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Abstract: Accurate crop mapping can represent the fundamental data for digital agriculture and
ecological security. However, current crop classification methods perform poorly in mountainous
areas with small cropland field parcel areas and multiple crops under cultivation. This study proposed
a new object-oriented classification method to address this issue, using multi-source data and object
features to achieve multi-crop classification in mountainous areas. Firstly, a deep learning method
was employed to extract cropland field parcels in mountainous areas. Subsequently, the fusion of
multi-source data was carried out based on cropland field parcels, while object features tailored for
mountainous crops were designed for crop classification. Comparative analysis indicates that the
proposed classification method demonstrates exceptional performance, enabling accurate mapping
of various crops in mountainous regions. The F1 score and overall accuracy (OA) of the proposed
method are 0.8449 and 0.8502, representing a 10% improvement over the pixel-based random forest
classification results. Furthermore, qualitative analysis reveals that the proposed method exhibits
higher classification accuracy for smaller plots and more precise delineation of crop boundaries.
Finally, meticulous crop mapping of corn, sorghum, rice, and other crops in Xishui County, Guizhou
Province, demonstrates the significant potential of the proposed method in crop classification within
mountainous scenarios.

Keywords: agricultural remote sensing; crop classification; multi-source data; object-oriented
classification

1. Introduction

The accurate and extensive mapping of crop classification has significant implications
for agriculture and ecology [1]. Classifying crops allows for a better understanding of
their growth habits and environmental adaptability, enabling targeted selection of planting
areas, optimization of cultivation methods, and fertilization techniques [2]. By combining
precise crop mapping with soil data, climate data, and other relevant information, it can
play a significant role in various fields such as agricultural insurance [3], soil pollution
tracking [4], and crop yield estimation [5]. Remote sensing data can provide extensive
surface and multiple spectral information, making it one of the mainstream methods for
crop mapping [6–8].

Due to variations in factors such as crop water content, chlorophyll levels, and cellu-
lar structure, different crops display varying reflectance on specific spectral bands. The
vegetation index is calculated based on these spectral bands, which can further reflect the
distinctions among crops. Consequently, the vegetation index has been widely utilized in
crop classification. Zheng et al. [9] effectively utilized Landsat time-series normalized dif-
ference vegetation index (NDVI) data to classify different crop types in complex scenarios
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and proposed a method for intelligent selection of crop samples based on expert knowl-
edge. With the advancement of classification algorithms and the substantial expansion of
remote sensing data, numerous advanced machine learning and deep learning methods
are employed in crop classification. These methods can automatically extract patterns
and features of crops from a large amount of remote sensing data, enabling automated
analysis and prediction [10]. Commonly used methods for crop classification, such as
random forest (RF) [11], extreme gradient boosting (XG-Boost) [12], and recurrent neural
networks (RNN) [13], have been validated in numerous regions. However, most of these
methods are pixel-based, targeting individual predictions for each pixel in remote-sensing
images. The cropland area in mountainous regions is generally small, and the boundaries
are relatively indistinct, resulting in a noticeable phenomenon of mixed pixels in commonly
used remote sensing images such as S2 imagery. Mixed pixel refers to a pixel containing
multiple cover types, which can lead to errors in classification results [14]. Ren et al. [15]
employed cropland masks to alleviate the issue of mixed pixels in mountainous regions
and conducted crop mapping in northeastern China. However, acquiring cropland masks
proved to be challenging and did not address the problem of mixed pixels between different
types of crops.

Object-oriented classification is a method based on objects rather than pixels [16].
Object-oriented classification groups pixels in an image into objects with similar features
and obtains more accurate information by extracting and classifying these features. Object-
oriented classification preserves the shape and spatial structure of land features better
than pixel-based classification, to some extent alleviating the impact of mixed pixels,
thus enhancing the accuracy and interpretability of the classification [17]. Zhang et al. [18]
employed optimized spectral feature sets and object-oriented classification methods for crop
classification, significantly reducing the salt-and-pepper noise issue caused by mixed pixels
and enhancing the accuracy of crop classification. Jiao et al. [19] utilized an object-oriented
classification method and RADARSAT-2 data to classify five types of crops, including wheat,
oats, soybeans, rapeseed, and forage, resulting in a 6% increase in accuracy. Sun et al. [20]
employed cropland field parcels as the primary units of analysis and integrated optical and
radar data to reconstruct time series imagery in cloudy and rainy mountainous regions,
resulting in a commendable level of accuracy in crop classification. However, these methods
did not specifically design features for object classification, and the accuracy of the obtained
objects is also relatively low.

