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Abstract: Abiotic stress decreases crop production worldwide. In order to recommend suitable
genotypes for cultivation under water deficit and heat stress conditions, an overall understanding of
the genetic basis and plant responses to these stresses and their interactions with the environment
is required. To achieve these goals, the multitrait genotype-ideotype distance index (MGIDI) was
utilized to recognize abiotic-stress-tolerant wheat genotypes, and the weighted average of absolute
scores (WAASB) index as well as the superiority index, which enables weighting between the mean
performance and stability (WAASBY), were utilized to recognize high-yielding and stable genotypes.
Twenty wheat genotypes were examined to determine the abiotic stress tolerance capacity of the
investigated genotypes under nine test environments (three seasons × three treatments). Abiotic
stress significantly decreased most morpho-physiological and all agronomic traits; however, some
abiotic-stress-tolerant genotypes expressed a slight reduction in the measured traits as compared
with the control group. G04, G12, G13, and G17 were identified as convenient and stable genotypes
using the MGIDI index under all environments. Based on the scores of the genotype index (WAASB),
G01, G05, G12, and G17 were selected as superior genotypes with considerable stability in terms of
the grain yield (GY). G04, G06, G12, and G18 were classified as cluster (I), the productive and stable
genotypes, using the WAASBY superiority index. The combined indices (MGIDI and WAASB) and
(MGIDI and WAASBY) revealed genotypes G12 and G17 and genotypes G04 and G12, respectively,
as the most stable candidates. Therefore, these are considered novel genetic resources for improving
productivity and stabilizing GY in wheat programs under optimal conditions, water deficit, and
heat stress. The genotype G12 was jointly expressed in all three indices. Stability measures using
WAASB may help breeders with decision-making when selecting genotypes and conducting multi-
environment trials. Hence, these methods, if jointly conducted, can serve as a powerful tool to assist
breeders in multi-environment trials.

Keywords: abiotic stress; bread wheat; high-performance; genetic stability; MGIDI index and
Multi-environment trials (METs)

1. Introduction

Agricultural productivity decreases due to many environmental factors, including
desertification, degradation, salinization, land pollution, and a lack of water resources,
threatening sustainable crop production. The risk may surge when multiple stresses coin-
cide, for example, a raised temperature and water shortage [1–3]. For these reasons, with
the continuous increase in the global population, an increase in the production of major
cereals (wheat, rice, and maize) by 2–3% each year is essential to achieve food stability and
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security. Temperature increase and a lack of water resources adversely influence physio-
logical processes, which is directly reflect in the yield. A raised temperature remarkably
reduces the wheat yield by as much as 35% when it is 3–4 ◦C above normal throughout the
grain filling period [2–5]. Moreover, a water shortage reduces growth and yield traits [2,6].
Therefore, breeders and geneticists in wheat breeding programs are required to collabora-
tively increase their productivity and boost wheat tolerance to multiple stresses through the
development of new genotypes with enhanced characteristics, including a high-yielding
performance and tolerance of multiple stresses [3]. Potential genotypes must be, therefore,
evaluated in terms of their agro-physiological traits and genetic parameters, alongside the
use of effective and reliable detection methods for the tolerance of multiple stresses. These
detection approaches need to be cost-effective, easy to measure, and quick. In particular,
inherited heat and drought tolerance-complicated traits should be a focus [2,3,7,8].

Breeders often take into account a series of morpho-physiological traits that, if com-
bined into a single genotype, could result in higher performance levels (referred as ideo-
type). The concept behind the ideotype design is improving and increasing the produc-
tivity and performance of crops with emphasis on the selection of genotypes bearing
multiple traits simultaneously [9–12]. Breeders use linear selection indexes to select high-
performance and superior genotypes [13]. The linear phenotypic selection index [14–17]
is the Smith–Hazel (SH) index [18,19]. The SH index requires the use of the phenotypic
and genotypic (co)variance matrices with an economic weights vector to establish means
of coefficients vector indexing for the optimization of the linkages between phenotypic
values and unknown genetic values. Due to the use of multiple traits, multicolinearity will
certainly exist, leading to poorly conditioned matrices and prejudiced index coefficients, af-
fecting the evaluation of genetic gains. Moreover, breeders often face limitations associated
with the economic value determination of the studied traits and the conversion to workable
economic weightings [10,15]. Thus, the SH index is not solely sufficient for use in plant
breeding trials without the use of other indexes [14,17,20–23]. Consequently, the combina-
tion of multivariate techniques is useful for addressing the multicollinearity in multitrait
indexes [10,24–26], as it offers an index that covers the weaknesses of the SH index and
can be efficiently applied to choose all favorable traits and choose satisfactory gains to
be implemented in breeding and biological experiments [27]. Subsequently, Olivoto and
Nardino [10] proposed a novel multitrait genotype–ideotype distance index (MGIDI) that
focuses on genotype selection and recommendations based on information about multiple
traits. The performance of the MGIDI was assessed via a Monte Carlo simulation where
the powerful traits with desired gains were computed for multiple scenarios involving
different numbers of genotypes and traits, taking into account the nature of the correlations
between traits. The MGIDI index requires a two-way table as input data and enables a row
ranking according to the desired results in the columns. It has the potential to evaluate
more than one dependent trait [28–30] and to assess the strengths and weakness of the
selected genotypes [10].

Even though breeders evaluate a set of morpho-physiological traits in their programs,
grain yield performance is always considered as the principal trait. Since plants respond
to various environmental factors (biotic and/or abiotic), the genotype can perform com-
paratively well in one environment but poorly in another. This performance may differ in
rank across environments, indicating an interaction (GEI) of the qualitative or crossover-
type, meaning that special strategies are required for crop improvement. The performance
constancy (i.e., the genotype performance shows no rank difference across various envi-
ronments) denotes whether the quantitative or noncrossover type is present [3,23,31]. To
understand the GEI, one must search for new ways of using it and apply it to the selection
of high-throughput genotypes, either in specific environments (variety for each region) or
under a broad spectrum of environments (variety for all regions). The GEI impact is very
important for agricultural researchers and breeders. This impact can adversely influence
the correlation between the genotypic and phenotypic value which, in turn, limits the
selection of preferred genotypes across environments [3,32]. Therefore, it is crucial to use
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stability and adaptability analyses to select preferred genotypes for various environments.
Using genotypes in multienvironment trials assists breeders in defining the ideotypes with
significant adaptability to various environments [23].

Achieving genuine outputs for the genetic stability and discriminating and interpreting
the GEI effect in multienvironment trials for the studied genotypes requires valid and
reliable statistical analyses, such as the multivariate analysis, which uses a combination of
multiple characteristics with influential computer modeling [8,23,33]. Thus, plant breeders
must test the relationships among traits influencing the yield to define accurate selection
criteria for use in breeding programs. Older breeders usually try to find models for
interactions, known as stability analyses, such as the joint regression [34]. This method was
frequently applied by Finlay and Wilkinson [35] and Eberhart and Russell [36]. Later, new
methods combining different statistical stability analysis approaches, such as factor analysis
(FA) and one-way analysis of variance (ANOVA), termed FANOVA [37], were proposed.
This method is currently known as the additive main effect and multiplicative interaction
(AMMI) [38]. AMMI analysis is one of the best models to use for the selection of preferred
genotypes in most crops [39–44]. Although AMMI analysis offers many advantages for
interpreting GEI, the main limitation was noted when analyzing the structure of the linear
mixed-effect model (LMM). Hence, a novel model, referred as the weighted average of
absolute scores (WAASB), was proposed by Olivoto et al., [23]. The WAASB results from the
singular value decomposition of the BLUP (best linear unbiased prediction) matrix for GEI
effects generated by an LMM to describe greater ideal genotypes based on a combination
of stability and yield performance [23].

