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Abstract: Soybeans (Glycine max (L.) Merr.), a popular food resource worldwide, have various uses
throughout the industry, from everyday foods and health functional foods to cosmetics. Soybeans
are vulnerable to pests such as stink bugs, beetles, mites, and moths, which reduce yields. Riptortus
pedestris (R. pedestris) has been reported to cause damage to pods and leaves throughout the soybean
growing season. In this study, an experiment was conducted to detect R. pedestris according to three
different environmental conditions (pod filling stage, maturity stage, artificial cage) by developing
a surveillance platform based on an unmanned ground vehicle (UGV) GoPro CAM. Deep learning
technology (MRCNN, YOLOv3, Detectron2)-based models used in this experiment can be quickly
challenged (i.e., built with lightweight parameter) immediately through a web application. The
image dataset was distributed by random selection for training, validation, and testing and then
preprocessed by labeling the image for annotation. The deep learning model localized and classified
the R. pedestris individuals through a bounding box and masking in the image data. The model
achieved high performances, at 0.952, 0.716, and 0.873, respectively, represented through the calcu-
lated means of average precision (mAP) value. The manufactured model will enable the identification
of R. pedestris in the field and can be an effective tool for insect forecasting in the early stage of pest
outbreaks in crop production.

Keywords: soybeans; Riptortus pedestris; insect pest management; deep learning technology;
web application

1. Introduction

Soybean (Glycine max (L.) Merr.), a popular food resource worldwide, is used in various
ways throughout the industry. In recent years, as the value of the valuable components
in soybeans has emerged, their applications have become diverse, including in health
supplements and cosmetics. Therefore, protecting soybean yields from climate change
and pest infestations has become a key concern for breeders. Despite research by breeders
trying to increase the productivity of soybeans, they are vulnerable to insect pests such as
stink bugs, scarabs, mites, and moths, which reduce yields. Among the various pests that
inhibit productivity, Riptortus pedestris (R. pedestris) has been reported to damage soybean
pods throughout their growth period, excluding the flowering period [1].

R. pedestris belongs to the Alydidae family [2] and harms many crops worldwide [2].
In South Korea, there are records of five genera and six species [3] of this family, and there
are over 50 genera and 200 species evenly distributed worldwide between subtropical
and tropical regions [4]. It was first named Gerris pedestris Fabricius in 1775. After 1873,
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it was called R. clavatus Stal, and in 2005, Kikuhara Sunomyn renamed R. clavatus as
R. pedestris [2]. Pests that feed on soybean include R. pedestris, Halyomorpha halys, Piezodorus,
Chinavia hilaris, Cletus schmidti Kiritshenko, Homoeocerus dilatatus, Dolycoris baccarum, etc.
Among them, R. pedestris is recorded as the most common and most damaging species [3,5].
In South Korea, the density of both nymph and adult insects has increased as a major pest
that directly causes a decrease in soybean yield [3,6]. It has been shown that F1 generation
occurs between early July and late August, with activity starting at the end of March after
wintering and the spawning season starting in early May [7]. R. pedestris egg counts and
lifespans vary depending on the number of soybean pods used as the primary food source.
This suggests that soybean feeding significantly impacts the lifecycle of R. pedestris [2,8].

R. pedestris is estimated to occur three times yearly in Korea [2]. It overwintered within
weeds or surrounding plants, and the dormant stage-induced critical day length was 13.5 h
at 30–30 ◦C based on a latitude of 35◦. The dormant stage-caused critical day length was
reported to be between 14–15 h in the relatively high latitude of 39.7◦ [2,9]. It was reported
that the long-day condition must be satisfied for the end of dormancy and that dormancy was
terminated when females were exposed to 14 days or more in the high-temperature long-day
condition of 25 ◦C. After the end of dormancy, adults are observed among winter crops in the
spring. These units of insects are known to survive by feeding on other legumes until insects
emerge in soybean fields [6]. Mating was performed at 15–20 day intervals under 25 ◦C, and
the average development period from the egg to the fifth stage of nymph was 34 days [2].

