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Abstract: The application of data science (DS) techniques has become increasingly essential in various
fields, including epidemiology and climatology in agricultural production systems. In this sector,
traditionally large amounts of data are acquired, but not well-managed and -analyzed as a basis
for evidence-based decision-making processes. Here, we present a comprehensive step-by-step
guide that explores the use of DS in managing epidemiological and climatological data within rice
production systems under tropical conditions. Our work focuses on using the multi-temporal dataset
associated with the monitoring of diseases and climate variables in rice in Colombia during eight
years (2012–2019). The study comprises four main phases: (I) data cleaning and organization to
ensure the integrity and consistency of the dataset; (II) data management involving web-scraping
techniques to acquire climate information from free databases, like WordClim and Chelsa, validation
against in situ weather stations, and bias removal to enrich the dataset; (III) data visualization
techniques to effectively represent the gathered information, and (IV) a basic analysis related to the
clustering and climatic characterization of rice-producing areas in Colombia. In our work, a process
of evaluation and the validation of climate data are conducted based on errors (r, R2, MAE, RSME)
and bias evaluation metrics. In addition, in phase II, climate clustering was conducted based on a
PCA and K-means algorithm. Understanding the association of climatic and epidemiological data
is pivotal in predicting and mitigating disease outbreaks in rice production areas. Our research
underscores the significance of DS in managing epidemiological and climatological data for rice
production systems. By applying a protocol responsible for DS tools, our study provides a solid
foundation for further research into disease dynamics and climate interactions in rice-producing
regions and other crops, ultimately contributing to more informed decision-making processes in
agriculture.

Keywords: data cleaning; decision making; web scraping; clustering climatic; visualization tools

1. Introduction

Rice (Oryza sativa L.) is a cereal of high importance for humans, given that it is pro-
duced on almost all continents and is a staple food in the diets of more than half of the
world’s population [1]. According to the FAO, world production in 2018 was 761 million
tons (t), with a cultivation area of 164 million hectares (ha) [2]. In Colombia, the rice cultiva-
tion area in 2020 was 596,414 ha, making up approximately 35% of the total area planted in
semi-annual cycle crops [3] Rice cultivation occurs in 23 departments and 211 municipalities
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in Colombia, involving more than 16,000 producers and 25,000 agricultural production
units (APUs) [4]. Health problems of biotic origin, caused by emerging and re-emerging
pests and diseases, are a significant problem in rice production, and generate losses of more
than 25% of the global production, with losses of between 80 and 100% in severe cases [5,6].

The behavior of pathogens and the diseases they cause in plants are dynamic in
nature, and their importance varies depending on multiple factors, such as variation in
environmental conditions, the genetic component of the host, the intensity of the production
system, and changes in the genetic and pathogenic variabilities of the pathogen [7]. In the
rice production systems across the world, it has been identified under different data analysis
approaches that diseases are affected by meteorological variables, and this information has
been used to predict their behavior in space and time [8,9].

Given that the space–time dynamics of diseases and their potential impact on produc-
tion systems are highly influenced by edaphoclimatic variables, it is necessary to guarantee
a level of confidence in the meteorological data, since the representativeness and qual-
ity of this can considerably influence the accuracy, precision, and reproducibility of the
models [9,10]. However, guaranteeing the availability, timeliness, quality, and represen-
tativeness of the meteorological data in the spatial and temporal dimensions required
according to the scale of analysis is a significant challenge. In this regard, the most reliable
sources of meteorological data are those from in situ observations from conventional or
automatic stations that comply with the guidelines of the WMO (World Meteorological
Organization). However, these observations are expensive and, in many cases, unviable,
given the high climatic variability. A solution to this is to evaluate, validate, and eliminate
the bias of synthetic climate products derived from remote sensors, re-analysis, weather
radars, and other tools [11,12].

