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Abstract: The absence of accurate measurement or calculation techniques for crop water requirements
in greenhouses frequently results in over- or under-irrigation. In order to find a better method, this
study analyzed the accuracy, data consistency and practicability of the Penman–Monteith (PM),
Hargreaves–Samani (HS), Pan Evaporation (PAN), and Artificial Neural Network (ANN) models.
Model-calculated crop evapotranspiration (ETC) was compared with lysimeter-measured crop evapo-
transpiration (ETC) in the National Precision Agriculture Demonstration Station in Beijing, China.
The results showed that the actual ETC over the entire experimental period was 176.67 mm. The ETC

calculated with the PM, HS, PAN, and ANN model were 146.07 mm, 189.45 mm, 197.03 mm, and
174.7 mm, respectively, which were different from the actual value by −17.32%, 7.23%, 11.52%, and
−1.12%, respectively. The order of the calculation accuracy for the four models is as follows: ANN
model > PAN model > PM model > HS model. By comprehensively evaluating the statistical indica-
tors of each model, the ANN model was found to have a significantly higher calculation accuracy
compared to the other three models. Therefore, the ANN model is recommended for estimating ETC

under greenhouse conditions. The PM and PAN models can also be used after improvement.

Keywords: crop evapotranspiration; meteorological environment; calculation accuracy; mathematical
model; tomato plants

1. Introduction

The water demand of agricultural crops is one of the key factors in agricultural pro-
duction. Accurately calculating crop evapotranspiration can provide a theoretical basis for
irrigation strategies [1,2]. Calculating greenhouse evapotranspiration is an important issue
in greenhouse agriculture and has significant implications for greenhouse environment
management and crop growth regulation [3]. At present, different methods are used for
measuring evapotranspiration in greenhouses.

In the Weighing Lysimeter method, scientists utilize the weight sensors of the lysimeter
to automatically record the daily changes in crop and growth substrate weight and calculate
daily evapotranspiration (ETC) [4–6].

With the Pan Evaporation method, researchers can obtain daily evapotranspiration in
a greenhouse by measuring water surface evaporation and using the evaporation coeffi-
cient. This method is simple, feasible, and suitable for small-scale greenhouses [7–11]. By
installing evapotranspiration-monitoring sensors in greenhouses, it is easy and efficient to
obtain and calculate daily evapotranspiration [12,13].

Scientists use various meteorological models, such as Priestley–Taylor, Hargreaves,
and Penman–Monteith, to calculate evapotranspiration inside and outside the greenhouse;
this is based on meteorological parameters near the experimental site and is currently a
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commonly used indirect calculation method to obtain evapotranspiration [14–16]. These
mathematical models are primarily based on the principles of energy balance and mass
transfer, taking into account meteorological factors, greenhouse structure, and crop char-
acteristics, in addition to employing complex mathematical calculations to estimate crop
evapotranspiration. The Hargreaves–Samani equation was recommended for the practical
estimation of ETO in plastic greenhouses in Mediterranean climatic conditions, as, in the
conditions of Mediterranean plastic greenhouses, the original Penman–Monteith equation
clearly underestimated measured ETO [3].

The use of an AI model is another option. For the calculation of evapotranspiration,
most scholars use the Penman–Monteith equation to calculate reference evapotranspiration
based on environmental parameters [17,18]. However, in a greenhouse environment,
the accuracy of this equation is reduced due to the wind speed usually being 0, which
limits its application in greenhouses. To solve this problem, some scholars have proposed
using artificial intelligence algorithms such as machine learning combined with measured
greenhouse environmental data to calculate evapotranspiration [1]. At present, some
scholars use various environmental sensors installed in greenhouses, combined with crop
growth patterns, to calculate evapotranspiration in greenhouses, using methods such as
Random Forest (RFR), the BP neural network, and the GA-BP neural network. The results
of the research show that the Random Forest (RFR) algorithm has higher computational
accuracy [19]. In addition, through comparative analysis of climate data from 1998 to 2012,
Tao et al. found that the adaptive fuzzy neural network model has good computational
performance [20]. These studies demonstrate that utilizing machine learning and artificial
intelligence algorithms can improve the accuracy of calculating evapotranspiration in
greenhouses, providing more accurate data support for greenhouse management and
agricultural production.