The pests inflict intense damage in the R3 stage, giving rise to many plate-shaped
pods, deformed seeds, and causing a decrease in the soybean yield [6]. After soybeans
are damaged by R. pedestris, the leaves and stems appear to weaken, their transition to
the reproductive growth stage is inhibited, and the contents of fat and carbohydrates in
the damaged seeds tend to decrease. In particular, in the case of Myungjunamulkong, the
germination rate fell to 2% when the area damaged by R. pedestris was more than 50% [2].
Pest control treatment usually begins after R. pedestris and is investigated visually in a
soybean field. By this time, the insect pests have already spread across the area, causing
damage to pods and immature seeds.

As a control method, researchers have employed diflubenzuron [10], a chitin biosyn-
thesis inhibitor, an inhibitor of spawning and hatching, collective pheromone traps [2,11],
natural enemies [2], manned crops [2], and eco-friendly agricultural materials [6]. Farmers
typically use pesticides for pest control. However, this treatment is less likely to be effective
because R. pedestris has high mobility. Furthermore, since R. pedestris has a symbiotic rela-
tionship with bacteria that degrade the components of pesticides, spraying the pesticides
continuously may cause the emergence of resistant species [6,12]. In addition, it takes time
and labor to control pests once they are prevalent in a soybean field. Therefore, forecasting
is essential to achieving the two objectives of decreasing the number of R. pedestris and
preventing soybean yield losses.

Traditional methods of R. pedestris prediction include the flushing method and the
beating method. The flushing method examines the distribution of R. pedestris in flight by
hitting a leaf with a stick. Moreover, the beating method involves placing a cloth or sticky
plate of a specific size on the ground to investigate falling insects hitting a plant [2,13].
However, the distribution of R. pedestris cannot be investigated accurately with the flush-
ing and beating methods. As an extension of the classic forecasting method, the mask
region-based convolutional neural networks (MRCNN), YOLOv3, and Detectron2 with the
R. pedestris detection platform based on deep learning can be used in this experiment [14–17].
An unmanned ground vehicle (UGV) with a portable camera can automatically collect
images of pests from soybean fields. Deep learning algorithms can convert the image of
pests on leaves and stems into the number of pests. The reporting of pests numbers can
be an early indicator of pest emergence and a starting point for developing a pest control
strategy together with UGV. A soybean pest forecasting program can detect pests even in
areas that are difficult for people to access, enabling farmers to increase yield.
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In recent years, deep learning has been a technology that has made significant progress
in artificial intelligence (AI) and machine learning. In agriculture, studies on technologies
such as the Agric-robot, Agric-sensor, Agric-app, GPS Farm monitoring system, etc., are
being conducted [18]. In the context of pests, deep learning enables the classification and
localization of multi-resolution pest images. In the case of wheat, wheat mites scattered on
leaves were placed in bounding boxes to mark their location, and their distribution was
determined by annotation treatment [19]. In addition, deep learning applied to Cryptoleste
pusillus (S.), Sitophilus oryzae (L.), Oryzaephilus surinamensis (L.), Tribolium confusum (Jaquelin
Du Val), Rhizopertha dominica (F.), and Lasioderma serricorne (F.) predicted rice pests scattered
among stored grains [20]. AlexNet, GoogleNET, and SqueezeNet were used in a recent
deep learning-based pest detection study. Deep learning training and inference of AI were
implemented using image data from food crops such as rice, corn, wheat, beet, alfalfa,
Vitis, citrus, and mango, which are host plants for pests such as Xylotrechus, Ampelophaga,
and Cicadellidae [21]. For the detection and diagnosis of oilseed rape insect pests, a pest
management platform was developed through a real-time diagnosis application based on
deep learning. This management platform also performed the real-time detection of pest
insects such as Athalia rosae japanensis, Creatonotus transiens, and Entomoscelis adonidis using
Faster RCNN, RFCN, and SSD [22,23]. Object detection performance for scabs and rust
occurring in apple leaves based on YOLOv3, YOLOv4, and the proposed model has been
reported [24]. Performance of fine-grain object detection based on YOLOv4, a proposed
model, and research on performance improvement, including performance verification,
network, and parameter modification have also been undertaken [25]. Another study
has researched real-time framework detection analysis for a commercial orchards canopy
condition based on Dense-Net backbone with YOLOv4 [26]. Research of wildlife object
detection to prevent biodiversity loss, ecosystem damage, and poaching using the proposed
WilDect-YOLO framework has also been undertaken [27].

