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Abstract: Soil salinization can decrease soil productivity and is a significant factor in causing land
degradation. Precision mapping of salinization in agricultural fields would improve farmland
management. This study focuses on the cropland in the Manas River Basin, located in the arid region
of northwest China. It explores the potential of a soil mapping method, the Soil–Land Inference
Model (SoLIM), which only requires a small number of soil samples to infer soil salinization of
farmlands in arid areas. The model was utilized to create spatial distribution maps of soil salinity
for the years 2009 and 2017, and changes in the distribution were analyzed. The research results
indicate: (1) Through the analysis of sample point data, it was observed that soil salinity in the study
area tends to accumulate in the surface layer (0–30 cm) in spring and in the subsoil layer (60–90 cm)
during the crop growing season, with significant spatial variability. Therefore, it is necessary to
conduct detailed salinity mapping. (2) Using field measurements as validation data, the simulation
results of the SoLIM were compared with spatial interpolation methods and regression models. The
SoLIM showed higher inference accuracy, with R2 values for the simulation results of the three soil
layers all exceeding 0.5. (3) The SoLIM spatial inference showed salt accumulation in the northern
part and desalination in the southern part. The findings of this study suggest that the SoLIM has the
potential to effectively map soil salinization of croplands in arid areas, offering an efficient solution
for monitoring soil salinity in arid oasis croplands.

Keywords: soil salinization; digital soil mapping; SoLIM model; applicability evaluation; arid region

1. Introduction

Soil salinization refers to the accumulation of soluble salts in the surface layer of
the soil due to evaporation and transport of water [1]. Soil salinization can lead to land
degradation, reduced crop yields, and deterioration of the ecological environment [2–4],
and has become one of the major environmental problems worldwide. Soil salinization
affects about 3% of the world’s land resources and more than 20% of irrigated cropland [5,6].
It is prevalent in coastal wetlands and arid–semi-arid regions [7], with China’s Xinjiang
region serving as a typical arid area, where saline soils account for about 60.6% of the
total saline soil area in China [8]. The accumulation of soil salinity in oasis farmlands in
arid regions is closely related to crop yield [9,10]. Therefore, an accurate assessment of the
spatial distribution of soil salinity can provide valuable insights for the rational allocation
of soil resources and management of soil salinity.

Currently, soil salinity mapping methods mainly include spatial interpolation methods
based on spatial autocorrelation theory and regression-based methods. Spatial interpolation
methods have been widely used due to their simple principles and fast computation
speed [11–14]. With the rapid development of remote sensing technology, the difficulty of
detecting environmental factors affecting soil salinization has also decreased. Therefore,
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linear regression and machine learning methods have been extensively developed and
applied in soil salinity mapping [15–18]. In general, the simulation accuracy of both spatial
interpolation and regression methods is highly dependent on the quantity and spatial
representativeness of the samples [19]. Some studies indicate that traditional methods
may struggle to achieve satisfactory accuracy with a limited number of samples, which
significantly limits the monitoring of soil salinity in agricultural areas [20]. In recent years,
a soil inference method based on the theory of environmental similarity has emerged in
soil property mapping. This method uses the geographic similarity between sampling
points and prediction points for spatial prediction [21]. It demonstrates good performance
with only a small number of sampling points, thus significantly reducing the cost of
soil mapping.

Zhu, et al. [22] developed the Soil–Land Inference Model (SoLIM) based on the theory
of geographic similarity. This model has been widely applied to infer soil types and
soil properties [22]. For example, Yang, et al. [23] used the acquired knowledge of soil–
environment relationships and the SoLIM to update the conventional soil-type map of
Wakefield in northern Canada. Their study showed that the updated digital soil map
contained more spatial details compared to traditional soil maps. Wen, et al. [24] compared
the applicability of four methods, including the SoLIM, in the complex terrain of the Loess
Plateau in China. The model was found to be more effective in predicting soil organic
carbon. Although the SoLIM has been verified in the prediction accuracy of various soil
properties, it is less involved in the prediction of soil salinity in arid zones. Therefore, it is
necessary to explore its potential for inferring the soil salinity of croplands in arid regions.