By studying current ETC calculation models, four models were selected in this article
to calculate ETC in a greenhouse, and these were then compared with actual ETC values.
A detailed description of the methods used in this study is provided in Section 2 of this
paper. Firstly, a small-scale lysimeter was installed in the greenhouse for data collection
and obtaining ETC. Additionally, a small meteorological station and an evaporimeter were
installed in the experimental area to gather meteorological and water evaporation data
within the experimental range. The Penman–Monteith, Hargreaves–Samani, Pan Evap-
oration, and Artificial Neural Network models were employed in this study to calculate
the ETO. The crop coefficient was determined using empirical coefficients, which were
then used to calculate daily crop evapotranspiration. As described in Sections 3 and 4,
the measured data obtained from the field measurement method were compared with the
calculated data from the meteorological models, evaporimeter method, and AI model. This
comparison allowed for the analysis of the advantages and disadvantages of each calcula-
tion method for determining ETC in a greenhouse. Finally, based on the advantages and
disadvantages of each model and the actual equipment conditions of the users, this paper
provides recommendations for selecting models when measuring ETC in a greenhouse.

2. Materials and Methods
2.1. Test Overview

The experimental site is located at the National Precision Agriculture Demonstration
Station in Beijing (China), with a geographical location of 40.18◦ N and 116.45◦ E and a
warm temperate, in addition to a semi-humid and semi-arid monsoon climate. The annual
average temperature ranges from 11 to 13 ◦C, and the annual precipitation ranges from
500 to 700 mm. The long-term average temperature is 11.1 ◦C, indicating a temperate
continental monsoon climate. The experimental solar greenhouse is 60 m long and 7 m
wide. The greenhouse is designed to face south. The surface was covered with a plastic
film with a thickness of 0.1 mm to increase the transparency effect inside the greenhouse.
The inclination angle of the surface is about 45◦. The experimental crop for this study was
tomato, grown using the rockwool cultivation method. A set of irrigation and fertilization
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systems were installed to provide a nutrient solution for the tomato cultivation experiment.
The experiment started on 2 March 2023 and was concluded on 5 June 2023.

2.2. Measurement Items
2.2.1. Crop Evapotranspiration Measurement

Because rockwool was used for the cultivation of the experimental tomatoes, rockwool
cultivation strips were directly placed in a lysimeter cultivation tank. When installing the
lysimeter cultivation tank, a certain installation angle was set to facilitate the discharge
of excess irrigation liquid by relying on the self-weight of the solution. A matching flow
meter was installed below the cultivation tank of the lysimeter to measure the leaked liquid.
A total of 4 tomatoes were planted in each rockwool strip, and each rockwool strip was
connected with 2 dripping arrows, with a flow rate of 2 L/h. The irrigation pipeline was
directly connected to a digital water meter, which could accurately regulate the irrigation
amount. A bracket composed of steel wire ropes was installed above the cultivation tank of
the lysimeter, and a supporting hanging scale was directly installed above the steel wire
rope bracket. As the tomatoes gradually grew, the tomato vine remained directly connected
to the hanging scale through a traction rope, which could measure the tomatoes’ daily
weight increase in real-time through the hanging scale (Figure 1).
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Figure 1. Measurement structure and actual site layout of the tomatoes cultivated with rockwool. 
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house, and these stations are used as comprehensive remote automatic monitoring equip-
ment, with the automatic collection, storage, and remote transmission of field meteoro-
logical information. WS-1802 can collect meteorological information, such as temperature, 
humidity, atmospheric pressure, net radiation, wind speed and direction, and rainfall in 
an experimental area. In our study, meteorological data were automatically collected 
every 10 min. 

The evaporation pan installed in the experimental greenhouse had a diameter of 220 
mm and a height of 200 mm. Sensors were used to measure the weight change of the liquid 
in the evaporation pan, and a 485 bus was used for signal output. Weight data were col-
lected every 10 min, and the height of the changes in the level of the liquid could be cal-
culated based on weight change data in order to obtain the daily evaporation amount 
(Figure 2). 

Figure 1. Measurement structure and actual site layout of the tomatoes cultivated with rockwool.