Object detection models have challenging problems detecting low-pixel targets and
many objects are not distinguishable from the background. In addition, many object detec-
tion studies were mainly optimized for common objects such as a person, car, dog, and cat of
MS COCO and PASCAL VOC datasets. Therefore, a study provided an improved algorithm
that can effectively increase the accuracy of small target detection based on YOLOv3 [28]. A
study on detecting small-pixel objects by increasing a convolution operation based on the
YOLOv3 model and Unmanned aerial vehicle (UAV) has also been undertaken [29]. For
the YOLOv5 research, for one of the state-of-art object detection model, high-quality aerial
images were collected to improve the difficulty of detecting small objects in aerial images,
and performance was improved through manipulated layers [30]. Since R. pedestris, the
target object of this study, occupies a small volume of pixels and is difficult to distinguish
from background information depending on environmental conditions, object detection is
achieved through high-quality data and appropriate architecture proposals.

In this study, the insect image data from the soybean field were used as the training
and testing sets in MRCNN, YOLOv3, and Detectron2. There are four RCNN-type series
models of deep learning-based image detection (RCNN, Fast RCNN, Faster RCNN, and
MRCNN). The first three CNNs are models for object detection only, but MRCNN improves
upon Faster RCNN and adds object detection and instance segmentation. In addition,
MRCNN is a model that improves visibility by including a mask on the bounding box
of each object detected by Faster RCNN [31]. In this experiment, R. pedestris image data
collection, annotation processing, and weight training were required in training the AI
model. After annotating and learning, we proceeded with verification and confirmation.
The objective of the present study was to build up an early detection platform for R. pedestris
that can appear during the soybeans growing season based on deep learning and object
detection tools.
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2. Materials and Methods
2.1. Planting and Management for the Field Experiment

The experiment was conducted in the experimental field of Pusan National University
(PNU), Miryang, South Korea, on 23 June 2021. Daewonkong, a prominent domestic cultivar
for soybean paste and tofu, was planted at a planting density of 0.8 × 0.2 m, with a total
area of 518.4 m2 (43.2 × 12.0 m). A drip irrigation system and a soil moisture sensor for
each block (JnP, Seoul, South Korea) were used to supply adequate and sufficient moisture
for crops [32]. R. pedestris image data were obtained using a GoPro camera between 10 am
and 6 pm when R. pedestris is most active throughout its entire growth period except the
flowering stage [7].

2.2. Video Recording Device for Data Accumulation

The action camera used in the experiment was a GoPro Hero 8 Black (GoPro Inc.,
3025 Clearview Way, San Mateo, CA 94402, USA). The Hyper-Smooth 2.0+ Boost function
automatically corrects any distortion of the image that may occur owing to the curvature of
the ground or conditions in the field. The image resolution was set to FOV with a linear
digital lens and time-lapse images were taken at 0.5-s intervals. The time-lapse conditions
were zoom—1.0×, exposure value—+0.5, white balance—auto, ISO min—400, and ISO
max—1600. Video quality was supported up to 1080, 2.7K, 4K, 1440 (4:3), 2.7K (4:3), and 4K
(4:3), and FPS up to 24, 30, 60, 120, and 240. In addition to video, there are functions, such
as Slow Motioning and Time-Lapse, that can be used to compose time-series image data.
The camera was attached to the UGV and image data were recorded at an average distance
of 40 cm between the camera and the plant.