These tools include previously validated global, spatialized, and freely accessible
databases, such as CHELSA and Worldclim (WC), which can solve some of the limitations
of obtaining the meteorological data described above. The CHELSA database originates
from downscaling the ERA-Interim climate reanalysis to a 1 km resolution [13,14]. Mean-
while, WC corresponds to a set of average monthly interpolated climate data from me-
teorological stations on a multi-resolution grid [15]. These datasets have been validated
and used in studies for purposes of flow estimation, evapotranspiration, the estimation
of precipitation and its spatio-temporal variability, and for modeling the distribution of
pathogen populations in plants as a function of climate [16–19].

The implementation of epidemiological simulation models that use climatic or agrom-
eteorological variables as predictors is based on the free and open access to meteorological
data at local and regional levels. However, the data volume required for a high-resolution
representation of the Earth’s surface of approximately 30–33 arcseconds (900 m to 1 km) [20]
requires intelligent data reductions and reference point prioritization; therefore, high-level
skills and advanced computing are needed to execute, analyze, and adjust the models if
necessary [21,22].

For this reason, data science (DS) is a useful alternative to classical analysis methods,
given its ability to analyze a large volume (size) and variety (complex data sources and
structure) of data; to assess its veracity (uncertain quality) and value; as well as its speed
(fast-rate acquisition rate) [23,24]. DS is an interdisciplinary field focusing on the study of
methods and techniques to extract knowledge from data and help us understand multiple
phenomena [25]. The process of applying DS concepts is divided into four stages: (i) data
acquisition, (ii) data cleaning, (iii) visualization, and (iv) analysis [26].

Considering the abovementioned points, in this work, a robust methodological process
based on DS and the spatial analysis of data of climatic and epidemiological origins in
productive systems of commercial rice cultivation in Colombia is proposed as a basis for the
design and management of databases, their visualization, and the application of analysis
tools. The purpose of these tools is to find spatio-temporal patterns that favor decision-
making behavior in agricultural planning and the selection of techniques and technologies,
as well as climate-smart agricultural practices for rice production. As such, this work aims
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to apply DS tools to the management of climatic and epidemiological information in rice
production systems in Colombia.

2. Materials and Methods
2.1. Description of Approach Used

Our study was based on the application of phases of data science. This comprehensive
approach underpinned our study’s methodology, enabling the exploration and interpreta-
tion of crucial data pertinent to the phytosanitary data and climatic variables within the
context of rice production systems in Colombia (Figure 1).
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Figure 1. Flowchart of the main steps of the proposed methodological approach.

We implemented three phases. (i) Management, Cleaning, and Organization of
Databases: our initial phase involved the meticulous management, cleaning, and organi-
zation of databases housing phytosanitary monitoring data and climatic variables within
rice production systems in Colombia. (ii) Acquisition of Climatic Data via Web Scrap-
ing: in the second phase, we opted to procure a novel set of climatic data through the
utilization of web-scraping tools. To achieve this, we accessed spatialized databases of
climatological normals obtained from CHELSA and WORLDCLIM (WC). These datasets
were subjected to a rigorous evaluation, validation, and adjustment process to rectify any
identified biases. (iii) Development of Data Visualization Tools: in the final phase, our
focus shifted towards the development of various tools dedicated to the visualization of
epidemiological and climatic data. Emphasis was placed on an initial phase of analysis,
where a method for ascertaining homologous and heterologous climatic zones was em-
ployed. Notably, this classification approach involved unsupervised methods using the
spatial K-means algorithm.

2.2. Basic Description of the Study Zone

The present work was conducted with the data collected from the main commercial
rice cultivation areas in Colombia, which were distributed in a large area of the warm zones
of the country, and in which the dryland planting system was predominant. Fedearroz
classifies the following five areas as rice-growing, given their agrological and geographical
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conditions: Costa Norte, Santanderes region, Zona Centro (where irrigated rice predominates),
Bajo Cauca (where crops are rainfed in most municipalities), and Llanos Orientales, where
both systems are present (irrigated and dryland with a predominance of the dryland
system) (Figure 2) [27].
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Figure 2. Macroecological and geographic distributions of rice-producing areas in Colombia and loca-
tion of meteorological stations and plots sampled in the Fedearroz phytosanitary monitoring program.