The study area of this research is oasis cropland in the Manas River Basin (MRB) in
Xinjiang, where soil salinity is a serious problem. We used the SoLIM to simulate the spatial
distribution of soil salinity. The accuracy of the predictions was evaluated using measured
sample data. In addition, the results were compared with those obtained from spatial
autocorrelation models (ordinary kriging and inverse distance weighting) and regression
models (multiple linear regression and geographically weighted regression). Finally, based
on the spatial predictions generated by the SoLIM, an analysis of the characteristics of
soil salinity in different soil types within the study area was performed. The objective
of this research was to explore the feasibility of the SoLIM in mapping soil salinity in
regions with severe salinization, offering scientific guidance for the precise management of
salinized farmland.

2. Materials and Methods
2.1. Study Area

The study area is located in the mountain-front oasis of the Manas River Basin in
the arid region of northwestern China’s Xinjiang [25]. It has an elevation ranging from
300 to 600 m and a geographical extent of (85◦12′2′′–85◦48′26′′ E, 44◦54′41′′–44◦22′1′′ N).
The total area covers 25.95 × 102 km2. As shown in Figure 1, the study area is divided
into two parts by the West Bank Canal, which runs from east to west. The northern part
is the Xiayedi irrigation area, bordering the Gurbantunggut Desert and extending to the
downstream of the Manas River. The southern part consists of the downstream branches of
the Anjihai River, the West Main Canal, the Main Drainage Canal, and the Alkali Drainage
Canal, forming the Anjihai Irrigation Area, which connects to the mountain-front oasis of
the northern slope of the Tianshan Mountains. The oasis area in the basin is composed
of alluvial fans, alluvial plains, and deltas [26]. It is particularly characterized by higher
soil salinity in the transition zone between the alluvial fan edge and the central part of the
alluvial plain. In this region, the groundwater depth is shallow, the mineralization is high,
and the flow is restricted [27]. The regional mean annual temperature is about 8 ◦C, with
an annual precipitation of 100–200 mm and a potential evaporation of 1500–2100 mm [28].
It has characteristics of a dry climate, high evaporation, and large diurnal temperature
fluctuations, which belong to a temperate continental climate [29]. The dominant soil
types include Gleysols, Arenosols, and Fluvisols. The main crops grown are cotton, with
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smaller amounts of grape, corn, and wheat cultivation [30]. Since the implementation of
the Western Development Strategy and the adoption of subsurface drip irrigation tech-
nology in 2000, there has been land expansion and changes in land and water resource
use. Widespread flood irrigation has led to a rise in groundwater levels [31], resulting in
secondary salinization problems that significantly affect agricultural production and the
ecological environment in the basin [32].
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Figure 1. Soil sampling points and land-use map in the study area (a), elevation of the Manas River
Basin (b), and location of the Manas River Basin (c).

2.2. Data Source and Preprocessing
2.2.1. Soil Salinity Data

Field sampling was carried out in May 2009 and July 2017, with a total of 71 and
51 soil samples collected, respectively. Handheld GPS devices were used to determine the
latitude and longitude of each sampling point, and information such as surface conditions,
irrigation patterns, and vegetation cover types were recorded for each point. At each
sampling point, a five-point sampling method was used to collect five soil samples within
a 30 × 30 m area, with sampling depths of 0–30 cm, 30–60 cm, and 60–90 cm. After natural
air drying, the soil was sieved through a 1 mm mesh, and a 1:5 soil/water ratio was used
to prepare the extract solution. Soil salinity was determined by the weight method, and the
soil salinity data obtained were used for model inference and validation.

In this study, we referred to the standards set by the Department of Agriculture and Rural
Affairs of Xinjiang to categorize the degree of soil salinization [20]: non-saline (SSC < 3 g·kg−1),
slightly saline (3 < SSC < 6 g·kg−1), moderately saline (6 < SSC < 10 g·kg−1), strongly saline
(10 < SSC < 20 g·kg−1), and extremely saline (SSC > 20 g·kg−1). Two-thirds of the data from
each soil layer were used as the modeling set, while the remaining third was designated as
the validation set. In 2009, 24 samples were randomly selected for the validation set and
47 samples for the training set. In 2017, 17 samples were selected for the validation set and
34 samples for the training set (Figure 2).
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2.2.2. Environmental Variables Data