2.3. Unmanned Ground Vehicle

The UGV used in this experiment was the Devastator Tank Mobile Platform (DFrobot Inc.,
Shanghai, Room 501, Building 9, No 498 Guoshoujin Road, Pudong, Shanghai 201203, China)
and the MZ Large Remote-Control Car (MZ-model Inc., Neiyang Industrial Area, Zhulin, Lian
Shang Town, Chenghai District, Shantou City, Guangdong 515000, China). The Devastator
Tank Mobile Robot (DMR) is a robot platform using Raspberry pi 3 B+ implemented as a
Python code-based project. The DMR runs at 133 RPM at a rated voltage of 6V. Its assembled
dimensions are (L × W × H): 225 × 220 × 180 mm/8.86 × 8.66 × 4.25 inches, and the body
is made of metal. Caterpillar tracks are attached to the wheel. Its platform is based on coding
tools such as Raspberry pi and Romeo All-in-one, and various sensors, such as a gyro sensor,
ultrasonic sensor, GPS sensor, infrared sensor, etc., can be used. The Mpotow Large Remote-
Control Car (MRC) is a rock crawling climbing RC (Radio Control) car made of ABS plastic +
alloy material. The controller is connected at 2.4 GHz, and the drive type is a 6WD model.
It uses a 9.6V 1000 mAh Ni-cd battery and the maximum speed is 140 m/min. The control
distance is 35–50 m and the assembled dimensions (L × W × H) are 48.6 × 30.6 × 22.5 cm.
DMR is a small-sized self-driving unit, and MRC is a medium-sized remote-control unit. Each
unit can take a video of plant lines for 36 m and 144 m lengths per minute, respectively. If the
planting interval is 0.2 m, each unit can record a number of images, at 180 and 720 objects of
plants per minute, respectively.

2.4. Image-Based Soybean Insect Pest Recognition

In the MRCNN model [15], the time-lapse image data were used as training and test
sets. Our method used the image data from the pod-filling stages (R1 to R6) period as a
training set. The test set consisted of the pod-filling stages dataset, the maturity stages
(R7 to R9) dataset, and the laboratory dataset. The pod-filling stages image data used as a
test set were collected under the same conditions as the input data and the maturity stages
image data were collected when the soybean leaves showed a yellow color after R6. The
laboratory condition image data were collected in the environment set up for rearing insect
pests, which was artificially created inside the laboratory.
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2.5. Object Detection Model

MRCNN has a structure that adds a classification branch to predict the class of objects
obtained from the RPN of the Faster RCNN and a mask branch to predict segmentation
masks parallel to the bounding box regression branch (Figure 1). The number of images
used for AI training is 2 per GPU and the GPU used in this experiment is one unit of
NVIDIA GeForce RTX 3090. The project is implemented in a python 3.6 environment with
Tensorflow 1.14.0 and Keras 2.2.5. During object detection via AI learning, the region of
interest (ROI) is simplified through the refinement process and pooled through the non-
maximum suppression (NMS) algorithm (Figure 2). The MRCNN model configurations
consist of NMS: 0.7; image size: 1024, 1024, 3; number of ROIs per image: 128; ROI positive
ratio: 0.33; detection max instances: 100; detection threshold: 0.3; learning momentum: 0.9;
learning rate: 0.002; mask pool size: 14; RoI positive ratio: 0.33; RPN train anchors per
image: 256; validation steps: 50; train ROIs per image: 128, respectively. The backbone of
this model consists of backbone strides based on resnet101: 4, 8, 16, 32, 64, and top-down
layers of 256 size were used to build the feature pyramid. The Keras model summary
consists of total params: 64,158,584, trainable params: 64,047,096, and non-trainable params:
111,488, respectively.
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Figure 1. Mask RCNN architecture. An unmanned ground vehicle (UGV) was used to detect the
distribution and pattern of R. pedestris in the field. To collect image samples of R. pedestris, the UGV
performed low-floor photography. Pests can be detected as a result of artificial intelligence learning
through convolutional neural networks in apps and computer devices using the collected data.