2.2.2. Meteorological Environment Measurement

Two WS-1802 remote meteorological stations (Nongxin Technology (Beijing) Co., Ltd.,
Beijing, China) were installed, one inside and one outside the experimental greenhouse,
and these stations are used as comprehensive remote automatic monitoring equipment,
with the automatic collection, storage, and remote transmission of field meteorological
information. WS-1802 can collect meteorological information, such as temperature, hu-
midity, atmospheric pressure, net radiation, wind speed and direction, and rainfall in an
experimental area. In our study, meteorological data were automatically collected every
10 min.

The evaporation pan installed in the experimental greenhouse had a diameter of
220 mm and a height of 200 mm. Sensors were used to measure the weight change of the
liquid in the evaporation pan, and a 485 bus was used for signal output. Weight data were
collected every 10 min, and the height of the changes in the level of the liquid could be
calculated based on weight change data in order to obtain the daily evaporation amount
(Figure 2).

2.3. Model and Evaluation Indicators
2.3.1. Penman–Monteith Model

The Penman–Monteith (PM) model utilizes an ETO calculation model proposed in
Technical Report No. 56 by the Food and Agriculture Organization of the United Na-
tions [21]. The PM model takes multiple meteorological factors into account, such as air
temperature, humidity, wind speed, and net radiation to estimate ETO. Compared to the
simplified models, the PM model is more accurate in calculating ETO and is suitable for a
wider range of climate conditions and regions [22]. When calculating ETO, the PM model



Agronomy 2023, 13, 3059 4 of 14

requires a large amount of meteorological data, including net radiation, soil heat flux, daily
average temperature, wind speed, saturated water vapor pressure, and actual water vapor
pressure. These data can be obtained through meteorological observation stations or other
meteorological data. The calculation formula of the PM model is as follows:

ETO =
0.408∆(Rn −G) + 900γU(es−ea)

T+273.15
∆ + γ(1 + 0.34U)

(1)

where ETO is reference crop evapotranspiration (mm/d), Rn is net radiation (MJ/m2/d), G
is soil heat flux (MJ/m2/d), T is air temperature (◦C), U is wind speed (m/s), es is saturation
vapor pressure (kPa), ea is actual vapor pressure (kPa), ∆ is slope of the saturation vapor
pressure–temperature relationship (kPa/◦C), and γ is psychometric constant (kPa/◦C).
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2.3.2. Hargreaves–Samani Model

The Hargreaves–Samani (HS) model is a commonly used simplified model for calcu-
lating ETO, and it collects the lowest, highest, and average temperature data of the day;
calculates the local net radiation through longitude and latitude; and then estimates the
ETO of the day [23,24]. The HS model assumes a linear relationship between ETO and
surface temperature, and it estimates ETO based on the daily average temperature. The
calculation formula is as follows:

ETO = 0.0023Ra(T + 17.8)
√
(Tmax − Tmin) (2)

where ETO is reference crop evapotranspiration (mm/d), Ra is daily radiation, T is daily
average air temperature (◦C), Tmax is daily maximum air temperature (◦C), and Tmin is
daily minimum air temperature (◦C).

2.3.3. Pan Evaporation Model

The Pan Evaporation method is a simplified method for estimating ETO, suitable for
use in areas lacking meteorological observation data. When using the Pan Evaporation
method, it is important to first select a suitable evaporation pan, typically a shallow
flat-bottomed container, and ensure that it can hold an adequate amount of water. The
evaporation pan should be placed in the vicinity of the vegetation in the experimental area,
such as next to a lawn, soil, or potted plants. Obstruction and interference must be avoided
so that the pan evaporation can remain consistently exposed to the natural environment.
At the same time, water level reduction in the evaporation pan must be observed daily at
regular intervals and the measurement data obtained should be recorded. The formula for
calculating ETO using the Pan Evaporation method is as follows:

ETO = E ·Kp (3)
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where ETO represents reference crop evapotranspiration (mm/d); kp represents the pan
coefficient, with kp at 0.85 [21]. E represents the amount of water surface reduction in the
evaporation pan (mm).