In addition, the complex planting structure of crops in mountainous areas makes
precise crop classification relatively challenging [21]. For intricate landscapes such as moun-
tainous regions, relying solely on a single data source proves inadequate in accomplishing
the task of crop classification [22]. Therefore, it becomes imperative to incorporate addi-
tional data sources in order to obtain a richer set of information and enhance the accuracy of
classification. Constrained by the physical performance of satellite sensors, imagery from a
single data source cannot achieve high resolution in both spatial and spectral domains [23].
A single data source is insufficient for accurate crop classification in complex landscapes
such as mountainous regions. In the field of remote sensing, data fusion refers to the
amalgamation of data from diverse satellites or sensors to attain more comprehensive,
precise, and valuable information, thereby enhancing the effectiveness of classification [24].
Dino et al. [25] constructed a Siamese deep learning network that fused the Sentinel-1 and
Sentinel-2 data at the feature level to enhance the accuracy of land cover classification. The
application of deep learning allows for the integration of multi-source data at the feature
level, facilitating the mutual matching of features. However, it necessitates the construction
of corresponding networks, which is notably intricate and challenging. Huang et al. [26]
adeptly combine the abundant spectral information derived from hyperspectral data with
the formidable capability of laser radar in extracting intricate plant structures, thereby en-
abling precise crop classification. However, the utilization of high-resolution hyperspectral
data and laser radar data comes with a higher cost, making their application in large-scale
crop extraction challenging. A commonly employed method for data fusion in the field of
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crop classification is the Google Earth Engine (GEE) [27] platform. The platform integrates a
vast amount of satellite imagery and geographic information system (GIS) data, providing
users with robust capabilities for earth observation and analysis. It can automatically fuse
the selected remote sensing data [28–30]. Liu et al. [31] combined various data sources,
including Sentinel-1, Sentinel-2, and Landsat, on the GEE platform to classify three types
of crops: wheat, rapeseed, and maize, achieving an accuracy of 84.25%. However, GEE is
limited to processing only the data available on the platform and cannot handle remote
sensing data from other sources, which restricts the integration of additional data.

Roughly one-third of the Earth’s land consists of mountainous or hilly terrain [32],
underscoring the significance of accurately obtaining crop classifications for these areas.
Nevertheless, the current extraction of crops in mountainous regions still faces numerous
challenges, including insufficient accuracy in classifying small-sized land parcels, imprecise
classification boundaries, and the inconvenience of the data fusion process. Xishui is a
county in Guizhou Province, China, with the majority of its administrative area being moun-
tainous. However, a variety of crops, such as corn, rice, and sorghum, are also cultivated
there. We have synthesized the aforementioned issues and developed an object-oriented
crop classification method tailored to mountainous terrain, conducting experiments in
Xishui County. In summary, our work encompasses the following:

1. By using a deep learning cropland field parcels extraction algorithm, we accurately
extracted cropland field parcels. We developed an object-oriented crop classification
method based on these parcels tailored to mountainous terrain.

2. A data fusion method has been developed by utilizing cropland field parcels, sim-
plifying the data fusion process and eliminating the need for cloud platforms and
extensive processing of remote sensing images.

3. We designed cropland field parcel features for crop classification based on the crop
characteristics of Xishui County.

4. We obtained the refined crop classification mapping of Xishui County through the
proposed method.

The structure of this paper is as follows: Section 2 describes the data and sample
conditions utilized, as well as the methods and evaluation criteria employed. Section 3
discusses the results of crop classification, providing both qualitative and quantitative
comparative analyses with other approaches. Section 4 delves into the importance of utiliz-
ing classification features and elucidates the advantages and limitations of the proposed
method. Finally, Section 5 summarizes this study, emphasizing the practical value of the
proposed approach.

2. Materials and Methods
2.1. Study Area

Xishui is a county in Zunyi City, Guizhou Province, China, located in the northern
part of Guizhou, with a total area of approximately 3127.7 km2 (28◦6′8′′–28◦49′59′′ N,
105◦50′28′′–106◦45′2′′ E; Figure 1). Xishui County is situated in the transitional zone
between the northwest slope of the Dalou Mountain Range and the southern edge of the
Sichuan Basin, featuring numerous mountain ranges and valleys with highly undulating
terrain. The highest elevation is 1841.9 m, while the lowest elevation is 275.4 m. Xishui
County enjoys a subtropical humid monsoon climate, with an average annual temperature
of 13.5 ◦C, average annual precipitation of 1109.9 mm, and an annual average sunshine
duration of 1053.0 h [33]. Due to the predominantly terraced or sloping nature of Xishui
County’s arable land and its relatively low fertility, the primary crop cultivated in the
region is maize. Sorghum, a traditional Chinese brewing material, is similar to maize in
that it can be grown in relatively infertile soil. With a rich history of brewing, Xishui County
is home to several large distilleries, making sorghum a widely grown crop. Additionally,
in the relatively flat basins or river valleys, a variety of crops, such as rice, chili peppers,
sweet potatoes, and tobacco, are cultivated. The complex and diverse planting structure of
Xishui County’s terraced fields poses a significant challenge for crop classification.
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Figure 1. The geographical location and basic information of Xishui County. (a) High-resolution
image of Xishui County. (b) Guizhou Province, China. (c) The spatial location of Xishui in Guizhou.