The WAASB model combines the characteristic features of the AMMI and BLUP
models into one unique index, allowing the selection of stable and high-yielding genotypes
of soya bean, barley, maize, and wheat [26,43–46]. The BLUP provides the ability to
improve the predictive accuracy and provide reliable estimates of random effects [23,24,47].
Operationally, BLUP and AMMI seem to be distinct approaches that achieve the same
goal—to discriminate the GEI pattern from the random error—but they are statistically
different. The AMMI analysis keeps a great deal of the GEI pattern in the first interaction
principal component axis (IPCA) caused by singular value decomposition (SVD) of the
nonadditive effects matrix while keeping a great deal of the random error in the IPCAs
of the latter. On the other hand, the BLUP primarily assesses the impacts of the ANOVA
model and thereafter returns weights to these influences and, therefore, can be regarded as
a contraction estimator [48,49].

Multivariate analysis approaches (multicollinearity, factor analysis, MGIDI index,
AMMI, WAASB, and biplots) are frequently utilized for the effective and reliable detection
of variation between genotypes, their interactions with environments, and the genotype
stability in various environments [2,8,10,23,24,50]. Limited studies have evaluated the
impacts of multiple stressors, such as drought and heat, on the mean performance and
stability levels of genotypes using the MGIDI index and the WAASB model. Therefore,
the principal goals of the current study were to (i) assess 20 wheat genotypes under three
(control, drought, and heat) conditions during three consecutive years (the combination of
year and conditions generated 9 environments) and the effects of the GEI; (ii) identify the
stability traits associated with the mean performance; and (iii) identify genotype (s) with
the best performance according to the MGIDI index and the highest stability according to
the WAASB model when grown under the three (control, drought, and heat) conditions.

2. Materials and Methods
2.1. Description of the trial

Six varieties and 14 doubled haploid lines (DHLs) of wheat were cultivated in nine
environments (E), as shown in Table 1. The varieties were obtained from the Agricultural
Research Center, Egypt, and the DHLs were obtained from the Agronomy Department,
Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt, as well as from previ-
ously published data [51] as described in Table S1 and coded in Table S2. The experiments
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were designed in randomized complete blocks (Steel and Torrie, 2000) with three replicates
per environment. The plot area, seedling rate, and type of texture soil were described
in detail in our previous study [3]. The fertilization rate was 31 kg ha−1 P2O5 with the
processing of land for cultivation and 180 kg ha−1 N with irrigation in batches prior to
spike heading. The weather conditions are presented in Table S3.

Table 1. Codes used and description of the test for production environments.

Environment Code Treatments Planting Dates Season

E1 Control [full irrigation (100% field capacity), timely sown] 15 November 2018/19
E2 Drought stress [limited irrigation (33% field capacity), timely sown] 15 November 2018/19
E3 Heat stress [full irrigation (100% field capacity), late sown] 20 December 2018/19
E4 Control [full irrigation (100% field capacity), timely sown] 17 November 2019/20
E5 Drought stress [limited irrigation (33% field capacity), timely sown] 17 November 2019/20
E6 Heat stress [full irrigation (100% field capacity), late sown] 25 December 2019/20
E7 Control [full irrigation (100% field capacity), timely sown] 17 November 2020/21
E8 Drought stress [limited irrigation (33% field capacity), timely sown] 17 November 2020/21
E9 Heat stress [full irrigation (100% field capacity), late sown] 25 December 2020/21

2.2. Measurements of Traits

Twenty traits were measured—twelve morpho-physiological traits (photosynthesis
rate (Pn), stomatal conductance (Gs) transpiration rate (E), canopy temperature (CT),
relative water content (RWC), leaf water content (LWC), flag leaf area (FLA), green leaves
area (GLA), leaf area index (LAI), catalase (CAT), polyphenol oxidase (PPO) and peroxidase
(POD)), and eight agronomic traits (days to heading (DH), days to maturity (DM), grain
filling duration (GFD), number of spikes (NS), plant height (PH) thousand kernel weight
(HKW), number of kernels (NKS), and grain yield (GY)), as described in detail in our
previous studies [3,52].

2.3. Statistical Analyses
2.3.1. Analysis of Variance

The normality of the data was checked to make sure that there were no outliers
and that the data followed a normal distribution according to the Shapiro–Wilk test [53].
The three seasons within the same environment type were shown to be homogeneous by
Bartlett’s test [54]. The data on the 20 studied traits under three environments (seasons ×
genotypes) were analyzed for each treatment group separately.

2.3.2. Linear Mixed Model

The linear mixed model used to calculate the variance components of the studied
traits was

Yijk = µ + Gi + Ej + Rk(j) + GEij + αijk (1)

where Yijk denotes the genotype phenotypic value i for the trait under study in the envi-
ronment j and block k, µ is the overall mean; Gi is the impact of the i

th genotype (i = 1, 2,
. . . , 20); Ej is the influence of the j

th environment (j= 1, 2, . . . , 9); Rk(j) refers to the impact
of the k

th replication (k = 1, 2, 3); GEij denotes interaction impact of ith genotype with the
jth environment; and αijk refers to refers to the residual error, which was assumed to be
normally and independently distributed with a mean of 0 and a variance of σ2 [23]. The
heritability (h2, broad sense) was calculated from this model as

h2 =
(
σ2

g

)
/ (σ2

g +
σ2

g×e

e
+

σ2
re

r× e
) (2)
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where g, g× e, σ2
re, r and e were the genotypic variance; the genotype × environment

variance; the residual variance (error); the number of replicates and the number of environ-
ments, respectively.

2.3.3. Genetic (rg) and Phenotypic (rp) Correlations

The (rp) and (rg) were calculated from Equation (1) as the (co)variance per two traits.
The following formulas were used to calculate the (rp) and (rg):

rp = cov σ2
p/
√
(σ2

px × σ2
py) (3)

rg = cov σ2
g/
√
(σ2

gx × σ2
gy) (4)

where cov σ2
p and cov σ2

g are the phenotypic and genetic (co)variance, respectively and σ2
px

and σ2
py are the phenotypic variances and σ2

gx and σ2
gy are the genetic variances of trait x

and trait y, respectively.