2.3.4. Neural Network Model

The BP neural network is a common Artificial Neural Network model, and its typical
architecture mainly consists of an input layer, hidden layer, and output layer. The input
layer is mainly responsible for receiving external input signals and transmitting them to
the hidden layer of the network. The hidden layer is mainly composed of multiple neurons,
which perform nonlinear transformation and feature extraction on the input signal. There
can be one or more hidden layers, and the number of neurons in each hidden layer can
vary. The output layer mainly receives information from the hidden layer and generates
the final output result. Each layer of neurons is connected to neighboring neurons through
weights and bias coefficients, while neurons in the same layer are independent of each
other. The neurons in the hidden layer and output layer usually use activation functions to
perform nonlinear transformations on the input. The model calculates the error between
the predicted output and the actual output, and it propagates the error back from the
output layer to the hidden layer to update the weights and biases so that the network’s
output approximates the actual output.

The following Figure 3 shows the basic architecture of the BP neural network. It can
adjust and expand the network based on specific problems to improve its performance and
generalization ability. This article took the temperature, humidity, net radiation, and wind
speed in the greenhouse as input data and the ETO as output data. In the case of using a
lysimeter to obtain crop evapotranspiration data, 80% of the data was used for training the
model, while the remaining 20% was used for model validation.
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2.3.5. ETC Calculation Model

According to the recommendations of the Food and Agriculture Organization (FAO)
of the United Nations, the calculation formula for crop evapotranspiration under full
irrigation conditions is as follows:

ETC = ETO ·KC (4)

where ETC represents the current crop water requirement; KC is the crop coefficient, which
reflects the ratio of the crop’s water requirement to the reference crop’s water requirement
based on standard evapotranspiration (ETO); and ETO represents the reference evapotran-
spiration (mm/d).

The recommended crop coefficients (KC) for different growth stages of tomatoes by
the Food and Agriculture Organization (FAO) are as follows: seedling stage KC was 0.6;
anthesis stage KC was 1.15; mature stage KC was 0.8.
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These crop coefficients represent the proportion of the water requirement of tomatoes
at different growth stages relative to the reference crop’s water requirement based on
standard evapotranspiration (ETO). By multiplying these crop coefficients with region-
specific reference evapotranspiration data (ETO), the current crop water requirement (ETC)
for tomatoes can be calculated at each growth stage.

2.3.6. Evaluation Indicators

According to the information provided in the paper, a sample statistical analysis
can be conducted on the ETC sample data obtained using the PM, HS, PAN, and ANN
models. This analysis can utilize statistical indicators such as Mean Absolute Error (MAE),
Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Index of Agreement (d).
By calculating these statistical indicators, we can assess the differences and consistency
between the ETC sample data obtained from different models. These statistical indicators
provide an evaluation of model performance and accuracy, helping to optimize and improve
the predictive capabilities of the models. The formula for calculating the sample statistical
indicators is as follows:

MAE =

n
∑

i=1
|Pi−Qi|

n
(5)

MBE =

n
∑

i=1
(P i−Qi)

n
(6)

RMSE =

√√√√√ n
∑

i=1
(P i−Oi)

2

n− 1
(7)

d = 1−


n
∑

i=1
(P i−Qi)

2

n
∑

i=1

[(
Pi −O

)2
+
(
Oi −O

)2
]
 (8)

where Pi and Qi represent the simulated values (mm/day) and measured values (mm/day)
of each model method, respectively; O represents the average of the measured values
(mm/day); n represents the number of samples.

3. Results
3.1. Analysis of the Test Environment

It is possible to see from the daily average temperature variation curve shown in
Figure 4 that, during the experimental period, the daily average temperature of the tomatoes
did not change much during the seedling stage, anthesis stage, and mature stage. The
average temperature during the seedling stage, anthesis stage, and mature stage was
21.74 ◦C, 20.56 ◦C, and 23.16 ◦C, respectively. From the daily average humidity change
curve, it is possible to see that the humidity changes during the experimental period were
relatively gentle, with a humidity of 65.35% during the seedling stage, 73.16% during the
flowering and fruiting stage, and 73.18% during the mature stage. From the net radiation
changes, it is possible to see that the daily average net radiation changes were not significant
during the seedling stage and anthesis stage, which were 9.04 MJ/m2/d and 9.16 MJ/m2/d,
respectively. During the mature stage, the daily average net radiation was 10.04 MJ/m2/d.
Due to the fact that this experiment was conducted in a solar greenhouse, indoor wind
speed can be ignored.