2.2. Datasets
2.2.1. Remote Sensing Imagery

It is challenging to attain the desired classification accuracy using a single data source
in mountainous terrain. Therefore, this paper utilizes a variety of remote sensing and
geographic data for crop classification mapping. The data used includes Gaofen-2 imagery,
Jilin-1 imagery, Sentinel-2 imagery, ZY-2 D/E imagery, and the Copernicus Digital Elevation
Model (DEM) data. The following part provides an introduction to the data used in
this paper:

• Gaofen-2 Imagery. The Gaofen-2 satellite is the first domestically developed civilian
optical remote sensing satellite in China with a spatial resolution better than 1 m.
It is equipped with two high-resolution cameras, one with a resolution of 0.8 m for
panchromatic imaging and the other with a resolution of 3.2 m for multi-spectral
imaging. It features sub-meter spatial resolution, high positioning accuracy, and rapid
attitude maneuvering capabilities [34].

• Jilin-1 Imagery. The Jilin-1 satellite constellation is a Chinese commercial optical
remote sensing satellite constellation. Currently, 79 Jilin-1 satellites have been success-
fully placed into their designated orbits, establishing the world’s largest sub-meter
commercial remote sensing satellite constellation. Each satellite is equipped with a
0.75 m panchromatic camera and a 3 m multi-spectral camera, enabling the satellite
constellation to achieve 23–25 revisits per day for any location worldwide [35].

• Sentinel-2 Imagery. The Sentinel-2 satellite is part of the European Space Agency’s
(ESA) Copernicus program, and its images can be downloaded from the official website
of the ESA (https://scihub.copernicus.eu/, accessed on 21 November 2023). The data
used in this article is the bottom-of-atmosphere reflectance data (L2A level) processed
by ESA, with 12 spectral bands and a resolution of 10–60 m. Four of these bands
are red-edge bands, which are sensitive to vegetation, making them suitable for crop
classification [36].

• ZY-2 D/E Imagery. The Resource-1 satellite is part of a medium-resolution Earth obser-
vation constellation constructed under Chinese leadership. This satellite configuration
includes a visible near-infrared camera and a hyperspectral camera. The image used in

https://scihub.copernicus.eu/


Agronomy 2023, 13, 3037 5 of 20

this paper was captured by the visible near-infrared camera, with a panchromatic res-
olution of 2.5 m and a multi-spectral resolution of 10 m. This image not only contains
the red edge band suitable for crop classification but also offers a higher resolution
compared to Sentinel-2 images, making it more suitable for classifying crops in small
mountainous areas [37].

• Copernicus DEM. The Copernicus DEM is a global DEM project developed by the ESA
for the European Union’s Earth observation program. This DEM collects elevation
data using various technologies such as radar altimetry, optical satellites, and lidar,
covering the entire globe with a resolution of 30 m [38].

We executed data processing on the GaoFen-2, Jilin-1, and ZY-2 D/E data, encom-
passing pansharping and radiometric correction. For the Sentinel-2 images, bands with
a resolution below 10 m were resampled to a 10 m resolution. When utilizing multiple
datasets, the registration of data is of utmost importance. The Copernicus DEM and
Sentinel-2 images are released by ESA, and their geographical positioning is accurate [39].
Hence, for other images, we use the Sentinel-2 image as the base image and employ feature
point matching and DEM to register the Gaofen-2, Jilin-1, and ZY-2 D/E data to the Sentinel-
2 image. Through manual sampling inspection, the geometric errors of our registered data
are within 1 m. The parameters of the data used in this paper are detailed in Table 1.

Table 1. The parameters of the dataset used in this paper.

Data Type Number of
Images Time Taken Resolution (m)

Gaofen-2 91 May 2023–September 2023 0.8
Jilin-1 54 May 2023–September 2023 0.75

Sentinel-2 2 17 July 2023, 30 July 2023 10–60
ZY-2 D/E 1 17 July 2023 2.5

Copernicus DEM 2011–2015 30

2.2.2. Crop Ground Reference Samples

Figure 2 depicts the distribution of crop sample points collected through multiple field
surveys within the study area. All field surveys were conducted in July 2023, ensuring
proximity to the time of remote sensing image capture. During the field surveys, we
utilized handheld GPS devices (GARMIN Etrex221x, with a positioning error of less than
3 m) to record nearly 2000 sample points. Additionally, we compared the sample points
with high-resolution remote sensing images during the sampling process to ensure their
accurate placement within the respective cropland field parcels. The samples primarily
comprise three types of crops: corn, sorghum, and rice. Additionally, a small number
of other crops, such as sweet potatoes, chili peppers, and tobacco, are recorded under
the “other crops” category. In the subsequent experimental process, in order to better
demonstrate the performance of the method, it is imperative to retain a larger number of
samples for accuracy validation. We allocated 40% of the samples for model training and
reserved 60% for accuracy verification. The specific quantities of each type of sample are
detailed in Table 2.
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Table 2. The number of reference samples that were divided into train and validation samples.