The Costa Norte area, considered the “Dry Caribbean”, includes the departments of
Atlántico, Cesar, La Guajira, Magdalena, and some municipalities in the department of
Bolívar. The Santanderes region includes the rice-growing municipalities of the depart-
ments of Norte de Santander and Santander. The Zona Centro includes areas located in the
valleys of the Magdalena and Cauca rivers belonging to the departments of Cundinamarca,
Huila, Tolima, and to Cauca and Valle del Cauca, respectively. Bajo Cauca, considered the
“Humid Caribbean”, includes the departments of Antioquia, Bolívar, Córdoba, Sucre, and
some rice-growing municipalities in Chocó. The Llanos Orientales refers to the immense
plains just east of the Andes and comprises the departments of Arauca, Casanare, Guaviare,
Meta, Vichada, and the municipality of Paratebueno in Cundinamarca (Figure 2) [3,27].

2.3. Part A: Management of Epidemiological Data Associated with the Monitoring of Rice Diseases
in Colombia

Information regarding the epidemiological data associated with the monitoring of
pathogens that affect rice cultivation in Colombia was provided by Fedearroz, under a
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collaboration agreement. These data were obtained from the national disease monitoring
program conducted on commercial rice plantations, where the producers made manage-
ment decisions directly. The program included two types of monitoring: (i) sensor plots
(SPs), which included data obtained between the period ranging from 2015 to 2019, and
(ii) phytosanitary brigades (PBs), with data ranging from 2012 to 2019.

In both types of monitoring, the data were recorded in order to quantify the measures
of intensity of the diseases associated with the rice crop, which were estimated based on a
field evaluation protocol using quantity parameters, such as number of plants, panicles or
leaves affected, size and number of lesions incidence (I), and severity (S) [28–30].

SPs consisted of phytosanitary sampling conducted on approximately 145 commercial
rice production farms, located in a radius of up to 30 km around the automatic mete-
orological stations installed by Fedearroz. This network complies with the guidelines
of the World Meteorological Organization (WMO) and the protocols of the Institute of
Hydrology, Meteorology, and Environmental Studies (IDEAM). Phytosanitary sampling
was performed periodically over 7 phenological stages determined in the monitoring
protocol by Fedearroz. The stages are (2) sowing to emergence; (3) seedling to the start
of tillering; (4) maximum tillering to start of floral primordium; (5) start of floral pri-
mordium to start of budding; (6) maximum clogging to start of flowering; (7) flower-
ing with doughy grain; and (8) harvest [29]. For the purposes of the abovementioned
points, it was considered that the rice crop was normally inhabited by pathogens; how-
ever, there were critical times when they had an economic impact (for more information,
see Supplementary Information Table S1) [28]. It should be noted that 26,832 items were
processed in the original LS dataset.

PB monitoring was conducted on nearly 2900 commercial rice crops at the end of
their production cycles, that is, between phenological stages 7 and 8. PBs is considered a
rapid monitoring mechanism that allows the rapid determination of the incidence levels of
phytosanitary limitations in the maturation phases and the execution of a regional diagnosis
to warn of possible increases or epidemics, and thus formulate prevention or mitigation
strategies for the subsequent crop cycle [30].

Sampling was conducted mainly by measuring the incidence of various diseases, in
particular, brown spot complex (Sarocladium oryzae, Fusarium spp., and Pseudomonas spp.).
The severity of this disease was evaluated (for more information, see the Supplementary
Information in Table S2), according to the disease descriptors [28–30]. It should be noted
that the consolidated PB dataset comprised 19,056 records in the original database. Finally,
both datasets were enriched with presence and absence variables, obtained from the
original data.