YOLOv3 consists of a single neural network similar to the human visual system and is
a model that proceeds with the bounding box and classification simultaneously [16,33,34].
In this model, training and testing are run by a GPU using RTX 3090. The training pa-
rameters summary includes image size: 640 × 640, batch size: 16, epoch number: 500,
learning rate: 1 × 10−3, optimizer: Stochastic Gradient Descent (SGD), image resize: 480,
IoU threshold: 0.2, weight decay: 0.00005, momentum: 0.9, filter: 1024, output channel:
125, respectively (Figure 3).
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Figure 3. YOLOv3 architecture. The architecture of the YOLOv3 model using DarkNet53-based
convolutional backbone network. The convolutions, skip connections, and 3 prediction heads enable
YOLOv3 to process images at a different spatial compression.

Detetron2 is an open-source project of Facebook AI Research (FACE) [17]. A training
loop is learned with a PyTorch engine. This includes DensePose, feature pyramid networks
(FPN), and numerical variations on the Pioneering MRCNN model families, which were
known using FPN models in this research (Figure 4). The training parameters summary
includes min-size of train: 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800; min-size
of test: 800; backbone network: resnet101, anchor size: 32, 64, 128, 256, 512; number of
convolutional networks: 4; batch size: 16; steps: 12,000, 16,000; max iteration: 18,000,
respectively.
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Figure 4. Detectron2 architecture. Detectron2 consists of a Feature Pyramid Network (FPN), Region
Proposal Network, RoI Heads, and RoI pooler. Extracts feature maps from input image at different
scales and detect object regions from the multi-scale features.

All three models were trained using a Pascal VOC dataset. To assess the performance
of the models, the means of average precision (mAP) value was estimated as an indicator of
MRCNN, YOLOv3, and Detectron2 [35]. The object detection performance was evaluated
using the precision-recall curve and average precision (AP). In the case of AP, a representa-
tive performance discriminator produces a monotonic reduction graph of precision-recall
(PR) curves in a more advanced way than the PR curve evaluation method. The area of
the graph’s x- and y-axes is AP. The mAP was measured via a Pascal VOC mAP (AP50), a
performance indicator with an intersection over union (IoU) of 0.5. The IoU refers to the
overlap area of the boundary box predicted by the object detection model and the boundary
box of the training data divided by the value of the total area. The mAP was calculated for
model performance tests with variations of environmental conditions and benchmarking
study of suggested models.

IoU =
Area o f Overlap
Area o f Union

(1)

In this experiment, the valuation consists of the confidence score, the classified ob-
jects/identified objects index (C/I), and the mAP. A confidence score indicates whether
the AI accurately derives the target output from the convolutional network. It is calculated
as a percentage at the top of the bounding box. The confidence score in the MRCNN
configuration was measured in the spectrum with min: 0.5 to max: 1.0. C/I is a value
derived by analyzing the precision and recall of objects in each image detected for object
detection prediction via the MRCNN model. C/I is calculated as an index indicating the
ratio of classified objects (predicted results of the insect pest) to identified objects (insect
pest of input raw image data).

C/I =
Classi f ied object
Identi f ied object

(2)

2.6. Web Application for Portable Object Detection

A portable application of a deep learning model was implemented based on the
Flask web framework and used to perform R. pedestris detection through a portable deep
learning model. Flask is a Python-based microweb framework and uses the werkzeug
WSGI (Web Server Gateway Interface) toolkit and the Jinja2 template engine [36]. Web
application deployment is built using Nginx, Gunicorn, and three functions added to the



Agronomy 2023, 13, 477 8 of 16

web application: image uploading, model activation, and result shows [37,38]. When the
client uploads an image file to the web page, the data go through Nginx and Gunicorn to
reach the Flask model, and the deep learning model completes R. pedestris detection. After
that, the ID, file name, file path, image binary data, and the number of detected R. pedestris
objects are stored in the Sqlite3 database, while the file name and the number of detected
stink bugs are placed into a CSV file and provided to the client.