2.3.4. MSTI Analyses

The MGIDI was used to rank the genotypes on the basis of multiple trait values, as
suggested by Olivoto, et al. [55]. For the first stage, each trait (rXij) was rescaled as

rXij=
ηnj −ϕnj

ηoj −ϕoj
×
(
θij − ηoj

)
+ ηnj (5)

where the symbols indicate the following for trait j and genotype i: rXij is the rescaled
two-way table; ηnj is the new maximum value after rescaling; ϕnj is the new minimum
value after rescaling; ηoj is the original maximum value; ϕoj is the original maximum
value; and θij is the original value for the ith genotype. Each column ranged from 0 to
100, considered the desired sense of selection (increase or decrease), and sustained the
correlation structure of the original set of variables. The values obtained after rescaling for
ηnj and ϕnj in a state of positive gains (ϕnj= 0 and ηnj=100) and in a state of positive gains
(ϕnj= 100 and ηnj= 0) were used [55]. The second stage was to compute an exploratory
factor analysis (FA) through rXij to group correlated traits into factors and then estimate
the factorial scores for each row/genotype/treatment. The scores were then obtained from
the data collected for the dimensionality reduction of traits and relationship structure using
the following model:

F = Z(ATR−1)
T

(6)

where the letters indicate the following: F is the g × f matrix with the factorial score; Z is
the g × p matrix with the rescaled means; A is the p × f matrix of canonical loading; R is
the p× p correlation matrix between the traits; g is the number of genotypes; f is the factors
retained; and p is the measured traits. The third stage was to compute an ideal genotype.
For this, a [1 × p] vector was considered to be the ideotype matrix using the Euclidean
distance between the scores of the genotypes, and the ideal genotypes were determined by
the MGIDI index, as shown

MGIDI =
f

∑
j=1

[γij − γj]
0.5 (7)

where the symbols and letters indicate the following: γij (the score of the ith genotype in
the jth factor (i = 1, 2, . . . ,t; j = 1,2, . . . ,f), where t is the number of genotypes; f is the factors;
and γj is the jth score of the ideal genotype. The lowest value of the MGIDI indicates that
the genotype is more ideal (for all of the measured traits). The selection of all traits was
implemented (with a selection intensity of ~20%).
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In the METs, the GY data of the wheat genotypes were subjected to WAASB method,
which combines features of the AMMI and BLUP methods and is computed as proposed
by Olivoto et al. [24]. The WAASB calculation used was

WAASB =
p

∑
n=1
|IPCAng × EPn|/

p

∑
n=1

EPn (8)

where the symbols indicate the following: IPCAgn is the score of genotype g in the nth
interaction principal component axis (IPCA) and EPn is the amount of variance explained
by the nth IPCA. The lowest value of WAASB indicates that the genotype is more stable.
The WAASBY index is a superiority index that allows weighting between genotypes’
performance (GY) and stability (WAASB index) values, as described by the proposed
method presented in [24].

2.4. Statistical Software

All statistical analyses were performed using packages in RStudio, R version 4.2.2 (R
Core Team 2022). The packages used in this study were “metan”, which was used for the
multienvironment trial analysis, as per Olivoto and Lúcio (2020), and “cowplot” for used
for the graphics arrangement.

3. Results
3.1. Variability in Genotypes and Traits

The 20 genotypes responded differently to abiotic stresses (drought and heat) com-
pared to normal conditions (control), and considerable variation in the three seasons was
seen in the control and abiotic stress treatment groups for almost all traits (Table 2). The
genotypes showed significant variation in all traits in the control and abiotic stress treatment
groups. The seasons were associated with highly significant variation in most traits, while
seven traits (FLA, LWC, RWC, POD, PPO, and CAT) varied among the three treatment
groups. Interaction effects (genotypes x seasons) were found to be significant for eight traits
in the three treatment groups, nonsignificant for five traits (DH, Pn, POD, PPO, and CAT),
and varied for seven traits (DM, GFD, LWC, RWC, NG, Gs, and E) across the three treat-
ment groups (Table 2). Figure 1 displays the plotting performance of the genotypes across
the three environments (control, drought, and heat) for 20 traits measured in 20 wheat
genotypes as the overall means of the three seasons. All measured traits significantly
declined due to abiotic stresses compared to in the control group, except for CT, which
increased due to being affected by stress. The performance of the genotypes showed highly
significant variation under the same conditions and varied according to the stress type.
Most traits showed clear differences between the three treatment groups (control, drought,
and heat), while some traits (FLA, Gs, E, POD, PPO, and CAT) showed no clear differences
between the abiotic stresses of drought and heat.

Table 2. Analysis of the variance of the seasons (S), genotypes (G), and their interactions (S × G) for
the 20 studied traits of 20 wheat genotypes measured in three seasons.

Trait Unit
Control Drought Heat

S G S × G S G S × G S G S × G

DH days * *** ns * *** ns * *** ns
MD days * *** ns * *** ns *** *** ***
GFD days * *** ns * *** ns *** *** ***
NS m−2 *** *** *** *** *** *** *** *** ***
PH cm *** *** *** *** *** *** *** *** *

FLA cm2 ** *** * ns *** *** *** *** ***
GLA cm2 ** *** *** *** *** *** *** *** *
LAI *** *** *** *** *** *** *** *** ***
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Table 2. Cont.

Trait Unit
Control Drought Heat

S G S × G S G S × G S G S × G

LWC % *** ** *** *** ** *** ns *** ns
RWC % ns *** *** ** *** *** ** *** ns
NG no./spike *** *** *** *** *** *** ** *** ns

TKW gm *** *** *** *** *** *** *** *** **
CT ◦C *** *** *** ** *** *** *** *** ***
Pn µmol Co2 m−2 s−1 *** *** ns *** *** ns ** *** ns
Gs mol H2O m−2 s−1 *** *** ns *** *** *** * *** ***
E mmol H2O m−2 s−1 *** *** ns *** *** *** *** *** ***

POD U g−1 FW mL−1 ns *** ns * *** ns * *** ns
PPO U g−1 FW mL−1 ns *** ns * *** ns * *** ns
CAT U g−1 FW mL−1 ns *** ns * *** ns * *** ns
GY ton ha−1 *** *** *** *** *** *** *** *** ***

*, **, and *** indicate significance levels at p < 0.05, p < 0.01, p < 0.001, respectively. ns indicates insignificance.
Abbreviations as described in materials and methods
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3.2. Variance Components of Studied Traits

The LR test results exhibited highly significant effects (p < 0.001) for all studied
traits for both genotype and interaction effects, except for the DH trait for the genotype
effect (Table S4). The variance components obtained with the REML were divided into
percentages of their contributions to the phenotypic variation in the studied traits, great
variation between them was shown. The genotypic variance varied from 17.30% for the
LWC to 92.40% for the DH. The G × E interaction varied from 0.07% for the LWC to 47.40%
for the CT, and the residual variance varied from 0.40% for the POD to 52.50% for the
LWC (Table S4 and Figure S1). For the broad-sense heritability (H2), the computations
showed mixed heritability values, which varied from 17.30% for the LWC to 92.40% for the
DH. In contrast, the genotypic accuracy of selection (As) for all traits, which measures the
correlation between expected and observed values, was high (>87.50%). The genotypic CVs
recovered to be higher than the residual CVs for all traits. Consequently, the CVs (g/r) ratio
were greater than 1, except for that of the LWC trait. The genotype–environment correlation
(rge) showed high values (>0.580) for fourteen measured traits. The high proportion of the
genotypic effect in the overwhelming majority of traits indicates that the genotypic effect
plays a significant role in the inheritance of the studied traits.