2.4. Data Quality Management and Visualization Tools for Rice Disease Intensity Estimators

The analysis, processing, and visualization of the data were performed using a multi-
phase method. (i) Cleaning and data quality stage: the validation and verification of data
according to the phenological stage were conducted. In this process, the spatial location
and homogenization of coordinates were confirmed; when there were missing data, central
regions were applied by village and/or municipality where the information was available.
Additionally, disease level values were adjusted, removing those that were not true. Miss-
ing data for the evaluation dates and phenological stages were estimated, as long as the
data for sowing dates, variety, or data for previous stages per farm and year that allowed
the estimation were available. (ii) Inclusion of new variables: all pieces of monitoring data
were associated with intensity measures, such as presence (1) or absence (0) and incidence,
determined as the ratio between the number of stems affected by the disease and the num-
ber of stems evaluated and the severity, quantified according to Fedearroz’s internal criteria
and protocols, which were previously validated by the technical staff. (iii) With this clean
dataset, an exploratory analysis and data visualization using some descriptive metrics were
conducted, for which the mean and its graphic representation using the boxplot diagram
were used.
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In the analysis of the databases, imbalances were identified in the composition of the
data, which generated biases attributed to imbalances in the size of the samples obtained
for each year, department, variety, and phenological stage. Therefore, the weighted means
of the variables were calculated using a weighting parameter specific to each database,
considering the weight of each piece of data captured based on its subpopulation by de-
partment, year, variety, and phenological stage of the cultivation in which it was monitored.
For this process, theoretical bases of the weighting method were used [31]. Equation (1)
was used for the calculation:

x =
∑n

i=1 (xi × w i)

∑n
i=1 wi

(1)

x: where weighted means of the variables. wi = corresponds to the weight of each weighting
factor (year, department, variety, and phenological stage). xi = value of the variable
analyzed (incidence and severity).

2.5. Part B: Climate Data Management and Analysis
2.5.1. Management of Data from Weather Stations

A vector-type geographic layer was unified with the coordinates of the plots monitored
by Fedearroz, on which circular buffers of 30 km (+/−100 m altitude) were projected for
the variables associated with minimum temperature (TMIN), average temperature (TAVE),
maximum temperature (TMAX), and potential evapotranspiration (ET), while a buffer of
15 km was projected for precipitation (PCPT). A digital elevation map for Colombia (dem)
was used at a resolution of 30 m [32], in which the stations present and the buffer range were
validated according to the altitude. The representative area of the meteorological stations
was calculated based on the coordinates (latitude and longitude) assuming the sphericity
of the Earth and taking as a reference the minimum potential variations of temperature and
precipitation as a function of elevation for the low tropical zones [33,34].

Based on the abovementioned ideas, another set of meteorological stations from
the IDEAM free dataset (http://dhime.IDEAM.gov.co/atencionciudadano/ (accessed on
1 November 2021)) was established and, with the help of the buffer projections, the stations
located within the study area were selected. The data were extracted from climatological
normals for the periods of 1971–2000 and 1981–2010 from IDEAM. Subsequently, the precip-
itation data for both normals were compared to determine whether there were significant
differences between the two periods and, where this was the case, these climatologies
were specifically analyzed. This process was conducted to guarantee consistency in the
weather patterns. To identify changes in the weather and determine whether these were
due to errors in the data processing, a comparative analysis with the neighboring climatol-
ogy was performed. Based on this, we decided to work with the 1971–2000 climatology,
which presented the best performance based on the relatively low amount of variation and
adjustment needed.

Subsequently, the concept of web scraping was applied to extract the data from the
stations located in the previously described buffer zone for the following variables: PCPT,
TMIN, TAVE, and TMAX for the periods 1971 to 2000, and ET for 1981–2010. In the case of
ET, this period was used because, since the 1981–2010 climatology results, the IDEAM has
reported information on this estimated variable. Web scraping consists of a technique in
which the data located on freely accessible websites are extracted and stored in a central
local database, spreadsheet, or file with multiple extensions. In this process, the URL of the
website is used for this purpose, which, in addition to automating the process, has a strong
impact on optimization over time and data management [35].