Crop Type Total Train Validation

Corn 785 314 471
Sorghum 728 291 437

Rice 342 136 206
Other Crops 143 57 86

Total 1998 798 1200

2.3. Methods

As depicted in Figure 3, The proposed object-oriented classification method for crop
classification in complex mountainous terrain is primarily composed of four components.
(1) Utilizing high-resolution imagery and cropland field parcel generation algorithms to
produce all parcel objects within the research area. (2) Integration of collected Sentinel
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data, ZY-2 D/E data, and DEM data based on parcel objects and the construction of object
features. (3) Model training and classification using a RF classifier. (4) Accuracy assessment
of the produced results.
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Figure 3. Overview of the proposed framework for crop mapping with object-oriented classification.

2.3.1. Method for Extracting Cropland Field Parcels

The cropland field parcel is an area of cropland with relatively uniform internal char-
acteristics, serving as the fundamental spatial unit of arable land [40]. Accurately obtaining
the location and area of cropland can be achieved through the use of cropland field parcels,
thereby providing fundamental data support for digital agricultural services. However,
both land surveying and manual interpretation based on remote sensing images or GIS
systems require a significant amount of time and manpower, rendering them unsuitable
for large-scale or multi-period cropland field parcel acquisition. With the advancement
of deep learning technology, various arable land parcel extraction algorithms based on
deep learning have been developed, such as BsiNet [41], SEANet [42], ResUNet_a [43], etc.
These methods utilize multi-task convolutional neural networks to obtain cropland field
parcel edges, attributes, and distance estimates and integrate these to derive parcel results.
BsiNet consolidates the three parallel decoders of multi-task learning into a singular en-
coder, thereby enhancing computational efficiency and reducing network parameters. The
BsiNet also incorporates a spatial feature enhancement module to enhance the recognition
performance of small-area cropland field parcels. The lightweight structure of BsiNet and
its capability to recognize small cropland field parcels make it suitable for the scene in
Xishui County. Therefore, we have chosen this method for cropland field parcel extraction.

The deep learning model requires samples for training. Long et al. [41] have publicly
released the dataset they used, but the scene does not quite match our study area. As shown
in Figure 4, we manually drew some cropland field parcel samples from the high-resolution
images of Xishui County. We delineated parcel samples of approximately 321.87 km2 in
Xishui County, with 80% of them used in conjunction with publicly available data for model
training, while the remaining 20% were reserved for accuracy validation. The model’s
various parameters and structural design during the training process were set according to
the recommended parameters in the article by Long et al. Furthermore, in order to fully
utilize the annotated samples, we employed a series of data augmentation techniques such
as selection, cropping, scaling, and adding random noise to enhance the effectiveness of
our model [44].
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2.3.2. Object-Oriented Classification
2.3.2.1. Utilizing Parcel Objects for Multi-Source Data Fusion

A single data source cannot meet the demand for high-precision crop classification for
complex mountainous terrain such as Xishui County. In the case of the data used in this
paper, the spatial resolution of Sentinel-2 data is highest at 10 m, with the red edge bands
resolution of only 20 m. Such resolution is relatively low for mountainous terrain with
numerous terraced fields and small land parcels, making it susceptible to misclassification.
The ZY-2 D/E data can better accommodate mountainous terrain despite its 2.5 m spatial
resolution. However, this data only has one red edge band, and the spectral resolution is
relatively low, potentially leading to inaccurate differentiation of crops with similar spectral
properties. The DEM data can, to some extent, represent the likelihood of cultivating
a certain crop, but it cannot play a primary role. Lastly, high-resolution imagery (HR
Imagery) offers extremely high resolution and rich texture information, enabling accurate
extraction of crop boundaries. However, high-resolution imagery only consists of the RGB
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and near-infrared bands and cannot undertake the task of crop classification. Therefore, in
order to obtain accurate boundaries and categorization in crop mapping, it is necessary to
simultaneously utilize all the aforementioned data, which requires data fusion.

This paper proposes a method of multi-source data fusion based on cropland field
parcels. The process of generating cropland field parcels from HR imagery involves the
utilization of spatial and textural information. Thus, the parcels representing accurate
boundaries of the crops inherently encapsulate the most crucial features of HR imagery
in crop classification. By leveraging the geographical coordinates of the land parcels and
the projection information of the imagery, it is possible to obtain pixel values of the multi-
spectral data and DEM data that fall within the coverage of these parcels. In this manner,
the unification of all data is achieved by treating the cropland field parcel as a cohesive
unit, consolidating the information of all data into the parcel unit. In contrast to fusion
methods using GEE, this approach offers the flexibility to freely incorporate available image
data. Moreover, it eliminates the need for complex formatting and resampling processes to
construct data cubes, thereby greatly streamlining the data fusion workflow.