3.2. Analysis of Evapotranspiration Variation

Figure 5 shows a comparison of the daily ETC values obtained through actual mea-
surements using the lysimeter, as well as those predicted by the PM model, HS model,
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PAN model, and ANN model, with the field data. The cumulative ETC values of the
tomatoes measured using the lysimeter system was 17.84 mm during the seedling stage,
73.74 mm during the anthesis stage, and 85.09 mm during the mature stage. The total ETC
value of tomatoes measured using the lysimeter system was 176.67 mm. The total ETC
value of tomatoes calculated using the PM model was 13.33 mm during the seedling stage,
60.2 mm during the anthesis stage, and 72.54 mm during the mature stage. The total ETC
of tomatoes measured using the PM model was 146.07 mm, and the difference between
the total ETC calculated and the measured value using the lysimeter system was about
−17.32%. The cumulative ETC values of the tomatoes calculated using the HS model were
16.73 mm during the seedling stage, 73.24 mm during the anthesis stage, and 99.48 mm
during the mature stage. The total ETC value of the tomatoes calculated using the HS
model was 189.45 mm, with a difference of approximately 7.23% between the total ETC
calculated and the measured value using the lysimeter system. The cumulative ETC values
of the tomatoes calculated using the PAN model were 21.61 mm during the seedling stage,
76.91 mm during the anthesis stage, and 98.51 mm during the mature stage. The total ETC
value of the tomatoes calculated using the PAN model was 197.03 mm, and the difference
between the total ETC calculated and the measured value using the lysimeter system was
about 11.52%. The cumulative ETC values of the tomatoes calculated using the ANN
model were 17.72 mm during the seedling stage, 72.93 mm during the anthesis stage, and
84.05 mm during the mature stage. The total ETC value of the tomatoes calculated using
the ANN model was 174.7 mm, and the difference between the total ETC calculated and
the measured value using the lysimeter system was about −1.12%. The cumulative ETC
value of outdoor fields during the seedling stage was 19.87 mm; during the anthesis stage,
it was 104.51 mm; during the mature stage, it was 117.42 mm; and the total ETC value of
the tomatoes in open fields was 241.8 mm. The difference between the total ETC calculated
value and the measured value using the lysimeter system was about 36.87%.
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Figure 4. The daily variation chart of the greenhouse climate in the experimental area: (A) describes
the temperature change curve inside the greenhouse during the experiment; (B) describes the humid-
ity change curve inside the greenhouse during the experiment; (C) describes the change curve of net
radiation inside the greenhouse during the experiment.

During the seedling stage, the KC gradually increased from 0.32 to 0.49, with an
average KC of 0.43. During the anthesis stage, the Kc increased from 0.49 to 0.87, with an
average KC of 0.77. During the mature stage, the KC gradually stabilized, increasing from
0.87 to 1.05, with an average KC of 1.05. Throughout the entire experimental period, the KC
gradually increased during the seedling and anthesis stages; when the tomatoes reached
maturity, it tended to stabilize.

From the analysis above, it is possible to see that, during the seedling stage, the
overall ETC values in the greenhouse and outside the greenhouse are not significantly
different. From the anthesis stages to the mature stage, the ETC values in the open field
gradually surpassed those in the greenhouse. The maximum difference between the total
ETC calculated using the PM model in the greenhouse and the values calculated using
the lysimeter system was −30.6 mm, with an error of −17.32% of the total amount. The
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difference between the total ETC calculated using the ANN model and the values calculated
using the lysimeter system was the smallest, with a difference of −1.97 mm and an error of
−1.12% of the total. The difference between the calculated values of the HS model and PAN
model and the calculated values of the lysimeter system was relatively small—12.78 mm
and 20.36 mm, respectively—with errors reaching 7.23% and 11.52% of the total amount.
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3.3. Irrigation Effect Analysis

This paper first compares and analyzes the cumulative ETC calculated using four
models—namely, the PM model, HS model, PAN model, and ANN model—using a lysime-
ter system. Based on preliminary findings, it was noted that the ANN model had the
smallest error in calculating the ETC, while the PM model had the highest error in calculat-
ing the ETC. In Figure 6, a scatter plot was created by using actual ETC data as the x-axis
and the ETC values calculated using the PM model, HS model, PAN model, and ANN
model as the y-axis. Regression analysis was then conducted to analyze the relationship
between the model-calculated values and the actual ETC values.