The distribution of the stations was heterogeneous, In accordance with the rice-
producing areas in Colombia. The data were used from 214 meteorological stations for
PCPT, 227 stations for ET, and 82, 84, and 79 stations for TMIN, TAVE, and TMAX, respec-
tively. The stations consulted for each variable are foupresentednd in the Supplementary
Materials associated with Table S4.

http://dhime.IDEAM.gov.co/atencionciudadano/
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2.5.2. Management of Climate Data from Estimates or Synthetic Data

Two synthetic climate datasets were validated, namely, (1) Climatologies At High
Resolution For The Earth’s Land Surface Areas, known as CHELSA V 2.1 [15], and (2) Global
Climate Data, known as WORLDCLIM V 2 (WC) [15]. This was performed with the aim
of enabling the use of the climatic data of variables at fine spatial resolutions (~1 km) for
the climatic characterization of rice zones based on clustering and on the determination of
homologous and climatically heterologous zones that are described in later sections.

CHELSA is an estimated dataset that originates from downscaling the ERA-Interim
climate re-analysis to a 1 km resolution [14]. To improve the resolution, precipitation
accuracy, and downscaling, orographic predictors, including wind fields, valley exposure,
and boundary layer height were incorporated, with subsequent bias corrections. The
resulting data consist of monthly time series of temperature and precipitation over the
period of 1979–2018 [36]. Meanwhile, WORLDCLIM V 1.4 corresponded to a set of average
monthly interpolated climate data from meteorological stations on a multi-resolution
grid [37]. Its origin is based on a dataset that consists of the precipitation records of
47,554 locations, average temperatures for 24,542 locations and minimum, and maximum
temperatures for 14,835 locations; in all cases, the locations were distributed around the
world [15,37]. In version 2.1, it was refined to include additional stations, other factors,
such as cloud cover and distance to the ocean, and high-resolution datasets on vapor
pressure [15].

Data extraction from both data sources was performed using Worldclim V2.1 and
CHELSA V2.1 web-scraping methods for the multi-year monthly climatologies for 1971–2000
and 1981–2010, respectively, and for the IDEAM stations in the same location. The selected
meteorological variables were PCPT, ET, TMAX, TAVE, and TMIN.

2.6. Evaluation of the Quality of Climatological Data from Estimates vs. In Situ Data

A comparative analysis was conducted between the two synthetic datasets with those
observed in situ of the climatological normals. In the realm of data analysis, assessing
and comparing the quality of different data sources is of paramount importance. Various
metrics have been developed to facilitate this process, allowing analysts to gain an insight
into the degree of variation and approximation between datasets. For this, significant
differences were analyzed, and the error of the differences was subsequently calculated.
For this purpose, five different metrics were calculated and used to validate the estimated
data. (i) Pearson’s correlation coefficient (r), which establishes the relationship between
the observed and estimated data, is a widely used metric that quantifies the strength and
direction of the linear relationship between two variables; it provides a measure of how
closely their data points are aligned [38]. (ii) Coefficient of determination (R2), in which
the best possible score is 1.0 and can be negative when the estimation model is arbitrarily
worse [39], is used to establish the proportion of variation explained. In the context of
comparing two data sources, a high R2 value indicates that one dataset is a good predictor
of the other, while a low value suggests a poor fit. (iii) BIAS calculates the differences
between the estimate (data from Chelsea and Worldclim) and true value (in situ data); it
is a metric that evaluates the systematic errors or discrepancies between two datasets. It
provides insights into the overall deviation between the datasets, which may arise from
measurements or the data collection values processed [40]. (iv) Mean absolute error (MAE)
is a metric that quantifies the average magnitude of errors between two datasets. It provides
a measure of the absolute differences between corresponding data points in the datasets.
A smaller MAE indicates less variations or errors between the datasets, while a larger
MAE suggests a greater dissimilarity [41]. (v) Root mean square error (RMSE) accounts for
both the magnitude and spread of errors, providing a more comprehensive evaluation of
variation. Lower RMSE values indicate a greater similarity between datasets, while higher
values signal a greater dissimilarity, the last of which is very sensitive to the presence of
extreme items in the data [41].
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By analyzing the performance of the datasets, it was established that CHELSA should
be used for the PCPT and ET variables and WC for TMIN, TAVE, and TMAX. However, it
was necessary to calculate a simple linear regression model to adjust the variables selected
and estimated by WC, based on the error of differences with the data from the multi-year
monthly observations recorded by the IDEAM. To this end, the parameters used to make
the adjustment and correction of the bias were those associated with the equation of the
regression model line (Equation (2)). The adjustment factor was obtained per station and
applied to all the data extracted from WC that were within a radius of influence of 30 km
from each station. Once the adjustment was performed, the normals were unified to apply
them to the clustering. In cases in which there was no influence station, they were not
adjusted, taking the extracted data for the cluster analysis.