2.3.2.2. The Construction of Object Features

In order to enhance the classification performance of the model, it is necessary to
construct features for the classification of the land parcels. Due to the relatively low reso-
lution of the multi-spectral images being used, as shown in Figure 5, there is a noticeable
occurrence of mixed pixels in the images. These mixed pixels contain reflectance infor-
mation from various land features, which may interfere with the effectiveness of crop
classification. However, we observed that within a cropland field parcel object, mixed
pixels are primarily distributed at the edges of the parcel object. Conversely, the centroids
of the parcels predominantly consist of pure pixels, as they are relatively distant from other
types of crops. These pure pixels can better represent the spectral characteristics of crops.
Therefore, we obtain the spectral characteristics of a parcel object by weighting the distance
to the object centroid within a land parcel object. Specifically, we utilize Formula (1) to
calculate the spectral characteristics:

Feature =
n

∑
i=1

[(
2
n
− Di

S

)
×Vi

]
(1)
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In Formula (1), n represents the number of pixels within the land parcel object, Di
denotes the Euclidean distance from the i-th pixel to the centroid of the land parcel, S
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represents the sum of the distances from all pixels within the land parcel object to the
centroid, and Vi signifies the pixel value of the i-th pixel.

Furthermore, during our field surveys and examination of remote sensing images,
we noticed that the cropland field parcels of mostly rice, chili, tobacco, and other crops
exhibit relatively regular shapes and similar areas. In contrast, the areas and shapes of
corn and sorghum differ significantly. In particular, corn and sorghum are predominantly
cultivated in the terraced fields in the mountains of Xishui County. This also aligns with
the general pattern of crop cultivation, as rice, chili, tobacco, and other crops require
water retention or irrigation, and their economic value is relatively high; hence, they are
predominantly cultivated on relatively flat and regular land. On the sloping hillsides, the
elongated terraced fields have relatively infertile soil suitable only for cultivating resilient
crops such as corn or sorghum. To further validate this pattern, we calculated the area and
circularity of 1998 samples’ cropland field parcels and plotted a scatter diagram as shown
in Figure 6. Circularity is a commonly used parameter for calculating the shape of a plot,
with the formula being [45]:

Circularity =
4πA

P
(2)
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In Formula (2), A represents the area of the land plot, and P represents the perimeter
of the land plot. Generally, the simpler the shape, the greater the circularity. From Figure 6,
it can also be observed that the circularity of rice and other crops is mostly distributed at
higher positions, with smaller areas. Meanwhile, the circularity of corn and sorghum is
more dispersed, and the majority of cropland field parcels are planted with corn or sorghum.
Overall, the category of crops influences the circularity and area of the cropland field parcels
to some extent. Therefore, we also considered these two indicators as classification features.
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Ultimately, the features used for our object-oriented classification consist of the follow-
ing five components: the weighted average of pixels under the coverage of cropland field
parcels calculated by the Formula (1) in Sentinel-2 imagery, ZY-2 D/E imagery and DEM
and the area and circularity of cropland field parcels.

2.3.3. Classifier

In this paper, we employed Random Forest as the classifier for object-oriented crop
classification. Random Forest is a commonly used machine learning method widely utilized
for classification tasks in the field of remote sensing. Random Forest introduces randomness
in building each decision tree by conducting random sampling with replacement in the data
and considering a random subset of features at each node to increase diversity. Therefore,
Random Forest is a collection of multiple decision trees, each independently learning from
the data and ultimately making predictions through voting or averaging. The advantage of
Random Forest lies in its ability to reduce the risk of overfitting and enhance the overall
model robustness and accuracy by combining multiple models, making it particularly
suitable for addressing classification problems involving large volumes of data and complex
features [46].

We employed the method of random grid search [47] in the selection of parameters for
Random Forest. Random grid searches address the limitations of a grid search by randomly
sampling the parameter space. Compared to a grid search, it can often find better parameter
settings more quickly at the same computational cost, as it does not need to try all possible
settings. By conducting random sampling in the parameter space, it can efficiently search
for good parameter settings. Ultimately, the parameter settings for the Random Forest
model used in crop mapping are shown in Table 3.

Table 3. Parameter settings of the Random Forest classifier used.