The correlation coefficient of the PM model data was 0.91, indicating good consistency
(Figure 6A). While the cumulative ETC values calculated using the PM model were lower
than the actual cumulative ETC values, this deviation could be calibrated using coefficients
based on the data model, which provided better simulation results.

(Figure 6B) is a comparison chart of the correlation between the HS model and the
actual values. From the chart, it is possible to observe the fact that the correlation coefficient
of the HS model data was 0.58, indicating poor consistency among the data. It is evident
from the chart that the calculated cumulative ETC data using the HS model exhibited
significant fluctuations compared to the actual cumulative ETC values. Although the
cumulative ETC values calculated using the HS model were slightly close to the actual
values, correlation analysis indicated that the HS model had high variability and relatively
low accuracy when used in greenhouse environments. In summary, the HS model showed
a relatively low correlation with the actual values, and the calculated cumulative ETC
values exhibited significant fluctuations compared to the real values in greenhouse settings.
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Although the HS model provided relatively small differences from the actual cumulative
ETC values, its relatively low precision was not suitable for practical usage.
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Figure 6. Comparison chart of the correlation between four ETC calculation models and measured
values. (A) Describes the comparison between the calculated values obtained using the PM model
and the actual values; (B) describes the comparison between the calculated values obtained using
the HS model and the actual values; (C) describes the comparison between the calculated values
obtained using the PAN model and the actual values; (D) describes the comparison between the
calculated values obtained using the ANN model and the actual values.

(Figure 6C) shows a correlation comparison chart between the PAN model and the
actual values. From the chart, it is possible to observe the fact that the correlation coefficient
of the PAN model data was 0.88, indicating good consistency between the calculated
results and the actual observed values. Furthermore, from the chart, it is evident that the
cumulative ETC data calculated using the PAN model tended to be slightly higher than the
actual cumulative ETC values. Overall, the data consistency between the PAN model and
the actual values was relatively good, with only small differences in the total cumulative
ETC values. In summary, the PAN model exhibited a high correlation with the actual values,
and the calculated cumulative ETC values were generally consistent with the real values in
greenhouse environments. Therefore, the PAN model can be considered as having good
accuracy and reliability in predicting evapotranspiration in greenhouse settings.

The correlation coefficient of the ANN model data was 0.94, indicating a very high
linear correlation between the calculated results and the actual observed values (Figure 6D).
Its data consistency was the best among the models compared.

The statistical analysis in this study examined the correlation between the ETC values
calculated using the PM model, HS model, PAN model, ANN model, and the ETC values
measured using several statistical indicators. These indicators include the coefficient of
determination (R2), mean absolute error (MAE), mean bias error (MBE), root mean square
error (RMSE), and index of agreement (d). The statistical results are shown in Table 1 below.

From the perspective of the coefficient of determination (R2), the obtained R2 for the
HS model was 0.58, while the R2 values calculated for the PM, PAN, and ANN models were
0.91, 0.88, and 0.94, respectively. It is possible to observe that the ETC data obtained from the
HS model calculation were more scattered, indicating the lower reliability of its regression
model. From the MAE analysis, it is possible to see that the ANN model obtained the
highest accuracy for ETC, with an MAE of 0.3 mm/d. The PM and PAN models had slightly
lower accuracy for ETC, with MAE values of 0.6 mm/d and 0.54 mm/d, respectively. The
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HS model had the lowest accuracy for ETC, with an MAE value of 0.88 mm/d. As for the
MBE, it is possible to observe the fact that the ANN model had the highest accuracy for
ETC, with a computed MBE of −0.15 mm/d. The HS model had a uniform distribution
around the 1:1 line, resulting in an MBE of 0.19 mm/d. The PAN model had a better MBE
than the PM model, with values of 0.3 mm/d and −0.57 mm/d, respectively. From the
perspective of RMSE, the ANN model had the smallest calculated RMSE value for ETC,
which was 0.42 mm/d. The HS model, with a uniform distribution around the 1:1 line,
had an RMSE of 1.19 mm/d. The PAN model had a better RMSE than the PM model, with
values of 0.7 mm/d and 0.8 mm/d, respectively.