3. Results
3.1. Dataset

Data were collected in the field and under laboratory conditions. The data from the field
condition using the UGV were acquired before and after the stage of soybean physiological
maturity. Our data consisted of the pod filling stages set, the maturity stages set, and the
laboratory set. In the field, an autonomous UGV was driven repeatedly between plants in
a specific field block, collecting field image data in time series using the time-lapse function
of the camera attached to the UGV. We collected about 5000 image data and applied them
to filtering and pre-processing to remove distorted and defective data. In the artificially
created cage in the laboratory, time-lapse photography could be performed throughout the
growth of R. pedestris. The collected total laboratory image data consisted of 15,000 pieces, and
after filtering, 500 pest images were randomly selected for AI learning. For pest image data,
450 training sets and 50 test/validation sets were trained ten times in deep learning.

3.2. Evaluation of Loss Score for Iterations in AI Learning

After training the MRCNN model on the R. pedestris dataset, there were 150 training
iterations; the max and min loss scores were 1.377 and 0.124, respectively. The total learning
time was 15 h, 6 min, and 13 s. The value of the loss function gradually decreased as the
iteration progressed. The max degree of the slope in the loss graph was 1.599 and the min
degree was 0.356. The line smooth declined sharply between epochs 1 and 10, the initial
stage of AI learning. After epoch 10, the slope of the loss graph curve became gentle, as the
value of line smooth was low here (Figure 5).
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Figure 5. Loss graph for iterations in object detection. The loss score corresponds to the error rate of
the neural network. If the loss score decreases as the iteration increases in the training process of the
deep learning model, it means that the object detection performance of the model is improved. The
slope of the loss score for iteration on the x-axis is defined as a line smooth value.

3.3. Object Detection Output of R. pedestris

The input image data, comprising images of insect pests collected and randomly
selected in the PNU field, were confirmed via object detection and image segmentation
after passing through the convolution network, as shown in Figure 3. As a result, a score
calculated by AI was assigned to each object and each segmented insect object was classified
with a different color mask (Figures 6 and 7).
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Figure 7. Detection feature map under each condition. As a result of detection, a mask and bounding
box are applied to the objects one wants to be detected. When several objects are detected in one
sample image, they are distinguished by different colors. (a) R. pedestris object detection feature map
derived using samples from pod filling stages (R1 to R6) of soybean growth; (b) feature map using
samples from maturity stages (R7 to R9); (c) the results from an artificial cage in the laboratory.

The confidence scores for the pod-filling stages, the maturity stages, and laboratory data
were 0.998, 0.958, and 0.971, respectively. The C/I value for the pod-filling stages was the
highest (0.994), followed by laboratory conditions (0.842), and the maturity stages (0.794). The
mAP values for the pod-filling stages, the maturity stages, and laboratory data were 0.952,
0.716, and 0.873, respectively (Table 1 and Figure 8). Therefore, the data from the pod-filling
stages were used for the training set. The validation test was performed using data from both
pod-filling and the maturity stages and the artificial cages created in the laboratory.

Table 1. Classification performance of each condition.

Conditions Training Set Size Confidence Score C/I 1 mAP

Field (R1~R6) 500 0.998 (0.114/0.0023) * 0.994 (0.187/0.0038) 0.952
Field (R7~) 500 0.958 (0.362/0.0074) 0.794 (0.262/0.0053) 0.716
Laboratory 500 0.971 (0.121/0.0025) 0.842 (0.238/0.0049) 0.873

1 C/I: Classified objects/Identified object ratio. * Values for [standard deviation (SD)/standard error (SE)].
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Figure 8. Confidence score and C/I, mAP index for each condition. The confidence score is an
indicator of the accuracy and reliability of objects and classes detected by the deep learning model.
C/I is an index indicating the ratio of objects detected by artificial intelligence to objects shown in the
test set data. mAP values (means of average precision) calculated from the model.