Parameter Name Value

n_estimators 43
max_depth 14

min_samples_leaf 1
min_samples_split 2

2.3.4. Accuracy Assessment

To assess the effectiveness of parcel extraction, we utilized a series of evaluation
metrics to object geometric accuracy and positional accuracy in this paper, including
the over-classification error (OC), under-classification error (UC), and total error (TC) for
individual cropland field parcels. From these three types of evaluation metrics, the global
over-classification error (GOC), global under-classification error (GUC), and global total
error (GTC) are derived for all cropland field parcels. OC, UC, and TC can be represented
by the following formulas:

OC(Mi) = 1− area(Mi∩Oi)
area(Oi)

UC(Mi) = 1− area(Mi∩Oi)
area(Mi)

TC(Mi) =

√
OC(Mi)

2+UC(Mi)
2

2

(3)

In Formula (3) Mi represents the parcel being evaluated, with an area of area(Mi), and
Oi is the sample parcel with the largest overlapping area with the parcel being evaluated,
with an area of area(Oi). area(Mi ∩Oi) represents the area of intersection between these
two parcels. Based on the evaluation metrics of OC, UC, and TC for individual parcels, the
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accuracy of the overall parcel extraction results can be obtained as shown in formula (4),
where N is the total number of parcel objects.

GOC =
N
∑

i=1

(
OC(Mi)×

area(Mi)

∑ area(Mj)

)
GUC =

N
∑

i=1

(
UC(Mi)×

area(Mi)

∑ area(Mj)

)
GTC =

N
∑

i=1

(
TC(Mi)×

area(Mi)

∑ area(Mj)

) (4)

The confusion matrix was employed to assess the crop classification results. The
confusion matrix is the standard format for evaluating the accuracy of crop classification.
In the confusion matrix, the number of rows represents the number of categories to be
evaluated, and the element Pi,j in the i row and j column indicates the number of pixels
that actually belong to category i and were predicted as category j. Through the confusion
matrix, we primarily utilized four types of evaluation metrics. Firstly, we utilized the
producer accuracy (PA) metric, which signifies the proportion of pixels correctly classified
into a category to the total number of pixels in that category. Secondly, we employed
the user accuracy (UA) metric, representing the ratio of pixels correctly classified into a
category to the total number of pixels classified as that category. Through PA and UA,
we can analyze the classification results for each type of crop and explore the reasons for
accuracy variations. The overall accuracy (OA) refers to the proportion of pixels correctly
classified in the total number of pixels. Lastly, the Kappa coefficient (KC) [48] serves as a
measure of consistency and can be utilized to gauge the classification performance. In the
context of classification, consistency denotes whether the model’s predicted results align
with the actual classification outcomes.

We also utilized the F1 score as an evaluation metric, as the classification process
focuses not only on PA or UA. In the assessment of classification accuracy, the F1 score is
widely used as an evaluation metric because it simultaneously considers precision and
recall. The F1 score can be seen as the harmonic mean of the model’s precision and recall.
The relevant calculation formula is as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 Score = 2× Precision×Recall
Precision+Recall

(5)

In Formula (5), true positive (TP) represents pixels correctly classified as positive
pixels. False positive (FP) is incorrectly classified as a positive pixel. False negative (FN) is
a pixel incorrectly classified as negative.

3. Results
3.1. The Precision of Cropland Field Parcel Extraction

Due to the fact our crop extraction results are based on object-oriented classification of
cropland field parcels; the accuracy of land parcel extraction directly affects the precision
of our crop classification. Therefore, we first validated the accuracy of the cropland field.
Through accuracy testing on a reserved 20% sample, the accuracy of the cropland field
obtained is shown in Table 4. Quantitative analysis reveals that the GTC of land parcel
extraction in Xishui County is 0.128, indicating a good alignment between our extracted
parcels and manually annotated samples. The overall precision of cropland field parcels is
relatively high.

Table 4. Geometric errors of the extraction cropland field parcels.

Metrics GOC GUC GTC

0.132 0.104 0.128
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In order to further validate the effectiveness of cropland field parcels, we conducted an
inspection of the results of cropland field parcels. Figure 7 shows a partial illustration of the
extraction results. We examined the extraction results in most scenarios in Xishui County,
including relatively flat river valley areas and mountainous areas dominated by terraced
fields. Regardless of the scenario, it can be observed that the method accurately extracts the
majority of land parcels and obtains relatively correct parcel boundaries. Although some
small parcels are partially omitted, the overall precision of the land parcels is relatively
high, making it suitable for use as a fundamental unit in object-oriented classification.
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3.2. The Result of Object-Oriented Classification
3.2.1. Comparison with Other Methods

To validate the effectiveness of the object-oriented classification method in this paper,
we also employed three other methods for comparison: (1) pixel-based random forest
classification method; (2) patch-based deep learning method SPTNet [49]; and (3) object-
based classification method based on voting. To employ these methods, all data we used
were down-sampled to 2.5 m resolution, similar to ZY-02 D/E imagery. Then, all down-
sampled data were synthesized into a single image, enabling these methods to correctly
utilize all the data features.

The pixel-based random forest method is the most traditional crop classification
approach, classifying each pixel of the synthesized image based on its band values. The
patch-based method involves classifying crops by inputting patches of a certain size around
the pixels to be classified into a deep network. The object-based classification method based
on voting is a crop classification approach proposed by Wang et al. [50], which involves
using random forest for pixel-level classification and then determining the category of
the cropland field parcels based on the proportion of each category under cropland field
parcels coverage. In the comparative experiment, the random forest model also utilized
a random grid search to determine parameters, while the deep learning model was set
according to the default parameters. The accuracy evaluation results are shown in Table 5.