This study referenced relevant research on soil salinity mapping and selected envi-
ronmental variables for salinity inference in conjunction with the characteristics of the
study area (Table 1). Figure 3 shows the spatial distribution of environmental variables
in 2017 (Figure S1 shows environmental variables in 2009). Temperature influences the
transport processes of soil water and salt [33], while terrain factors are the main influencing
factors on soil formation and development [34]. As soil development is the result of the
synergistic effects of environmental variables, the selection of terrain variables with causal
relationships was based on the consideration of both hydrological conditions, which are
closely related to soil salinity, and the distribution of surface vegetation, which is affected
by salinity [35]. Therefore, four categories of environmental variables were considered in
this case study: climate, terrain, vegetation, and soil texture. We resampled the spatial
resolution of all environmental variables to 30 m.

Table 1. Environmental variables data information.

Environment
Variables

Temporal
Resolution

Spatial
Resolution Dataset

LST 8 d 1 km MOD11A2

Soil Moisture 1 d 1 km
A 1 km daily soil moisture

dataset over China based on situ
measurement (2000–2020)

Slope 30 m
ASTER-GDEMTWI 30 m

NDVI 16 d 30 m
Landsat 5 TM, Landsat8 OLINIR 16 d 30 m

Soil texture 250 m
SoilGrids250m 2.0Soil Classification 250 m

In the table, LST represents surface temperature; TWI is terrain wetness index; NDVI is normalized vegetation
index; NIR is near-infrared surface reflectance.
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Climate data: Temperature affects the process of soil water movement and therefore
the distribution of soil salinity, so the land surface temperature (LST) was chosen to
represent the effect of temperature on soil salinity [36]. On the other hand, the study
area receives limited precipitation and experiences high evapotranspiration. Soil moisture,
as an important environmental factor, is influenced by long-term subsurface drip irrigation,
which leads to leaching of soil salinity with water percolation [37]. Many studies have
used soil moisture data to assess land degradation and ecological risks associated with
soil salinization [38,39]. Therefore, in this study, we adopted soil moisture (SM) data from
Li, et al. [40] as a climatic variable.

Terrain data: Terrain can be calculated directly with a digital elevation model (DEM).
According to the characteristics of gentle terrain in this study area and the study of similar
areas, the factors such as altitude and aspect with weak changes and small differences in
the study area are eliminated, and the slope and terrain humidity index (TWI) are selected
as the inference environment variables [18,41,42]. The TWI is calculated as follows:

TWI = ln
(

α

tanβ

)
(1)

where α represents the accumulated upslope area for a given catchment and β represents
the slope. As the study area is predominantly characterized by large flat plains, the multiple
flow direction- function of gradient (MFD-fg) [43] was used in this study, which is more
suitable for calculating the drainage area on uphill slopes in flat terrain.

Land surface cover data: We selected the normalized difference vegetation Index
(NDVI) as an environmental variable to characterize surface vegetation cover [44–46]. Salt-
affected soils with crust formation have high reflectance in the near-infrared (NIR) band
and have been widely used in remote sensing studies of soil salinization [47–50]. Therefore,
we chose it as an environmental variable for inferring soil salinity.

NDVI =
NIR − RED
NIR + RED

(2)

where NIR and RED represent the near-infrared and red bands of Landsat imagery, respectively.
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Soil texture data: Soil texture controls the movement of water and salts in soil through
soil pores [51–53]. Therefore, in this study, we selected soil texture and soil type data from
the SoilGrids 2.0 product as environmental variables.

2.3. Methods
2.3.1. Mapping Methods for Salinization

To better demonstrate the application potential of the SoLIM in soil salinity mapping,
we selected four models from traditional soil mapping methods for comparison. These
include ordinary kriging and inverse distance weighting, belonging to spatial autocor-
relation models, and multiple linear regression and geographically weighted regression,
belonging to regression models. Spatial autocorrelation models have the advantage of
simple computation but require a high spatial distribution of sampling data. Regression
models generally perform well but have higher demands on the number of sampling points.
Below are the basic principles and structures of the five models used in this study.