Table 1. Statistical results of ETC calculations and data measured using different models.

Method R2 MAE
mm/d

MBE
mm/d

RMSE
mm/d d

PM model 0.91 0.6 −0.57 0.8 0.81
HS model 0.58 0.88 0.19 1.19 0.73

PAN model 0.88 0.54 0.3 0.7 0.9
ANN model 0.94 0.3 −0.15 0.42 0.95

From the perspective of the consistency index (d), it is possible to observe the fact
that the ANN model had the highest consistency between the calculated ETC values and
the measured ETC values, with a consistency index (d) of 0.95. The HS model had the
lowest consistency between the calculated ETC values and the measured ETC values, with
a consistency index (d) of 0.73. The PAN model had better consistency than the PM model,
with consistency index (d) values of 0.9 and 0.81, respectively, for the two models.

Based on the analysis above, it is possible to conclude that the higher the values of the
coefficient of determination (R2) and the consistency index (d), the higher the correlation
between the model’s calculated values and the actual values. On the other hand, the smaller
the values of the mean absolute error (MAE), mean bias error (MBE), and root mean square
error (RMSE), the smaller the difference between the model’s calculated values and the
actual values. The accuracy of calculating ETC is as follows: ANN model > PAN model >
PM model > HS model (Figure 7).

In this article, rockwool was used for tomato cultivation in a solar greenhouse. The
cultivation bracket was 6 m long, and a set of brackets was installed every 2 m. Each row of
brackets was equipped with six rockwool strips, and four beads of tomatoes were planted
on each rockwool strip. Each of the four sets of cultivation brackets formed an experimental
group, and their irrigation strategy was tested according to the ETC calculated with the
corresponding model. The daily irrigation volume of each group during the experiment
is shown in Figure 8. During the experiment, the PM model, HS model, PAN model, and
ANN model were used to irrigate 7.01 m3, 9.09 m3, 9.46 m3, and 8.39 m3, respectively. At
the same time, 258.62 kg, 298.62 kg, 331.68 kg, and 339.38 kg of tomatoes were produced in
each experimental area. The water use efficiency of the PM model, HS model, PAN model,
and ANN model during the experiment was 36.89 kg/m3, 32.85 kg/m3, 35.06 kg/m3, and
40.45 kg/m3, respectively. The statistical results of the experiment are shown in Table 2.

Table 2. Statistical results of crop yield and water consumption based on different models.

Method Output
kg

Total Water Consumption
m3

Water Use Efficiency
kg/m3

PM model 258.62 7.01 36.89
HS model 298.62 9.09 32.85

PAN model 331.68 9.46 35.06
ANN model 339.38 8.39 40.45
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Figure 8. Daily irrigation volume of ETC calculated based on different models. (A) Describes the
daily irrigation amount based on the PM model; (B) Describes the daily irrigation amount based on
the HS model; (C) Describes the daily irrigation amount based on the PAN model; (D) Describes the
daily irrigation amount based on the ANN model.

Through the analysis of the irrigation experiment results above, it is possible to see that
the PM model had the lowest tomato yield among the various experimental groups, with a
total irrigation volume of 7.01 m3, which was less than the water required for the crops.
The yield was only 258.62 kg. The use of the HS model resulted in significant fluctuations
in daily irrigation volume due to its low accuracy in calculating ETC, resulting in the
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lowest water use efficiency of 32.85 kg/m3 among the experimental groups. The maximum
irrigation amount using the PAN model in each experimental group was 9.46 m3, which
was 12.75% higher than the ANN model. However, the crop yield and water use efficiency
were lower than the ANN model. By using the ANN model, the irrigation amount was
closest to the actual water demand of the crops, and its yield and water use efficiency were
the highest among the various experimental groups. In summary, the irrigation experiment
results of each model are as follows: ANN model > PAN model > PM model > HS model.

4. Discussion

The PM model, based on the energy balance and water vapor diffusion theory, is
currently widely applied in fields around the world. ETC was calculated assuming no wind
speed because this experiment was carried out in a greenhouse, only using temperature,
humidity, and net radiation in a comprehensive manner, resulting in a significant difference
between the calculated ETC and the measured values. By conducting statistical analysis on
the sample data of the PM model, the MAE and MBE were 0.6 mm/d and −0.57 mm/d,
respectively. The RMSE of 0.8 mm/d indicates a significant fluctuation in the data. The d
value of 0.81 suggests poor consistency with the measured ETC values. This indicates that
the ETC values calculated using the PM model are underestimated in comparison to the
actual values.