The deviation between the mAP indices of model benchmarking with MRCNN,
YOLOv3, and Detectron2 was 0.01~0.03, thus showing a slight difference. The mAP
was higher than 0.9 in each model. YOLOv3 achieved the highest mAP value of 0.97541,
and Detectron2 had the lowest of 0.94435 (Figure 9).
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Figure 9. mAP (means of average precision) score for model benchmarking. The performance of
the convolutional neural network (CNN) model is mainly evaluated using mAP. The area under the
graph line is called AP (average precision) in the precision-recall graph. The higher the AP, the better
the overall performance of the algorithm. The average of the AP values of all classes inherent in the
algorithm is called the mAP. This experiment calculated mAP through model benchmarking studies
of MRCNN, YOLOv3, and Detectron2 using Field (R1~R6) data.
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3.4. App-Based R. pedestris Object Detection Model

We created a simple web service using the model-serving API to demonstrate that
field-gathered photos would be transmitted to the model-serving API, and the output
would be determined by a human (Figures 10 and 11). Python Flask, https://github.com/
pallets/flask/ (accessed on 18 January 2023), was used to develop the API, and although
the model serving was performed on the CPU rather than the GPU, it was still feasible
for irregular image transfer events. The analysis on the CPU took the following amount
of time to complete. The number of images was measured via settings 25, 50, and 100.
When 25 images were input into the model, the running time was 79.0 sec/image recorded.
It was 67.4 sec/image when 50 images were input and 69.2 sec/image when 100 images
were input (Figure 12 and Table 2). The resulting number of R. pedestris was recorded
and exported in CSV format. R. pedestris counts were obtained from the images and UGV
surveillance can be utilized to identify R. pedestris outbreaks early on with the help of the
AI-based prediction model.
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before submission to the web app; (b) after submission to the web app, it is detected with YOLOv3;
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Figure 12. (a) A curve showing the decrease in runtime according to the number of images.
(b) A graph indicating the C/I value of objects according to several input images of 25, 50, and
100, and the confidence score.

Table 2. C/I with a confidence score and run times for iteration.

Images Detect Time (Sec/Replication) C/I Confidence score

25 79.0 (0.0111/2.3 × 10−4) * 100 95.75 (0.0185/3.8 × 10−4)
50 67.4 (0.0440/9.0 × 10−4) 100 95.98 (0.0436/8.9 × 10−4)
100 69.2 (0.0364/7.4 × 10−4) 100 95.82 (0.0838/1.7 × 10−3)

* Values for [standard deviation (SD)/standard error(SE)].

4. Discussion

Although several studies on resistance to R. pedestris in soybeans have been conducted in
many countries, soybean varieties that are resistant to the insect pest have not been identified,
except for a few cases showing relatively less damage [39–41]. Therefore, to reduce the damage
caused by R. pedestris in the soybean field, developing a precise monitoring system for timely
control in conjunction with research to find resistant soybean resources is crucial.
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In recent years, various tasks such as mechanization, automation, and agronomic
management have been attempted in agriculture [42,43]. In particular, studies on data
collection and analysis related to crop growth using automation and unmanned vehicles
with various sensors are being conducted [44,45]. In addition, IoT-based crop monitoring
with multiple sensors is being conducted in agronomy as a cutting-edge technology that
can be applied to various crops [46]. Drones, known as representative unmanned aerial
vehicles, have been widely applied in many fields of agriculture and can be used to conduct
crop management at the macroscopic level across the field [47,48]. However, this method
has a significant drawback in that the lower part of the plant cannot be observed owing
to the volume of the canopy. In the case of R. pedestris, most units are attached to young
pods, but the upper leaves hide these pods, so it is difficult to obtain images of them using
drones. In contrast, machines that can collect data from above the ground, such as UGVs,
are operated close to the individual crop. Various types of insect pests exist in cultivated
fields, and it is not easy for farmers to directly observe and control them all. Therefore,
appropriate crop monitoring systems are required to conduct pest management precisely,
including small devices, such as the UGV [49,50]. However, the UGV is limited to a running
time of 30 min due to a battery capacity issue. Because the UGV uses nickel cadmium
rechargeable batteries, it causes a loss of battery capacity as charging is repeated, so extra
batteries are essential and battery replacement is frequent. In addition, since there is a
possibility that R. pedestris may fly away due to noise generated during motor output, it is
necessary to be delicate in the operation of the UGV.