Table 5. The comparison between the proposed method and other crop classification methods in the
accuracy evaluation index on the dataset.

Method Metrics Corn Rice Sorghum Other Crops

Pixel-based
RF

PA 0.6978 0.7588 0.7615 0.7324
UA 0.7055 0.7484 0.7292 0.7105
OA 0.7548
KC 0.7447
F1 0.7351

SPTNet

PA 0.6496 0.6354 0.6403 0.6780
UA 0.6219 0.6543 0.6749 0.6371
OA 0.6339
KC 0.6406
F1 0.6257

Vote based
RF

PA 0.8166 0.8004 0.8082 0.7913
UA 0.8164 0.7747 0.8108 0.8164
OA 0.8272
KC 0.8022
F1 0.8093

Object-
oriented

classification

PA 0.8588 0.8311 0.8374 0.8365
UA 0.8397 0.8524 0.8236 0.8501
OA 0.8502
KC 0.8438
F1 0.8449

As shown in Table 5, our proposed object-oriented crop classification method achieved
the highest accuracy in both individual crop types and overall accuracy. The OA, KC,
and F1 values of 0.8502, 0.8348, and 0.8449 were significantly higher than those of other
methods; this demonstrates the efficacy of employing the proposed method. SPTNet had
the lowest accuracy, with an F1 score of only 0.6257, which may be attributed to two factors.
While the patch-based method introduces spatial information, it may introduce a large
amount of interference for very small croplands, leading to a decrease in classification
accuracy. Additionally, deep learning models have many parameters and require a sub-
stantial number of samples for training, which our dataset lacks. This may have resulted
in SPTNet being overfitted, ultimately leading to the lowest classification accuracy. Due
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to the exclusion of some non-cultivated land effects by using cropland field parcels and
the optimization of crop classification edge cases to reduce salt-and-pepper noise, the use
of the object-based method significantly improved accuracy compared to other methods,
with a minimum 7% increase in OA. Compared to the voting-based method, our approach
showed a 3.45% improvement in F1, indicating that our designed plot features can further
enhance crop classification capabilities.

As shown in Figure 8, to further evaluate the proposed method’s performance in crop
classification, we compared the prediction results for different crop distributions, area of
cropland field parcels, and terrain conditions. Due to the lack of other land cover categories
in our field survey samples, pixel-based and patch-based methods are prone to significant
false classifications, identifying many non-cultivated areas as crops. However, the use of
cropland field parcels can exclude the influence of non-cultivated land, optimizing the
boundaries of crops and effectively improving classification accuracy. Specifically, the
object-oriented crop classification method we employed exhibits stronger classification
capabilities for small cropland field parcels. For instance, there is a typical mountainous
terraced area with numerous small cropland field parcels in the third row of Figure 8.
While other methods incorrectly classify some narrow terraces as rice, our approach ac-
curately classifies these plots as sorghum by incorporating features such as parcel area
and circularity.
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false color synthesis of ZY-02 D/E image; (b) Pixel-based RF; (c) SPTNet; (d) Vote-based RF; (e) and
Object-oriented classification.

Moreover, as depicted in rows two and four of Figure 8, the pixel-based method can
correctly classify some small plots. However, due to the influence of mixed pixels, only
the central pixels of these plots are correctly classified, making it impossible to achieve
accurate classification for the entire parcels. Furthermore, the vote-based method assigns
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the category based on the maximum area covered by the category within the parcel, leading
to misclassification of the entire parcel. In contrast, our approach utilizes the weighted
average based on the distance from the pixels within the parcel to the centroid as the feature
effectively mitigating misclassification caused by mixed pixels. Finally, as shown in the
first and second rows of Figure 8, unavoidably, the cropland field parcels we extracted
contain some errors. For instance, in the first row, forest land was mistakenly classified as a
parcel, and in the second row, buildings were erroneously classified as parcels. The use of
the voting method would perpetuate these errors, whereas our approach classifies based
on objects, allowing erroneous objects to be categorized as background, further enhancing
classification accuracy.

In conclusion, through qualitative and quantitative analysis, the object-oriented meth-
ods employed proved effective in reducing omissions and detecting errors in crop extraction
results, surpassing the comparative methods in various accuracy indicators. Specifically,
the fusion of high-resolution data and parcels significantly enhances the extraction of crop
boundary details. The utilization of parcel features designed specifically for mountainous
crops reduces the misclassification of small parcels and, to a certain extent, corrects errors
in parcel extraction, resulting in more refined crop classification outcomes.

