as a whole,
even though the samples were interpolated to continuous raster maps for entire fields. In
datasets where the crop was perennial grass, R2 was generally lower. The reason for this
might be that perennial grass stands were already well established and may thereby have
had better resilience to variations in soil and weather conditions than annual crops. On
the other hand, they may have faced more non-soil-related issues in Nordic conditions,
such as winter damage, which may again cause spatial variation in growth and biomass
production. The time window to affect the growth of annual crops is shorter than that for
perennial crops. In high-latitude conditions, the growing season is especially short and
intensive, and therefore annual crops have a low capacity later in the growing season to
compensate for losses caused by even temporary weather constraints [50,51].

Our drone data included 15 RGB camera (Green band) and 12 MS camera (NIR
band) reflectance orthomosaics, of which 10 were collected simultaneously. The single
correlations between RGB and MS orthomosaics and soil indicators from the same dates
were generally at similar levels, but in datasets collected on 2 June 2016 in field i4, the
MS dataset achieved significantly higher correlations; this was when the crop (pea) was
in its early growing stage and did not yet cover much soil, which may explain the result,
because the signal from young crops is stronger in the NIR than in the green band. When
comparing results from multi-parameter models, the MS datasets yielded higher R2 values
in general, but the differences between them were relatively small. This observation is in
line with the literature on crop parameter estimation using RGB and NIR bands; typically,
NIR bands or indices have shown a stronger connection to crop parameters such as biomass,
but RGB data may achieve similar results in remote sensing models using deep learning
techniques [52,53].
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4.2. Explainability of Individual Topography and Soil Indicators in Study Fields Based on Drone
Image Data

We reported the three most important soil/field-related variables that explained the
variability in drone images and observed that they varied between fields and imaging times
during one year, but also between years. However, based on these findings and those of
our correlation analysis, some conclusions about the importance of indicators in studying
fields can be drawn.

TWI appeared to be an important variable for explaining the spatial variability in drone
images in many experiments. In particular, high correlations occurred in field i4, where
TWI was negatively correlated with the multispectral dataset during the rainy growing
season of 2016, when the crop (pea) was suffering from wet soil conditions (Figure A2 in
Appendix A). This is a logical result, since the NIR band corresponds well to chlorophyll
content and reaches low values when vegetation is in distress [54]; this was observed
in our study in valleys, where the TWI reached high values but the vegetation was in
distress. The correlation was strongest (−0.81) during the early growth stages. In 2019, the
correlation was the opposite (positive) when the growing season was dry, and the crop
(spring barley) was suffering from dryness on the upper slope and growing well in valleys
(Figures 2 and 3). In agreement with our results, Da Silva and Silva [55] also reported
strong correlations (correlation coefficients up to 0.95) between maize yield and TWI in
Portugal in a three-year period when water was limited. Furthermore, Kumhalova and
Matějková [56] achieved correlation coefficients of up to 0.63 between winter wheat yields
and TWI in their study fields. In addition, TWI was reported to explain 38%–48% of spatial
variability in yield in a wheat field in the USA [57]. Our results confirmed that TWI can
also be a significant variable for explaining the spatial variability in agricultural fields in
boreal conditions.

Correlations between drone images and soil organic carbon (SOC) content or the
clay/SOC ratio were generally not very high in any dataset, but they were among the three
most important features in the datasets for “l2” and “i4” when using the multiparameter
models. Earlier studies have shown that it is possible to estimate SOC using hyperspectral
remote sensing data (e.g., [58]). However, Žížala et al. [25] achieved an R2 value of 0.72
and a root-mean-square error (RMSE) of 0.31% for SOC using multispectral drone data
and machine learning. It has been shown on a global scale that SOC and yield have a
statistically significant but low correlation [59]. Nonetheless, the variability in SOC in
individual parcels and its relation to the remote sensing data of crop-covered fields and
their yields require further study.