3.3. Genetic and Phenotypic Correlations between Studied Traits

To identify the traits related to the GY, the genetic (rg) and phenotypic (rp) correlations
between the nineteen traits were estimated with the GY (Table S5 and Figure 2). The results
revealed significant positive correlations with nine traits (in descending order, DM, LAI, NS,
GFD, DH, Pn, NKS, POD, and PH), negative correlations with seven traits ( in ascending
order, E, FLA, CT, Gs, LWC, PPO, and TKW), and three traits were insignificant (GLA,
RWC, CAT). The genetic correlations were close to the phenotypic correlations for most
traits, and no pairwise combination had a different sign (rg and rp). The results indicate
that the CT and LAI traits had the greatest significant negative correlation (rg = −0.719
and rp =−0.704). Additionally, the results indicated that the highest significant positive
correlations were between DH and DM (rg = 0.842 and rp = 0.835), between FLA and
GLA (rg = −0.845 and rp = −0.738), and between E and Gs (rg = 0.902 and rp = 883). This
may indicate that there is multicollinearity between these traits and/or that they could be
combined into co-factors in the factor analysis.

3.4. Selected Genotypes Based on the MSTI
3.4.1. Loadings and Factor Delineation

Six principal components were maintained (Eigenvalue > 1). These explained 88.40%
of the total variation among the traits (Table 3). After the varimax rotation, the commonality
ranged from 0.544 (LWC) to 0.949 (DH) with an average value of 0.844, indicating that a
high percentage of the variability of each variable was explained by these factors. Hence,
the dimensionality of the data could be reduced by maintaining a high interpretive strength.
The 20 studied traits were compiled into six factors (FA), as follows: FA1, the traits LAI,
GLA, PH, and CT; FA2, the traits DH, DM, TKW, LWC, and FLA; FA3, the antioxidant traits
POD, PPO, and CAT; FA4, the traits GY and GFD; FA5, the grain yield-related traits NKS
and NS; and FA6, the plant-leaf-related traits Gs, E, RWC, and Pn.

Table 3. Principal component analysis and factor analysis (factorial loadings obtained using the
varimax rotation and resulting communalities).

Principal Component Analysis (PCA)

PCA PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 PCA8

Eigenvalues 4.83 3.96 2.73 2.40 1.64 1.31 0.82 0.61
Variance (%) 24.10 19.80 13.60 12.00 8.21 6.57 4.09 3.03
Cum. variance (%) 24.10 43.90 57.60 69.60 77.80 84.40 88.40 91.50
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Table 3. Cont.

Principal Component Analysis (PCA)

Factor analysis (FA)

VAR FA1 FA2 FA3 FA4 FA5 FA6 Communality Uniquenesses

LAI −0.904 0.220 0.042 −0.267 −0.061 −0.020 0.943 0.057
GLA −0.837 −0.147 −0.094 0.048 0.282 −0.329 0.920 0.080
PH 0.778 −0.171 0.243 −0.098 0.083 −0.106 0.722 0.278
CT 0.752 −0.010 0.086 0.172 0.212 0.255 0.712 0.288
DH 0.215 −0.899 0.213 −0.155 0.157 −0.006 0.949 0.051
DM 0.235 −0.871 0.013 0.270 0.055 0.227 0.940 0.060
TKW −0.186 −0.824 0.039 0.299 −0.094 0.042 0.815 0.185
LWC 0.050 −0.631 −0.257 −0.083 −0.009 −0.266 0.544 0.456
FLA −0.591 −0.608 −0.104 0.041 0.315 −0.336 0.944 0.056
POD −0.040 0.040 0.889 −0.173 −0.075 0.026 0.830 0.170
PPO 0.200 −0.038 0.844 0.362 −0.077 −0.072 0.895 0.105
CAT 0.370 −0.053 0.728 −0.286 −0.223 0.190 0.838 0.162
GY −0.202 0.392 −0.089 −0.751 0.057 0.171 0.799 0.201
GFD 0.006 0.116 −0.339 0.704 −0.162 0.471 0.873 0.127
NKS −0.032 −0.017 −0.171 −0.216 0.892 0.140 0.892 0.108
NS 0.401 −0.161 −0.192 0.423 0.622 −0.332 0.899 0.101
Gs −0.107 −0.087 −0.024 0.103 0.110 −0.915 0.879 0.121
E −0.149 0.042 0.101 0.025 −0.129 −0.911 0.881 0.119
RWC −0.105 −0.188 −0.315 −0.296 −0.275 −0.722 0.830 0.170
Pn −0.103 0.501 −0.062 0.002 0.269 −0.654 0.766 0.234

values in bold indicate related traits.
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3.4.2. Selected Genotypes and Coincidence Index

Before any traits were removed, the genotypes selected by the MGIDI index were
G17, G04, and G12; those selected by the FAI-BLUP index were G12, G13, and G06; and
those selected by the Smith–Hazel index were G20, G02, and G16 (Figure 3). G13, G04,
and G19 were very close to the cut-off point for index three (the red line that indicates
the number of genotypes selected according to the selection pressure), which indicates
that these genotypes have exciting features. Thus, further attention should be paid to the
investigation of genotypes that are extremely close to the cut-off point. After the MD trait
was removed for multicollinearity, the genotypes selected by the MGIDI index were G17,
G04, and G11; those selected by the FAI-BLUP index were G17, G16, and G04; and those
selected by the Smith–Hazel index were G06, G12, and G08. G17, G13, and G19 were
extremely close to the cut-off point for three indexes. Among the genotypes selected before
and after the DM trait was removed, three genotypes were selected by the MGIDI index,
two genotypes were selected by the FAI-BLUP index, and one genotype was selected by
the Smith–Hazel index. The genotypes G04, G13 and G17 were common to both the MGIDI
and FAI-BLUP indexes before and after removal (Table 4).
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Table 4. Coincidence index (CI) of genotype selection for each pair of indices evaluated.

Index 1 Index 2 CI Genotypes

MGIDI FAI-BLUP 68.8 G04,G12,G13
MGIDI Smith–Hazel −25
MGIDI MGIDI_collinearity 68.8 G17,G04,G13
MGIDI FAI-BLUP_collinearity 68.8 G17,G04,G13
MGIDI Smith–Hazel _collinearity 6.25 G12
FAI-BLUP Smith–Hazel −25
FAI-BLUP MGIDI_collinearity 37.5 G13,G04
FAI-BLUP FAI-BLUP_collinearity 37.5 G13,G04
FAI-BLUP Smith–Hazel _collinearity 37.5 G12,G06
Smith–Hazel MGIDI_collinearity −25
Smith–Hazel FAI-BLUP_collinearity 6.25 G16
Smith–Hazel Smith–Hazel _collinearity 6.25 G19
MGIDI_collinearity FAI-BLUP_collinearity 68.8 G17,G04,G13
MGIDI_collinearity Smith–Hazel _collinearity −25
FAI-BLUP_ collinearity Smith–Hazel _collinearity −25

3.4.3. Predicted Selection Gains

The selection gains (SG) between the three studied indexes before and after removal
of the DM trait revealed that the trait numbers with desired gains were 15, 13, and 12
before removal and 13, 14, and 13 after removal for the MGIDI, FAI-BLUP, and Smith–
Hazel indices, respectively (Table 5). These results suggest that the MGIDI was the most
competent index for selecting genotypes with the desired properties. Compared to the
FAI-BLUP and Smith–Hazel indices, the MGIDI gave further balanced gains for 20 (after
removal) and 19 (before removal) analyzed traits, respectively. At the same time, it provided
higher total gains (77.277% and 62.025% for traits that aimed to increase and −3.390% and
−5.024 for traits that aimed to decrease) before and after the removal of the DM trait
(Table 5).