1. Ordinary Kriging (OK)

Ordinary Kriging (OK) interpolation is an interpolation method based on spatial
autocorrelation. It determines the weight through the semi-variable function, constructs the
covariance matrix, accurately describes the spatial correlation between the known positions,
and estimates the unknown position through the semi-variable function and the covariance
matrix to obtain the optimal estimate [54]. It is suitable for spatial data analysis and has
been used in soil salinity mapping for a long time [11,55,56]. The semivariogram is used as
a basic tool to test the spatial distribution structure of soil properties. Based on the theory
of regionalized variables and intrinsic assumptions [57], the semivariogram is expressed
as follows:

γ(h) =
I

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 (3)

where γ(h) is the semi-variance, h is the lag distance, z is the soil attribute parameter; N(h)
is the number of sample pairs within the distance interval h; z(xi + h) and z(xi) are the
sample values of two points separated by distance h.

2. Inverse Distance Weighting (IDW)

Inverse distance weighting (IDW) is an interpolation method based on the weight
distribution of distance. The weight is assigned by calculating the distance between the
unknown point and the known sample. The estimated value of the unknown position is
obtained by weighted average of the known sample values. The efficiency is better, and it
is widely used in soil salinity mapping [58,59]. The interpolation function is as follows:

Z(x) =
∑n

i=1 wiZi

∑n
i=1 wi

(4)

wi = d−u
i (5)

where Z(x) is the predicted value of the interpolation point, Zi is the salinity value at the
known point, n is the total number of known points used for interpolation, di is the distance
between point i and the predicted point, and wi is the weight assigned to point i [60]. The
closer the distance is, the greater the weight of the point is [61].

3. Multiple Linear Regression (MLR)

The multiple linear regression (MLR) model is characterized by its simplicity, ease
of computation, and interpretability, making it one of the most commonly used models
in digital soil mapping [62–64]. MLR fits a linear equation with quantitative coefficients
using two or more covariates to predict the outcome of the target variable [65]. It assumes a
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linear relationship between the target variable (Y) and the covariates (x) [66]. The structure
of the MLR model can be expressed as:

Y = a +
n

∑
i=1

bixi + ε = b1x1 + b2x2 + · · ·+ bixi + ε (6)

where Y is the target variable, xi represents the covariates, a is the intercept, bi are the
regression coefficients, and ε denotes the regression residuals.

4. Geographically Weighted Regression (GWR)

Geographically weighted regression (GWR) is a local linear regression model that
emphasizes the influence of spatial location on the model for sample points. It fits an
independent linear regression model to each sample point [67]. The basic principle is to
use a kernel function to partition the dataset into subsets and to calculate the regression
equation using a decay function [68]. The number of points for each regression equation
is determined by the bandwidth of the kernel function, and the optimal bandwidth is
determined by comparing the values of the Akaike information criterion (AIC) [69]. In
this study, we initially employed partial least squares regression to examine variables with
multicollinearity. Additionally, we used global Moran’s I to assess whether there was
spatial clustering of residuals at a global level in the OLS model. The structure of the GWR
model can be expressed as follows:

Yj = β0
(
uj, vj

)
+

n

∑
i=1

βi
(
uj, vj

)
xij + εj (7)

where
(
uj, vj

)
are the coordinates of the j-th sample. Yj is the value of the dependent

variable for the j-th sample, xij is the observed value of the independent variable set for
the j-th sample, β0 is the regression intercept at the location

(
uj, vj

)
, βi is the regression

coefficient at the location
(
uj, vj

)
, and εj is the random error.

5. Soil–Land Inference Model (SoLIM)

The Soil–Land Inference Model (SoLIM) is a model used for soil mapping, which is
built upon the integration of GIS, fuzzy logic, and expert knowledge [70]. Its theoretical
foundation is based on the principle that “the more similar the geographic configuration
of two points (regions), the more similar the attributes (values) of the target variable at
these two points (regions)”. It applies this principle to infer soil properties at unsampled
locations, achieving good practical results [71]. The process of soil attribute mapping
based on the SoLIM involves three steps. In the first step, the similarity Sk

i,j,E between
the soil environment of the unknown sample point (i,j) and known soil sample point k is
determined based on the fuzzy logic theory [72]. In the second step, Sk

i,j,E is calculated as
the similarity between the soil salinity at the known sample point k and the soil salinity at
the position to be speculated (i,j). Finally, the SSC at the position to be speculated (i,j) is
calculated by Equation (8) [73]. The equation is as follows:

Si,j =
n

∑
i=1

wk
i,j·Sk (8)

wk
i,j =

Sk
i,j

∑n
i=1 Sk

i,j
(9)

Sk
ij =

m
P

v=1

(
Ev

(
ev

ij , ev
k

))
(10)

where Sk
i,j measures the similarity between the soil at pixel (i,j) and the representative

known soil sample point k, ev
ij is the value of the v-th environmental variable at location (i,j)

and ev
k is the value of the v-th environmental variable associated with sample k, Ev is the
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function that evaluates the similarity on the individual environmental variable level, The
P-function is used to integrate the variable-level similarities into the location level. n is the
total number of typical sample points within the region, Si,j represents the estimated soil
salinity value at the unknown pixel (i,j) within the region, Sk represents the soil salinity
value at the known typical sample point k, wk

i,j represents the weight assigned to k by the
unsampled point [74].

2.3.2. Precision Validation

In order to verify the accuracy of the model, we selected three indicators to evaluate
the accuracy of the inference results: the coefficient of determination (R2), which indicates
the correlation between the observed and simulated data, with higher R2 values indicating
higher simulation accuracy, and the root mean square error (RMSE) and the mean absolute
error (MAE), which represent the errors between the observed and predicted values and
indicate the stability of the model, with smaller values indicating higher accuracy and
stability. The formulas used to calculate these three indicators are as follows:

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (11)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

MAE =
1
n

n

∑
i=1

|(yi − ŷi)| (13)

where yi represents the measured soil salinity value, ȳ represents the mean of the measured
soil salinity values, ŷ represents the predicted soil salinity value, n represents the number
of sample points.

3. Results
3.1. Statistical Analysis of Soil Salinity at Different Depths

To compare soil salinity at different depths, we performed statistical analysis on the
sampled data (Table 2). In the spring of 2009, the mean soil salinity content (SSC) in the
surface soil (0–30 cm) was higher than in the middle and lower layers, ranging from 0.95
to 15.25 g·kg−1, with an average of 4.40 g·kg−1. In the summer of 2017, the mean SSC
in the lower soil layer (60–90 cm) was the highest, ranging from 0.68 to 20.15 g·kg−1,
with an average of 5.33 g·kg−1. Soil salinity increased with soil depth. In May 2009, salt
accumulation was mainly in the surface soil layer, while in July 2019, salt accumulation
was observed in the lower soil layer.

Table 2. Statistical characteristics of soil salinity content (g·kg−1) at different depths.

Year Depth (cm) Max Min Mean SD CV n

2009 0–30 15.25 0.95 4.40 3.18 0.72 71
30–60 12.5 1.2 4.08 2.95 0.72 71
60–90 12.05 1.17 3.83 2.40 0.63 71
0–90 35.3 3.37 12.31 7.43 0.60 71

2017 0–30 9.67 0.68 2.33 1.91 0.82 51
30–60 19.33 0.57 4.87 4.85 0.99 51
60–90 20.15 0.68 5.33 5.17 0.97 51
0–90 41.38 2.47 12.44 10.54 0.85 51

SD represents standard deviation; CV represents coefficient of variation; n represents sample size.

The coefficient of variation (CV) reflects the degree of variability in the samples. In
2009, the CV values for soil salinity in different layers of the study area ranged from 0.60 to
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0.72, with significant variability observed in the surface and middle layers (0–60 cm). In
2017, the CV values for soil salinity in each layer ranged from 0.82 to 0.99, with the highest
variability observed in the middle layer (30–60 cm).

3.2. Accuracy Evaluation of the Five Models

Figure 4a–c illustrate the simulation accuracy of five models for inferring SSC in the
three soil layers during the spring of 2009. The SoLIM outperforms the two other types of
models in simulating SSC, with R2 values for the SoLIM in the three layers of 0.70, 0.65,
and 0.59, respectively. In addition, the RMSE and MAE for the SoLIM are smaller than
those for the other four models (Table 3). When comparing regression models and spatial
autocorrelation models, it was observed that the performance of regression models is
superior to spatial autocorrelation models. However, both types of methods underestimate
the predicted values to some extent and failed to discriminate areas of severe salinization.
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Figure 4. Comparison of soil salinity content prediction results from five models with validation
data: 2009 (a–c), 2017 (d–f). Due to the skewed distribution of the data, we applied a square root
transformation (Sqrt) to both the predicted and validation data.