Soil penetrometer resistance, indicating the soil compactness, appeared to be an
important variable for explaining the spatial variability in drone images in many datasets
in experimental field i3. Together with the soil quality assessment indicators “subsoil
macroporosity” and “topsoil structure”, as well as soil texture (silt content), penetrometer
resistance determinations formed the most important features for explaining the variability
in that field. The relationship between soil compactness and remote sensing data, especially
using drones, has not yet been widely studied [23]. Kulkarni et al. [60] nevertheless reported
that the vegetation index (green NDVI) and thickness of the soil hardpan were significantly
correlated in their study area.

We utilized a group of soil indicators from different data sources, which can conse-
quently be referred to as multi-source data. Our aim was to utilize these data to explain
variations in the reflectance values in drone orthomosaic images. Other studies have used
multi-source data, including remote sensing and soil data, to predict yield, as described by
Van Klompenburg et al. [17]. For instance, Nevavuori et al. [61] reported that the RMSE of
yield estimation accuracy was 15% when data from soil sampling, a soil scanner, elevation
maps, and weather stations were added to training data, in addition to drone-based RGB
images (R2 = 0.53). Our study supports the findings of earlier studies which state that
relationships can be found between remote sensing and soil data but, in addition to the
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interaction between soil and crops, image data signals are affected by other aspects such as
farming practices or crops’ reactions to weather conditions [17,23,25].

4.3. Outlook and Concluding Remarks

There are still many opportunities for further improvements in our knowledge of
the relationship between soil indicators and optical image data. Our soil data field sam-
pling was based on 10–12 points per field, which were then interpolated to the whole
field so that we had 797–1778 data points available. It should be noted that interpolated
soil data include uncertainties, which can impact the results. It would be optimal if soil
property determinations included more actual measurement points; therefore, we suggest
that the results of image analyses be connected to continuous soil property determinations
(e.g., using gamma-ray or soil electromagnetic properties (EM)). Our dataset included a
multi-annual time series and varying crops in different growth stages. The crop growth
stage was not observed systematically during the drone imaging process. In future studies,
it will be important to include the phenological stage of crops in the drone image datasets
to increase the comparability of datasets between fields and years. Although drone images
were collected close to solar noon in relatively stable illumination conditions and were
radiometrically processed in order to provide uniform orthomosaics where the variability
in the field was only related to the object itself, varying illumination conditions might have
had minor effects on the results [32,62]. Thus, it is important to perform rigorous radio-
metric processing, which can be supported using accurate, tilt-corrected, drone irradiance
measurements [63,64], to obtain the most accurate measurements.

In the future, the importance of developing deeper knowledge of field parcel character-
istics needs to be emphasized, as such an understanding has been found to play a key role
in farmers’ decision-making, and can even be beneficial in cases of robotics and artificial
intelligence [65]. More precise knowledge provided by drones about field characteristics,
especially regarding variability and its drivers and manageability, can encourage farmers
to perform land-use changes [66,67] and better crop sequencing and to use other measures
to boost the transition towards more resilient and sustainable agricultural systems [68].
Information about soil growth conditions and their variability is also relevant when evalu-
ating the financial value of a field. Significant consequences of uncertainty in the valuation
of fields have been observed; for instance, this uncertainty has limited land consolidation
activities in Finland [69]. Remote sensing data can accurately describe spatial variations
in the field, but a large-scale network of on-farm experiments is necessary to achieve a
comprehensive understanding of the interaction between crop responses (which differ
depending on the species and growing conditions), remote sensing data, and soil/field
quality indicators (Video S1).

Supplementary Materials: Video S1: A seminar presentation: “Remote sensing as a data source for
crop and soil monitoring”, available at https://www.youtube.com/watch?v=U9sPKzC8d1I&t=137s.
Accessed on 24 February 2023.
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Figure A1. Monthly precipitation, provided by the Finnish meteorological Institute (FMI), from the
nearest weather station to research fields l1 and l2 (Oulusalo, Pellonpää). Data were visualized from
the main growing season (April–September) during the years of drone data collection (2017 and 2020).
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