Table 5. Predicted genetic gains for the MGIDI, FAI-BLUP, and Smith–Hazel indices before and after
the removal of variable collinearity.

Factor Variable Sense
Before Removal After Removal

MGIDI FAI-BLUP Smith–Hazel MGIDI FAI-BLUP Smith–Hazel

FA1 PH decrease 1.580 4.810 −0.074 −2.390 −2.350 4.220
FA1 GLA increase 9.400 8.600 4.850 0.970 3.200 18.700
FA1 LAI increase 2.340 8.930 1.480 −1.740 −2.440 10.100
FA1 CT increase −0.078 −0.213 0.016 −0.006 −0.007 −0.372
FA2 DH decrease −2.200 −1.650 3.540 −2.140 −2.530 0.101
FA2 DM decrease 0.055 0.019 0.569 - - -
FA2 FLA increase 13.500 11.400 −1.410 2.380 9.210 20.400
FA2 LWC increase 0.078 0.205 −0.217 −0.175 0.020 0.143
FA2 TKW increase 1.560 4.070 −6.450 0.585 −0.359 3.740
FA3 POD increase 24.900 12.400 −18.500 36.400 8.730 −15.200
FA3 PPO increase 4.330 −4.110 −9.590 22.500 3.300 −14.000
FA3 CAT increase −7.010 −14.800 −28.400 14.300 −3.690 −19.700
FA4 GFD decrease 1.270 0.908 −0.842 −0.494 1.060 −0.323
FA4 GY increase 0.396 4.790 3.530 6.540 0.031 3.310
FA5 NS decrease −1.190 1.220 −2.860 6.340 −3.830 1.700
FA5 NKS increase 5.500 3.190 8.040 3.570 11.900 0.696
FA6 RWC increase 0.313 0.889 0.092 −2.150 0.478 0.843
FA6 Pn increase 3.920 2.580 5.650 2.360 7.640 −4.260
FA6 Gs increase 7.720 5.770 0.992 1.020 8.380 1.060
FA6 E increase 3.320 2.630 0.674 −1.420 2.990 0.513
Total (Increase) 77.277 66.674 25.325 62.025 55.880 59.606
Total (Decrease) −3.390 −1.650 −3.776 −5.024 −8.710 −0.222
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3.4.4. Strengths and Weaknesses

Figure 4 shows the strengths and weaknesses of selected genotypes, which were
calculated by the factor’s contribution to the MGIDI indices of the four selected genotypes.
The MGIDI was classified into two contributing factors (less and more), where the factors
that contributed more were plotted near and/or inside the center, whereas factors that
contributed less were plotted towards the figure’s edge. FA1 had a higher contribution to
the MGIDI of G17, suggesting that this genotype performs poorly for the PH, GLA, LAI,
and CT traits. On the other hand, FA1 had the smallest contribution to genotypes G04,
G12, and G13, indicating these genotypes were the best-performing among the selected
ones for the FA1 traits. FA2 and FA4 had greater contributions to the MGIDI of G04 and
smaller contributions to genotypes G12, G13, and G17, resulting in these genotypes having
strengths related to FA2 and FA4. In view of the traits of FLA and TKW in FA2 and the GFD
trait in FA4, positive gains are desired, so these genotypes should have (simultaneously)
high values for FLA and TKW, the traits within FA2, and the GFD trait within FA4. In
addition to the DH trait in FA2, these genotypes were shown to have a shorter vegetative
period. The small contributions of FA3 and FA5 to G04 in the MGIDI (Figure 4) suggest
that this genotype has high values for the antioxidant traits (POD, PPO, and CAT) in FA3
and the NS and NKS traits in FA5. In comparison, for G12, G13, and G17, FA3 and FA5
have high contributions. Finally, the small contribution of FA6 to G13 and G17 indicates
that these genotypes have above-average values for RWC, Pn, Gs, and E.
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3.5. Joint Regression Model of the Stability Analysis and Environmental Indices

Regarding Eberhart and Russell’s model, the analysis revealed highly significant differ-
ences through a pooled analysis of variance for the main effects, genotypes, environments,
and interaction effects (Table 6). The mean GY per hectare among the genotypes ranged
from 3.21 (G01) to 6.39 (G04) with an overall mean of 4.53. The joint regression model of the
stability analysis showed that no genotype had bi = 1 and S2di = 0. The genotype G18 had a
bi value of near to one, showing that this genotype produced almost comparable GY values
per hectare under all nine environments (Table 6). Genotypes G05 (µ = 4.84, bi = 1.270 **,
S2di = 0.077 **), G09 (µ = 4.86, bi = 1.420 **, S2di = 0.235 **), G15 (µ = 4.80, bi = 2.340 **,
S2di = 0.187 **) and G19 (µ = 5.39, bi = 2.150 **, S2di = 0.185 **) were observed to be stable
in the control (E1, E4, and E7) environments (Table 6), whereas for genotypes G02 (µ = 4.63,
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bi = 0.792 **, S2di = 0.209 **), G08 (µ = 4.81, bi = 0.718 **, S2di = 0.292 **), G10 (µ = 5.06,
bi = 0.378 **, S2di = 0.133 **), G16 (µ = 4.20, bi = 0.816 **, S2di = 0.140 **), and G20 (µ = 4.76,
bi = 0.249 **, S2di = 0.127 **), high means with lower bi values were observed. The lower bi
values indicate that these genotypes show more resilience to unfavorable (drought (E2, E5,
and E8) and heat (E3, E6, and E9)) environments. The RMSE of the genotypes ranged from
0.11 (G06) to 0.629 (G04), while the R2 values ranged from 0.156 (G20) to 0.983 (G06). The
environment index reveals the appropriateness of an environment in a precise location and
can provide the basis for determining the favorable environment for the expression of the
highest capacity of the genotype. The environmental indices that possessed positive values
point to the favorable environments of the genotypes. As described by the environment
index, E1, E3, and E7 showed the highest GY values and were found to be the most suitable
and productive environments in comparison to the other environments (Table 6).

Table 6. Pooled analysis of variance of the 20 wheat genotypes across nine environmental for the GY
(Eberhart and Russell, 1966 model).