Figure 4d–f show the comparison between the simulated data from the five models
and the measured data in July 2017. The SoLIM shows the highest simulation accuracy for
the surface soil salinity (SSC), with an R2 of 0.83 and RMSE and MAE of 0.73 g·kg−1 and
0.55 g·kg−1, respectively. In the lower soil layer, the simulation accuracy is slightly lower,
with an R2 of 0.64. The simulation values of the regression model have an R2 of around
0.5, and the spatial autocorrelation model performs the weakest, showing a significant
underestimation of the SSC predictions. Overall, the SoLIM shows high simulation accuracy
for SSC at different time periods, with superior performance in the surface layer compared
to the middle and lower layers. The other two methods show larger simulation errors for
high SSC values.
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Table 3. Simulation error for the five models.

Year Depth (cm) Indicators SoLIM OK IDW MLR GWR

2009 0–30 RMSE 1.95 2.74 2.34 3.16 3.04
MAE 1.61 2.26 1.93 2.51 2.36

30–60 RMSE 2.05 2.56 2.35 2.78 2.74
MAE 1.62 2.04 1.84 2.22 2.08

60–90 RMSE 2.10 2.41 2.47 2.32 2.33
MAE 1.51 1.97 1.99 1.75 1.78

2017 0–30 RMSE 0.73 1.80 1.51 1.37 1.28
MAE 0.55 1.01 0.98 1.12 0.91

30–60 RMSE 3.00 4.00 3.57 4.50 2.85
MAE 2.17 2.98 2.68 4.60 2.46

60–90 RMSE 4.32 5.88 6.10 4.77 5.16
MAE 3.00 4.78 4.58 3.84 3.86

RMSE is root mean square error, MAE is mean absolute error, and the unit is g·kg−1.

3.3. Spatial Analysis of Soil Salinity Inference with SoLIM

Since the SoLIM has higher inference accuracy, we used the simulation results of the
SoLIM to analyze the spatial distribution characteristics of soil salinity. Figure 5a–c illustrate
the spatial distribution of SSC in the MRB region in May 2009. High salinity values are
mainly concentrated in the central part of the study area, in the 0–60 cm soil layer with
salt accumulation, where SSC reaches 6–10 g·kg−1. In the northern oasis–desert transition
zone with lower elevation, SSC ranges from 3 to 6 g·kg−1, while in the southern region
with higher elevation and less salinization influence, SSC is below 3 g·kg−1. Figure 5d–f
show the spatial distribution of SSC in July 2017. It is clear that salinization is less severe
in the 0–30 cm soil layer, with SSC below 3 g·kg−1 in most areas. Salt accumulation is
pronounced in the 30–90 cm soil layer, especially in the downstream region of the Manas
River in the north, where SSC in the 30–60 cm soil layer reaches 20 g·kg−1. Extensive salt
accumulation is observed in the central cultivated area, where the SSC reaches 15 g·kg−1,
and the 60–90 cm soil layer shows a distribution pattern with higher values in the north
and lower values in the south.
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3.4. Distribution Characteristics of Salinity for Different Soil Types

We analyzed the variations in salt content under different soil types during two time
periods. The proportions of the three main soil types, Gleysols, Arenosols, and Fluvisols, in
the study area were 71%, 14%, and 13%, respectively (Figure S2). As shown in Figure 6a,
the soil type with the greatest change in salt content is Gleysols. The area of slightly saline
regions increased by 264.85 km2, while the areas of moderately saline and strongly saline
regions decreased by 123.01 km2 and 150.93 km2, respectively. Slightly saline areas in the
other two soil types also increased. Overall, compared to 2009, salt accumulation in 2017
showed a decrease in areas with moderately saline or highly saline characteristics and an
increase in areas with non-saline and slightly saline characteristics. The distribution of the
difference in soil salt content between 2009 and 2017 in the study area is shown in Figure 6d,
where the areas with decreased and increased salt content account for 55.13% and 44.87%,
respectively. The areas with decreased salt content are widely distributed in the southern
cropland and central grassland regions of the study area, while the most salt-affected areas
are concentrated in the northern part of the study area, especially in the lower-altitude
cropland downstream of the Manas River (Figure 6b).
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4. Discussion
4.1. The Relationship between Soil Salinization in Arid Zones and Environmental Factors