3.2.2. Crop Mapping in Xishui County

As depicted in Figure 9, we utilized the proposed object-oriented classification method
to complete the classification of principal crops, including corn, sorghum, rice, and other
crops, at a resolution of 0.8 m in Xishui County, Guizhou Province, in 2023.
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Figure 9. Mapping results of corn, rice, sorghum and other crops from multi-source satellite images
in Xishui County, Guizhou Province, China, obtained by the proposed object-oriented classification
method.

4. Discussion
4.1. Assessment of Feature Importance

As a decision tree model, Random Forest can calculate the importance of input features.
Each time a decision tree is split during the construction of the Random Forest, the model
records the decrease in information gain using that feature and then takes the average of
this decreased information gain as the importance of that feature [51]. This allows us to
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obtain the relative importance of each feature, enabling us to understand the contribution of
each feature in the model. We used this method to assess the importance of the 23 features
used in our proposed object-oriented classification method, as shown in Figure 10.
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Figure 10. The importance of each feature. SB-i represents the i-th Sentinel-2 band, and ZYB-i
represents the i-th ZY-02D/E band.

From Figure 10, it can be observed that the sum of the importance of each band of
Sentinel-2 imagery is 0.3673, while for ZY-02 D/E imagery, it is 0.4557. Respectively, the
importance of DEM, cropland field parcel area, and cropland field parcel circularity are
0.0343, 0.0824, and 0.0591. This indicates that these two types of multi-spectral imagery
primarily dominate the crop classification process, with ZY-02 D/E making a greater
contribution due to its higher resolution. Additionally, the cumulative importance of DEM,
cropland field parcels area, and cropland field parcels circularity amounts to 0.1776, to
some extent indicating the significance of incorporating cropland field parcels attribute
features. Within the two types of multi-spectral imagery, the dominant bands are the 5th,
6th, 7th, and 8th of the Sentinel imagery, and the 7th band of the ZY-02 D/E imagery, with
each accounting for more than half of the total importance in both types of imagery. This
underscores the sensitivity of the red-edge band to crop growth, indicating its significant
role in crop classification. Examining the importance of the features not only enhances
the interpretability of the model but also allows for the selection of important features to
construct relatively simple models, thereby improving efficiency and providing insights for
subsequent research.

4.2. Advantages and Limitations

This study introduces a method for object-oriented crop classification that integrates
multi-source data, achieving satisfactory classification results even in mountainous areas
with small arable land and diverse crops. Firstly, the proposed method employs deep
learning for plot extraction, yielding excellent results in mountainous scenarios. Secondly,
the method integrates high-resolution data, Sentinel data, resource data, and DEM data
based on plots, simplifying the data fusion process. Lastly, the study designs object features
for crop classification tailored to the characteristics of crops in mountainous areas. Com-
pared to other methods, the proposed approach achieves the highest extraction accuracy
regardless of crop type. In qualitative comparison, the proposed method significantly
enhances the extraction capability of small crop plots and improves crop edges. These
comparisons demonstrate the advantages of our method.

Although our method has certain advantages, it also has some limitations. Firstly,
our method is based on object-oriented classification of cropland field parcels, and the
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accuracy of cropland field parcel extraction directly affects the final classification accuracy,
thus requiring precise cropland field parcel extraction results. Although cropland field
parcel extraction algorithms have made rapid progress in recent years, methods based on
deep learning require a large number of samples for training and often perform poorly
in areas lacking samples, limiting the applicability of our method. Secondly, the spectral
features of the cropland field parcel, we constructed may contain redundancies. As shown
in Figure 10, some bands have relatively low importance due to insensitivity to vegetation.
Using high-dimensional data may lead to a decline in classifier performance. Lastly, due to
the similar spectral characteristics of crops such as tobacco and chili, we categorize them
as other crops during the classification process without distinguishing them separately.
In future research, we will attempt to optimize the plot extraction model to enhance its
generalization ability, apply this method to a larger scope, and also endeavor to optimize
and select features from multiple sources of data to simplify and improve the classification
ability of the model.

5. Conclusions

This study proposed a novel method for crop classification in mountainous areas
using object-oriented classification and multi-source remote sensing data. Firstly, deep
learning methods were used to extract cultivated cropland field parcels in mountainous
areas. Subsequently, a fusion of multi-source data was carried out based on the cultivated
cropland field parcels, and corresponding object features were designed to classify crops
in mountainous areas. Comparative analysis indicates that the inclusion of cultivated
cropland field parcels can significantly enhance the performance of crop classification
in mountainous areas. Compared to mainstream methods such as pixel-based RF, the
crop classification method proposed in this study demonstrates the highest classification
accuracy, enabling the accurate classification of various crops in mountainous areas. The F1
score of the proposed method is 0.8449, and the KC is 0.8438, representing improvements
of 3.56% and 4.16%, respectively, compared to the vote-based classification method. This
demonstrates that our proposed method effectively enhances the process of crop classifi-
cation in mountainous areas. The crop classification mapping of corn, sorghum, rice, and
other crops in Xishui County, Guizhou Province, also validates the effectiveness of this
method in practical applications.
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