S.O.V Df Mean Sq F Value Pr(>F)

GEN 19 17.6 38.344 0.0000
ENV + (GEN x ENV) 160 1.84 4.009 0.0000
ENV (linear) 1 178 387.800 0.0000
GEN x ENV (linear) 19 2.72 5.926 0.0000
Pooled deviation 140 0.459 10.552 0.0000
Pooled error 342 0.0435

Stability parameters

GEN GY bi s2di RMSE R2

G01 3.213 0.710 *** 0.013ns 0.147 0.885
G02 4.628 0.792 ** 0.209 *** 0.417 0.544
G03 3.980 0.539 *** 0.028 *** 0.181 0.744
G04 6.389 0.923ns 0.494 *** 0.629 0.416
G05 4.842 1.270 *** 0.077 *** 0.267 0.882
G06 4.434 1.460 *** 0.001ns 0.11 0.983
G07 3.900 0.639 *** 0.181 *** 0.39 0.47
G08 4.814 0.718 *** 0.292 *** 0.488 0.417
G09 4.860 1.420 *** 0.235 *** 0.44 0.775
G10 5.057 0.378 *** 0.133 *** 0.339 0.291
G11 3.844 0.399 *** 0.025 *** 0.175 0.633
G12 4.293 1.310 *** 0.002ns 0.115 0.977
G13 4.186 1.320 *** 0.126 *** 0.33 0.841
G14 3.661 0.902ns 0.145 *** 0.353 0.684
G15 4.799 2.340 *** 0.187 *** 0.395 0.92
G16 4.203 0.816 ** 0.140 *** 0.346 0.647
G17 3.347 0.683 *** 0.092 *** 0.287 0.651
G18 5.980 0.984ns 0.079 *** 0.27 0.814
G19 5.393 2.150 *** 0.185 *** 0.394 0.908
G20 4.764 0.249 *** 0.127 *** 0.332 0.156

Environmental indices

ENV E1 E2 E3 E4 E5 E6 E7 E8 E9

Overall mean/ENV. 5.200 3.980 4.568 5.374 4.294 3.760 5.187 4.037 4.064
Index 0.670 −0.550 0.039 0.845 −0.235 −0.769 0.758 −0.393 −0.365

Class Fav # Unfav # fav fav unfav unfav fav unfav unfav

** and *** indicate significance levels at p < 0.01, p < 0.001, respectively. ns indicates insignificance .# fav= favorable
and unfav= unfavorable.

3.6. Stability Indexes Based on a Mixed-Effect Model of the Evaluated Genotypes

The HMGV describes the phenotypic stability of the GY values (Table 7). The highest
values for the genotypes were obtained, in the following order, for G04, G18, G19, G10, and
G20. The HMGV method relies on the prediction of the genetic values of the genotypes
using the phenotypic values, taking into account the harmonic means and environmental
deviation. The RPGV describes the adaptability of the genotypic values and can capitalize
on the genotype response to improvements in the agricultural environment. In our study,
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there was a high level of compatibility in the scores for the RPGV and HMGV, and 12 geno-
types had completely identical scores. The HMRPGV describes the genetic values predicted
with the BLUP method. It combines the RPGV and HMGV methods and the score for 13
genotypes were completely identical. These three methods indicated the superiority of the
G04, G18, G19, and G10 genotypes, which were shown to be broadly stable and adaptable
(Table 6) with identical genotype rankings with the three methods (HMVG, RPGV, and
HMRPGV). The stability of the GY of the examined genotypes was assessed based on the
WAASB scores. Genotype G01 (0.172) was found to be the most stable, followed by G12
(0.184), G05 (0.193), and G17 (0.230), while genotype G19 (0.679) was found to be the most
unstable, followed by G15 (0.647), G18 (0.549), and G08 (0.400) for the GY.

3.7. Understanding the Genotype × Environment Interaction
3.7.1. Biplot Interpretation

Figure 5 provides an overview of the “which-wonwhere” pattern. The genotypes G18
and G4 won in two of the studied environments (E6 and E9) and seven of the studied
environments (E1, E2, E3, E4, E5, E7 and E8), respectively. These genotypes are illustrated
by a line with the formula [y= 5.98 + (−0.21 x)] for G18 and y= 6.39 + (0.45 x) for G04,
where x is the (IPCA1 score) environmental. The left-most score of −1.48 refers to a yield of
6.30 t. ha−1 (for G18), while the rightmost score of 0.768 refers to a yield of 6.73 t.ha−1(for
G4). These two genotypes gave the highest yields and the smallest IPCA1 scores (−0.21 for
G18 and 0.45 for G04, which defines the slope of the line) among the tested genotypes. G05
had the lowest predicted mean (4.84 t.ha−1) but the smallest IPCA1 score (−0.0033), and
its equations was (y= 4.84 + (−0.0033 x)), so it was classified it as the “universal winner”
(Figure 5a).

Figure 5b demonstrates the four quadrants of the genotypes/ environment for com-
prehensive interpretation and a joint evaluation of the performance and stability. The first
quarter included unstable genotypes that significantly contribute to the GEI in environ-
ments with a high discrimination ability. This quadrant did not include any genotypes.
The second quadrant included unstable genotypes that were highly productive. The en-
vironments situated in this quadrant should be a focus, as they have high volumes of the
response variables and present a high discrimination ability for the genotypes. The environ-
ments (E1, E4, and E7) were nonstressed, and the GY value was higher than the grand mean;
however, the discrimination ability of the genotypes was higher in E4 (Figure 5b). The
genotypes G04, G08 G15, and G19 were situated in this quadrant. Although they presented
with GY values that were higher than the grand mean, they presented the highest WAASB
values. Thus, private adaptations (Figure 5a) need to be investigated for these genotypes
within this quadrant. The third quadrant included widely adapted and low-productive
genotypes as a result of declining WAASB values, for which the decline indicates a more
stable genotype performance across the environments. This included the genotypes G01,
G03, G06, G07, G11, G12, G13, G14, G16, and G17. The environment E3, situated in this
quadrant, can be seen as having low values for both its production and discrimination
abilities. The fourth quadrant included broadly adapted genotypes with above-mean
productivity values and lower WAASB values, such as the genotypes G02, G05, G09, G10,
G18, and G20. In our results, only 54.45% of the GEI variance was expounded by IPCA1,
but a closer look at the WAASB values indicated that G01was, in fact, more stable (smaller
WAASB value), possibly due to 45.45% of the variance not being expounded by IPCA1.
We previously showed that G05 had the smallest IPCA1 value, so it was more stable when
using only the first IPCA.



Agronomy 2023, 13, 585 15 of 24

Table 7. Stability indexes based on a mixed-effect model.

Genotypes Y HMGV HMGV_R RPGV RPGV_Y RPGV_R HMRPGV HMRPGV_Y HMRPGV_R WAASB WAASB_R

G01 3.21 3.16 20 0.71 3.21 20 0.708 3.21 20 0.172 1
G02 4.63 4.54 9 1.03 4.64 10 1.02 4.60 9 0.321 10
G03 3.98 3.95 15 0.884 4.00 15 0.881 3.99 15 0.272 8
G04 6.39 6.26 1 1.42 6.42 1 1.40 6.34 1 0.549 18
G05 4.84 4.73 6 1.07 4.83 7 1.06 4.81 5 0.193 3
G06 4.43 4.29 11 0.972 4.40 11 0.968 4.39 11 0.257 6
G07 3.90 3.82 17 0.865 3.92 16 0.855 3.87 16 0.387 16
G08 4.81 4.73 7 1.07 4.84 5 1.05 4.78 7 0.4 17
G09 4.86 4.69 8 1.07 4.84 6 1.06 4.79 6 0.335 12
G10 5.06 5.02 4 1.13 5.11 4 1.12 5.05 4 0.339 13
G11 3.84 3.82 16 0.856 3.88 17 0.851 3.85 17 0.347 14
G12 4.29 4.17 12 0.943 4.27 12 0.94 4.26 12 0.184 2
G13 4.19 4.01 14 0.918 4.16 14 0.907 4.11 14 0.334 11
G14 3.66 3.56 18 0.807 3.65 18 0.8 3.62 18 0.26 7
G15 4.80 4.38 10 1.04 4.71 9 1.00 4.54 10 0.647 19
G16 4.20 4.12 13 0.93 4.21 13 0.923 4.18 13 0.282 9
G17 3.35 3.27 19 0.74 3.35 19 0.734 3.32 19 0.23 4
G18 5.98 5.91 2 1.32 6.00 2 1.32 5.98 2 0.242 5
G19 5.39 5.10 3 1.18 5.33 3 1.16 5.24 3 0.679 20
G20 4.76 4.73 5 1.06 4.82 8 1.05 4.76 8 0.374 15
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3.7.2. Genotype Ranking Depending on the Number of Retained Interaction Principal
Component Axes