The data pool for deep learning can be increased through data augmentation process-
ing such as flipping, cropping, rotation, feature standardization, ZCA whitening, and color
noise adjustment in sample images [51,52]. In this study, however, data augmentation was
not applied, and artificial intelligence learning was conducted with actual field datasets
obtained from a UGV and camera (Figure 5). Because the selection was performed with
high-quality images for both field and laboratory data, high-quality AI learning was pos-
sible. Thus, the results derived from object detection could be reliably used to identify
insect pests. From the graph in Figure 3, it can be seen that the loss curve decreased as the
iteration increased in the model. The loss function is one of the indicators used to judge
whether the AI model is learning well or whether it has been overfitted or underfitted in
the optimization process. The loss function is also related to the error rate. In the case
of the loss function causing a reduction in the curve, the error rate also decreases. Thus,
as a performance evaluation indicator, the lower the loss score, the better the model’s
performance. As a result, this study revealed that the loss curve decreased as the number
of iterations increased during AI training, indicating that the model’s error rate was low
and its performance had improved.

In this study, three different models, MRCNN, YOLOv3, and Detectron2, were used
for object detection. The mAP values of the three models were compared in the reliability
of their performance, 0.95797, 0.97541, and 0.94435, respectively, indicating that all three
models could be used to conduct the object detection of R. pedestris. However, we believed
it would be most effective to use the optimal model based on the environments and target
traits. Therefore, it would be necessary to continuously improve the model’s performance
using the data generated by the used model. Furthermore, considering the purpose of
this study, it might be appropriate to choose the MRCNN model from the three models
because the MRCNN model, which further refines the target area using a segmentation
mask to classify the image of the pests, has high visual reliability in extracting the location
information of the pests [31,53].

When performing object detection of R. pedestris, portable object prediction using a
specific application has several advantages. First, the image data of objects collected in the
field must be physically transferred to a machine with a GPU to process them. However,
objects can be detected immediately in the field using a network server without a computer
or device when using an app. This means the R. pedestris attached to soybean plants can be
detected without any loss resulting from a person approaching the soybeans and the pest
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being blown away, so appropriate numerical data can be collected. This way, it is possible
to provide more precise numerical data than the conventional measurement method. In
addition, the automation process can be conducted by transmitting the image data to an
app through the network server without human labor. However, if the amount of image
data provided at one time increases, the measurement speed per unit is delayed, and the
quality of detection outputs is reduced. Therefore, sheets of input image data were limited
to ten images per time point.

5. Conclusions and Future Research

R. pedestris, a major soybean pest, spreads throughout the soybean field, causing
significant damage to the growth and yield every year. Supplementary Figure S1a depicts
the occurrence of and damage by R. pedestris in soybean fields and the plate-shaped pods
caused by R. pedestris. As the density of R. pedestris in soybean fields increases, the vitality
of the soybeans is diminished. However, the symptoms of plant damage are visible
beneath the canopy of the leaves. Therefore, we considered using a UGV to observe pests
directly above the ground near the plants [54]. After pre-processing and augmentation,
the accumulated R. pedestris videos and images were used as training, validation, and
test datasets for the AI-based object detection model. The manufactured model (MRCNN,
YOLOv3, Detectron2) is built with a relatively lightweight algorithm compared to the
state-of-art model (YOLOv5, YOLOv7, U-net, and more), making it suitable for beginner
challenging studies in agronomy. In addition, agricultural managers can quickly obtain
information about insect pests using a portable web application. Furthermore, the early
detection of R. pedestris through the pest management process via a UGV detection network
and AI object detection can help to prevent the occurrence of plate-shaped pods and
infected pods in soybean fields. Therefore, it is necessary to actively predict the occurrence
of R. pedestris when making early decisions on pesticide treatments.

As far as we know, this is the first time that R. pedestris has been recognized in
a field using deep learning technology rather than human eyes, and a corresponding app
has been developed. In the future, the results from the present study might provide the
framework of the whole process to researchers who want to conduct insect pest detection
and forecasting studies regardless of the type of insect pest.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy13020477/s1; Figure S1. (a) R. pedestris in the soybean field can cause plate-shaped
pods by sucking. (b) AI-based object detection model using image data of R. pedestris. (c) Insect pest
control after forecasting using the model
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