The spatial distribution of soil salinity is influenced by both structural factors, such as
climate, parent material, terrain, and soil type, as internal drivers [75,76], and stochastic
factors, such as fertilizer application, management practices, and cropping systems [77], as
external influences. The interaction of these factors determines the overall spatial pattern
of soil salinity [78]. Structural factors can enhance the spatial correlation of soil salinity,
while stochastic factors tend to weaken its spatial correlation towards homogenization [79].
Arid zones have a higher rate of evapotranspiration, and changes in salinity are strongly
influenced by both climatic conditions and human activities [80]. During the spring season,
the accelerated rate of evaporation due to rising temperatures causes salts to accumulate in
the surface soil as they move with the water. However, during the crop growing season,
the salt in the surface soil migrates downward with the irrigation water, resulting in
salt accumulation in the subsoil. The simulation results of this study effectively capture
this characteristic during both seasons. In recent years, local agricultural management
authorities have taken various measures to deal with soil salinity, such as constructing
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drainage ditches and modifying irrigation systems. The overall soil salinity in the study
area decreased in 2017 compared to 2009, indicating the effectiveness of these mitigation
measures. Therefore, in the future, fine mapping of soil salinity should be incorporated
into agricultural management practices to help control soil salinization.

4.2. Comparison of Different Methods for Mapping Soil Salinity

The OK and IDW are two common soil mapping methods. Kulmatov, et al. [81] used
the IDW method to produce soil salinity maps of the Sirdarya province, and their study
showed that the IDW method has great potential for mapping soil salinity in irrigated
areas. However, these two methods only focus on the spatial location of existing soil
attribute samples and their own data [82], without considering the influence of environ-
mental variables. Therefore, traditional spatial interpolation methods are more suitable
for mapping soil attributes with a large number of evenly sampled points and spatial
continuity [83]. Yuan, et al. [84] compared the applicability of linear regression and GWR
in mapping soil salinity in arid areas and found that the GWR model, which considers
surface conditions, performed better. Li, et al. [85] compared the performance of MLR,
GWR, and random forest (RF) models in estimating soil salinity in a semi-arid oasis. The
results showed that RF outperformed GWR, which in turn outperformed MLR. However,
the simulation accuracy of machine learning and regression methods heavily relies on the
number of samples available. In situations with a limited number of samples, these models
tend to perform poorly [19,86]. On the other hand, the SoLIM is capable of acquiring
soil–environment relationship knowledge and inferring soil properties at the watershed
or even larger scales [24,87,88], while ensuring a certain level of inference accuracy with a
limited number of samples [89–91]. Our study demonstrates that the SoLIM exhibits good
applicability in predicting soil salinity in arid regions. Therefore, we used the simulated
results of the SoLIM to analyze the spatial distribution of soil salinity in the study area.
However, there still exists some deviation between the model-simulated spatial distribu-
tion and the observed soil salinity, which may introduce a certain level of uncertainty to
our results.

5. Conclusions

This study used the Soil–Land Inference Model (SoLIM) to infer soil salinity content
(SSC) of oasis croplands in the Manas River Basin, a region in arid northwestern China.
The spatial distribution characteristics of SSC were analyzed for two periods: May 2009
and July 2017. Based on the inference results, the SoLIM showed higher accuracy in each
soil layer compared to spatial autocorrelation models and regression models, indicating
that the SoLIM can achieve acceptable accuracy with a limited number of sampling points.
In the spring of 2009, soil salinity was concentrated in the 0–30 cm layer, while in July 2017,
salinity accumulated in the 60–90 cm layer. The degree of soil salinity in the study area
gradually increased with decreasing elevation. In terms of total salt accumulation, soil
salinity was lower in 2017 than in 2009. Overall, the SoLIM demonstrated its ability to
capture the soil environmental characteristics of oasis areas in arid regions based on sparse
samples, demonstrating its good potential for inferring the soil salinity of croplands in
arid regions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13123074/s1, Figure S1: Environmental variables in 2009;
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