The ranks of the genotypes in relation to the stability depending on the number
of IPCA used in the WAASB evaluation are shown in Figure 6. The eight axes were
considered, and it was observed that the genotype ranking was altered depending on
the extent to which IPCAs were used in the WAASB evaluation. This was sharper for
four IPCAs, and genotype groups with similar performance levels and stability were
identified easily by the genotype colors on the left-hand side (Figure 6). The G01, G05,
G06, G03, and G02 genotypes showed the lowest WAASB values within the same cluster
(considering five or more IPCAs), so they were more stable. The most visible change
was in G12 when using IPCA1 in the WAASB estimation. This genotype was considered
the second-most stable, but with more than five IPCAs being used, G12 was the thirtieth
most stable (Figure 7). This shows the benefits of the WAASB index, which has the
ability to compile the differences of all IPCAs to calculate the stability. By reference to
the ASV results, we found significant convergence with the WAASBY results in terms of
the ranking.
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4. Discussion

Abiotic stresses (drought and heat) are the major constraints to agriculture in many
regions, especially in the Arab region. Wheat cultivation under drought and/or heat
shows significant negative effects in terms of most morpho-physiological and agronomical
traits, and this is reflected negatively in the grain yield, especially if these stresses occur
during the critical periods of the plant life cycle. Therefore, the development of cultivars
with high productivity coupled with high stability under varying drought and/or heat
levels is the primary concern of plant breeding scientists and the long-standing goal of
modern breeding programs [3,56]. In the present study, the ANOVA results demonstrated
significant differences in the GE for many traits across different seasons for the three
environments, and the performance of the genotypes was completely different for most
traits but somewhat similar under drought and heat conditions for some other traits
(Table 2). The reduction in yield under exposure to abiotic stresses compared to in the
control group was very obvious for most of the genotypes studied, especially when plants
were grown under heat stress (Figure 1). Many previous studies noted that wheat genotypes
differ significantly in terms of the yield performance under poor stress conditions [3,57,58].
The statistical differences among the evaluated genotypes across the environments (seasons
and growing conditions) provide the possibility of selecting the most appropriate and
distinguished genotypes [57,59]. To understand this GEI complexity, statistical tools should
be used appropriately to identify the most appropriate and stable genotypes under various
abiotic stress conditions [3,56,59].

The variance components and the genetic parameters explained the variation between
the studied traits (Table S4). The percentage of genotypic variance and the G× E interaction
represented nearly 80% of the phenotypic manifestation for all traits (Figure S1), suggesting
that genetic effects are the principal factor [45,60], except in the cases of the LWC and
RWC traits. It is known that trait values are tightly linked to the genotype properties,
and the environment is a limiting factor to high trait values in case of the quantitative
type [3,24,45]. The h2 assessment of the mean produced high values, reflecting a substantial
increase in the genetic variation of the used genotypes, and these results are supported by
an accuracy level of more than 0.87, and the high accuracy allows high predictability of
the genetic value [24,45,60]. The rge provided potential evidence regarding the genotype
performance under cultivation environments that could be used to understand the nature of
the interaction, in which a high value refers to a simple interaction and the opposite is also
true (a low-value adversely affects the selection and ranking of the genotypes) [24,45,60].
In this study, the rge showed high values (>0.580) for fourteen measured traits, indicating
that the genotypic effect played a significant role in the inheritance of traits (Table S4).
Correlation assessments are very important in breeding experiments, since a positive
impact on selection could subsequently be concluded. Furthermore, enhanced outcomes
could be obtained upon the assessment of genetic and phenotypic correlations [10,61,62],
as their high values could reflect a high level of co-heritability, as observed for some of
the traits. Our results revealed significant positive correlations for the GY with nine traits
(Table S5 and Figure S2) ( in descending order, DM, LAI, NS, GFD, DH, Pn, NKS, POD, and
PH), and the genetic correlations were similar to the phenotypic correlations, and both had
the same sign [10,62].

Genotypes grown under varied environments are heterogeneous due to complex
environmental interactions [3,63], so the genotype selection process, which remains stable
across varied environments, is critical [3,43,46]. Breeding experts often try combine the
desirable genotypes’ traits in one new genotype, leading to a higher performance [10,44].
Genotype selection depending on the GY only is not preferred, because it leads to misinter-
pretations and inaccurate results [24,59]. Thus, multivariate techniques were used to assess
the genotypic stability across varied environments and to elucidate the multicollinearity
issues, which frequently occur when interacting with multiple traits [3,10,22,63]. In this
regard, several multivariate analyses (PCA, FA, and selection indices (including Smith [19]
and Hazel [18])) are becoming widely used to assemble the measured traits and select
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the identified genotypes. In the current study, we used the PCA and FA to assemble the
influential measured traits (Table 3), but no preferred genotype was determined. The FA
enabled the reduction of 20 traits to only six variables (factors) that explained 84% of all
studied traits. Moreover, the FA created orthogonal axes among factors, giving rise to trait
scores without multicollinearity. This dimensional reduction supports breeders in the inter-
pretation of results and in their decision making [10,44]. Olivoto and Nardino [10] enabled
the development of a new index that combines all selected traits (MTSI) that favorably
satisfy the plant breeder and achieve the desired goal of identifying stable genotypes with
multiple traits that are suitable for more extensive adaptation by the MGIDI index.

In our study, the MGIDI index was superior to the FAI-BLUP and SH indexes in the
process of selecting traits with intended gains, whether before and/or after removal of
the multicollinearity trait (DM trait) as well as having greater computational efficacy [10].
The main advantage of the MGIDI compared to the SH and FAI-BLUP indexes is that the
sense is identified by the breeder before starting the index computation [10]. Correlated
data are abundant (high correlation) in breeding experiments, which negatively affects the
selection success, especially when using the SH index, which often has a multicollinearity
issue [61,64,65]. We observed (before the removal of the multicollinearity trait) that the
SH with high collinearity for the DM trait offered undesirable gains for 8 of the 20 studied
traits, and after removal (DM trait), only six of the 19 traits had undesirable gains (Table 3).
In contrast, MGIDI index takes multicollinearity in mind, offering a high success rate in
selecting traits with desirable gains, and determining the strengths and weakness of the
genotypes [10]. Accordingly, when the 20 wheat genotypes were ranked based on the
MSTI (Figure 3a), the genotypes G17, G04, and G12 were selected as stable genotypes
under the abiotic stress conditions (drought and heat) and growing seasons (in total, nine
environments). Additionally, genotype G13 was very close to the cut-off point, indicating
that this genotype can display intriguing features. Strong interest in genotypes that are close
to the cut-off point is crucial [10,44,63]. From a comprehensive analysis of the results, we
found that four physiological traits (GLA, LAI, FLA, and Pn) and three agronomical traits
(DH, TKW and NKS) combined a high level of broad-sense heritability, high-performance
in the FA, and desirable gains with the MGIDI index, signifying that they deserve attention
in future programs to examine to stable genotypes in the early phases. Olivoto and
Nardino [10], Benakanahalli et al. [63], and Pour-Aboughadarehet al., [44] used the MGIDI
index to identify ideal genotypes; it is anticipated that this index will become widely used
to investigate plant crops.