Y = β0 + β1X1 + ε (2)

where Y corresponds to the multi-year monthly value of the variables observed in situ;
X1 to the monthly multiannual value of WC; β1 to the adjustment factor for each station,
which is multiplied by the X value; and β0 to the adjustment value, called the y-intercept,
which is added to the value of BX to obtain the Y value.

To achieve a better climate characterization, the PCPT, ET, and temperature data,
previously validated and adjusted, were complemented with other climatological vari-
ables obtained from estimated datasets that were considered to be of agricultural and
phytosanitary importance for the purposes of the study (Table 1). Likewise, the calculation
of two indices was included: (i) the aridity index [42,43], which expressed the relationship
between PCPT precipitation and ET potential evapotranspiration obtained by the Penman–
Monteith method, and (ii) an index based on the equations and the methodological report
described by [44]. From the mathematical expressions, the thermal oscillation index was
proposed, which enabled the elucidation of the oscillation of temperatures, calculated
as a difference in maximum and minimum temperatures, normalized with the average
temperature (Equation (3)):

Thermal oscillation index =
TMAX − TMIN

TAVE
(3)

Table 1. Meteorological variables extracted from the CHELSA and WORLDCLIM datasets.

Variable Abbreviation Physical Unit Period Periodicity Source

Precipitation PCPT mm 1981–2010 Monthly
multiannual CHELSA

Minimum temperature TMIN ◦C 1971–2000 (WC) y
1981–2010 (CH)

Monthly
multiannual

CHELSA and
Worldclim

Average temperature TAVE ◦C 1971–2000 (WC) y
1981–2010 (CH)

Monthly
multiannual

CHELSA and
Worldclim

Maximum temperature TMAX ◦C 1971–2000 (WC) y
1981–2010 (CH)

Monthly
multiannual

CHELSA and
Worldclim

Solar radiation RSDS MJ m−2 d−1 1981–2010 Monthly
multiannual CHELSA

Evapotranspiration
potential
(Penman–Monteith)

ET mm 1981–2010 Monthly
multiannual CHELSA

Relative humidity RH % 1981–2010 Monthly
multiannual CHELSA

Vapor pressure deficit VPD hPa 1981–2010 Monthly
multiannual CHELSA

Total cloud cover TCC % 1981–2010 Monthly
multiannual CHELSA
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Within the proposed methodological process, the coherence of the magnitudes and
spatial variability of the variables RSDS, RH, VPD, and TCC were validated. However, their
performance was not analyzed with respect to the in situ data, since, in order to conduct
this analysis, complete series (30 years or more) were required and, when reviewing the
IDEAM data, the stations available with, for example, the solar radiation variable, had
data available for 20 years or less [45]. Regarding the other variables, when these were
estimated, a bias could have occurred due to the methodology, missing data, and errors
inherent in the process that could have affected the performance analysis.

2.7. Practical Application of Climate Data Management: Agroclimatic Zoning for Rice-Producing
Regions in Colombia

Each plot evaluated within the Fedearroz phytosanitary monitoring program was
assigned the values of the climatological normals of the variables originating from the esti-
mated datasets (Table 1), which were previously unified and adjusted. This was performed
to facilitate the classification of homologous or heterologous rice-producing areas, based
on their agro-climatic characteristics, making it possible to group the data analysis and find
the relationships between the distribution of pathogens and climatic characteristics that
determined each area.