The HS model is the most simplified mathematical model currently used in calculating
ETC values and only requires temperature values. Previous research has shown that it
performs well in calculating ETC values in arid and semi-arid regions [23]. This paper
applied the HS model to calculate ETC in a greenhouse. In our experiment, the statistical
results showed that the data had a relatively scattered distribution, and the reliability of
the regression model was low (R2 = 0.58). The MAE was 0.88 mm/d, and the MBE was
0.19 mm/d, suggesting that the HS model overestimated the ETC values compared to the
actual measurements. It had the highest RMSE value among the four calculation models
used, indicating a large dispersion in the HS model’s results and poor predictive correlation
overall. The consistency index (d) was 0.73, indicating poor consistency with the actual
measured ETC values. The HS model is better applied in arid areas based on temperature
and empirical coefficients, and the ETC calculated using the HS Method are higher in
humid environments such as greenhouses.

The PAN model is primarily used in greenhouses, where it utilizes evaporation pans
to calculate ETC values based on the water evaporation recorded. In theory, the larger the
size of the evaporation pan, the more accurate the calculated values are. In reality, the
limited size of the evaporation pan definitely results in an overestimation of ETC. Although
the cumulative ETC values calculated were higher than the actual measurements and the
RMSE was 0.7 mm/d, indicating some level of data fluctuation, the statistical analysis
of the sample data demonstrated good consistency in the sample data (Table 1). The
PAN model demonstrated high data consistency in terms of data correlation, which could
improve the accuracy of ETC estimation. The RMSE was 0.7 mm/d, indicating some level
of data fluctuation. The d value of 0.9 implies high consistency with the actual measured
ETC values.

The ANN model primarily gathers environmental variables such as temperature, hu-
midity, and net radiation inside a greenhouse. It utilizes the measured ETC data as training
data for the model. By inputting environmental variables like temperature, humidity,
and net radiation from different locations within the greenhouse into the ANN model,
ETC values can be directly calculated. The results also indicated that the R2 value was
0.92, demonstrating a high level of consistency in the regression of the calculated results.
Also, the calculated data were more accurate compared to other models, with small data
fluctuation. The d value of 0.95 indicates the highest level of consistency with the actual
measured values.
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5. Conclusions

In this paper, the ETC of greenhouse crops was measured using lysimeter as a refer-
ence. Then, based on greenhouse meteorological conditions, four models (the PM model,
HS model, PAN model, and ANN model) were used to calculate the ETC. Finally, by
comprehensively evaluating statistical indicators such as R2, MAE, MBE, RMSE, and d,
the accuracy of the ETC models for greenhouse crop calculations was discovered to be as
follows: ANN model > PAN model > PM model > HS model. Although the HS model
outperformed the PM model in terms of calculating the ETC, it had significantly lower
accuracy in calculating daily ETC. Therefore, from a production standpoint, the HS model is
not suitable for effectively guiding greenhouse irrigation practices. Additionally, based on
statistical data from the PM and PAN models, it is possible to observe that, when applying
these models directly to different locations, it is necessary to calibrate the coefficients of the
PM and PAN models using standard data. This calibration process can further enhance the
accuracy of the model calculations and predictions.

If a user’s production facilities have a high level of automation, this article recommends
using an ANN model to calculate ETC in a greenhouse. If the user is in a remote rural area
with a low automation level in greenhouse production equipment, this article recommends
using the PAN model to calculate ETC. The main advantage of using the PAN model for
measurement is that it requires fewer instruments and is relatively convenient to install
and maintain compared to other measurement methods.

Based on the research mentioned in this article, irrigation management based on
ETC is beneficial for maintaining crop growth while effectively avoiding environmental
pollution caused by excessive water and fertilizer usage. This current study only compares
the differences in ETC calculation among four models in a greenhouse. In the future, we
will further investigate the impact of different irrigation models on crop quality and yield
in greenhouses, in order to provide more effective irrigation management advice to users.
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