The degree of the MGIDI index described by each factor is an essential tool to de-
termine the identity of selected genotypes in terms of their strengths and weaknesses, as
shown in Figure 4. It can be described as effective, straightforward, and objective [55].
From the breeders’ opinion, this graph allows the selected genotypes with one trait and/or
more traits requiring improvement to be identified. The MGIDI classifies the contributing
factors (less and more) into factors that contribute more (plotted close to or at the center),
or less (plotted towards the figure’s edge). These contributions can be used to select the
donors’ parents in future crossbreeding programs. For example, in our future study, these
genotypes G04 and G17 are expected to crossbreed with the aim of obtaining a new recom-
bination by combining all traits into an ideotype. G04 gives the traits of DH, DM, FLA,
LWC, and TKW from FA2; GFD, and GY from FA4; and RWC, Pn, Gs, and E from FA6, and
G17 gives the traits of PH, GLA, LAI, and CT from FA1; POD, PPO, and CAT from FA3;
and NKS and NS from FA5. If this goal is achieved, the breeder can obtain a new ideotype.
The adoption of the MGIDI index in stability evaluation studies can lead to the reduction
of redundant calculations and allow better strategic decisions to be made; thus, it will be
easier to make recommendations for superior crop cultivars [10,63].

Because the major purpose of breeding programs is to ensure genetic stability and
stabilize the yield in various environments, we tested 20 wheat genotypes across nine
environments to test their adaptability in the target environments. The pooled analysis
of variance for the GY stability trait, as per Eberhart and Russell [36], showed that the
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variance was significant for both the main effects, genotype and environment, and the
interaction effect, indicating that the performance of the genotype varied among environ-
ments. Many other researchers have reached the same result [3,44,46,66–68]. In this study,
the two genotypes G06 and G12 had regression coefficients of >1.0 and were observed
to be stable in favorable environments. According to the E-R model, the genotypes with
a slope of >1.0 with a high mean and insignificant S2di are suitable for use in favorable
environments (Table 6), and those with a slope of <1.0 are suitable for use in unfavorable en-
vironments [46,69,70]. Notably, there were no stable genotypes (bi = 1 and S2di = 0.00), but
the G18 genotype was almost stable. Moreover, genotype G01 was determined to be suit-
able for unfavorable environments [71]. The novel WAASB model explains the GEI, which
combines the AMMI and BLUP models into a unique index and is used for the selection of
genotypes with simultaneous high performance and stability characteristics [23,24,44,45].
The WAASB quantifies the stability of genotypes by taking into account all IPCAs from
the singular value decomposition (SVD) of the matrix of GEI effects resulting from a linear
mixed-effect model [24]. Our findings indicate that the minimum WAASB values were
obtained for G01, G12, G05, and G17, but these values were not identical to the HMVG,
RPGV, or HMRPGV scores (Table 7).

In order to achieve more robust stability and productively results, a biplot depending
on the WAASB and GY values was provided (Figure 5). The principal advantage of the
WAASB biplot over the AMMI biplot is that all IPCA axes are usable, hence allowing the GEI
patterns not maintained in IPCA1 to be taken into account in the genotype ranking [24,44].
Additionally, the WAASB is dependent on absolute deviations. This is the opposite of
the ASV, which is dependent on squared deviations, reducing the number of outliers.
The WAASB gives more reliable results due to the smaller contribution of the obtained
deviations to the last axes [24]. The WAASB × GY biplot (Figure 5) allows a combined
explanation of the stability and productively in a two-dimensional plot, taking into account
all of the IPCAs of the model (Figure 6). This may be a promising way to determine high-
yielding genotypes and to adapt genotypes in future studies. In recent years, the AMMI1
biplot (as ASV) has been used most often to quantify the stability [24,72,73]. However,
it was found to be unsuitable when one or even two IPCAs are used compared to the
WAASB (IPCAs are used), unless the scores are very low for the genotype in the first
two IPCAs. Olivoto et al. [24] showed a similar result for the G2 genotype. Previously
weighting between the mean performance and stability with the WAASBY was rarely used
due to the difficulty associated with weighting between the mean performance and stability
(Yan and Kang, 2003). In comparison, this method now appears to be promising [24].
The WAASBY analysis was found to be a beneficial contemporaneous selection index
for use in outlook studies in the MET. This is very important because, depending on the
breeding program making recommendations on the genotype, the breeder may want to
give preference to genotype productivity at the expense of stability or vice versa. Thus,
the breeders should make use of Figure 7 when making recommendations and decisions
about the selected genotype in addition to identifying the genotype group that is close to
the mean performance and stability. Given the increasing demand for a greater GY due
to the steady increase in the population, coupled with severe climate changes, obtaining
desirable genotypes with high productivity and stability under environmental stresses is
considered a perfect solution [3,44,74].

5. Conclusions

Information about the variation in morpho-physiological and agronomic traits is
critical for determining the scale of abiotic stress tolerance in traits. Many plants showed
genetic variability among the wheat genotypes used under water deficit and heat stress
conditions. G04, G12, G13, and G17 were selected among the 20 genotypes as convenient
and stable genotypes using the MGIDI index under all environments. By using MET
trials to examine the yield performance, the WAASB index selected the genotypes G01,
G05, G12, and G17 and the WAASBY index selected the genotypes G01, G05, G12, and
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G17 as the superior genotypes with the greatest stability in terms of the GY. These can
be recommended for cultivation under water deficit and heat stress conditions. The
combination of indices (MGIDI and WAASB) and (MGIDI and WAASBY) identified the
genotypes G12 and G17 and G04 and G12, respectively, as the most stable candidates.
Therefore, these are considered to be novel genetic resources for improving the productivity
and stabilizing the GY in wheat programs under optimal conditions and water deficit and
heat stress conditions. The genotype G12 was jointly expressed in all three indices. These
genotypes can be recommended as new genetic resources for improving and stabilizing
the GY in wheat programs under optimal, water deficit, and heat stress conditions. Hence,
these methods, if jointly used can serve as a powerful tool to assist breeders in MET.
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Details of genotype codes and names of 20 bread wheat genotypes (6 cultivars and 14 doubled haploid
lines (DHLs)) used in this study; Table S3. Monthly agro-climatological data at the experimental
location during the growing seasons.; Table S4. Deviance analysis, estimated variance components
and genetic parameters for grain yield of 20 wheat genotypes evaluated in nine environments.;
Table S5. Phenotypic (upper diagonal) and genotpic (below diagonal) correlations among 20 studied
traits obtained from nine environments (n = 180). Figure S1. Estimated variance components for
20 studied traits for 20 wheat genotypes in nine environments.
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