Based on the analyses performed, it was established that the datasets should be used
in combination to perform climate clustering. Therefore, an adjusted WC was used for
temperatures (minimum, average, and maximum) and CHELSA for the other variables.
Considering the analyses conducted, the estimated climate datasets constituted an op-
tion for performing spatial analyses of homogeneous areas, after validating the data and
adjusting them if technically feasible.

It was proposed to conduct this classification because, in the rice production sector
in Colombia, there is currently no zoning of producing regions based on agroclimatic
characteristics and multiple variables. The current zoning applied by the rice-growers’
union is empirical and considers some geographical characteristics, as shown in Figure 1.
The determination of climatic homologous zones is a concept that has been applied with
the objective of characterizing climate at a macroscale (region, country, and other levels),
thus being able to identify multiple important phenomena, such as climate risk zones,
differential impact of climate variability and change phenomena, and optimal areas for
planting plant species [46,47]. This analysis was conducted under multiple approaches,
such as multivariate statistics and machine learning based on unsupervised classification
tools, where the use of the K-means algorithm was widespread [46,47].

In our work, the clustering methodology used by [48] was taken as a reference, with
some variations considered basic to improve the methodological adjustment. Multivari-
ate statistics were used in a multistage process as follows. (i) Application of principal
component analysis (PCA) to determine the important agroclimatic variables in the clas-
sification and grouping of producing areas (Table S3). In addition, PCA could be used to
enable us to graphically elucidate the variation explained by the components and their
interrelationship with the clusters employed in our analysis. PCA is a statistical procedure
that seeks to reduce the dimensionality of a dataset by calculating new variables called
principal components as linear combinations of the original variables [49]. (ii) To group the
areas (homologues and heterologous zones based on climatic varication), a cluster analysis
was performed, a process based on the differences of various types of objects and that
uses distance regulation functions to produce unsupervised classification models [50]. For
this, the K-means grouping method was implemented in the sklearn library run in the
Colab Python environment [51]. This method consists of an algorithm that separates a
set of data into k groups based on the distance between the data and the central regions
of the groups [52]. This produces a separation of the objects into groups from which the
metric to be minimized can be calculated [52]. K-means is a widely recognized and em-
ployed method for its suitability for climate clustering [46,47]. The use is supported by
the following key justifications: simplicity and speed, interpretability, scalability, proven
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effectiveness, flexibility in number of clusters (K), robustness, and availability in tools and
libraries [52,53]. In addition, for this process, the cluster number to be determined is a
critical factor for obtaining good results. Therefore, to establish the grouping criterion,
the elbow method was applied, which consisted of examining the percentage of variance
explained based on the number of clusters [54]. The “elbow method” is a widely used
technique in data analysis and clustering to determine the optimal number of clusters (K).
The process involves executing the K-means algorithm with a range of K values, typically
from 1 to a predetermined upper limit [54]. For each K value, the algorithm computes the
sum of squared distances (often referred to as the within-cluster sum of squares between
data points and their assigned cluster centroids) [54]. Subsequently, once the clusters were
generated, the clusters were spatially projected onto the rice-producing areas. This process
was validated by the Fedearroz technical team, confirming that the analytical process
agreed with the empirical groupings, but with a higher spatial resolution and with the
general climatic classification of the rice-producing areas in Colombia. (iii) Finally, for each
cluster, the attributes of the agroclimatic variables that were important for the climatic
characterization that determined each cluster were described.

2.8. Basic Analysis of the Information, Libraries, and Software Used

When considering the large amount of data and the option of obtaining variables
derived from these and other sources for the purpose of this study, a data science approach
was applied (outlined in the Introduction). For this, several tools were applied to clean,
visualize, and analyze the data. The free software Python 3.12.0 was used in the Colab,
Visual Studio Code, and Spyder environments. Specific functions of the Pandas libraries
were applied for data management, Numpy was used for numerical calculations and the
data analysis, Matplotlip for the creation and customization of graphs, and Sklearn [51] as
a machine learning and statistical modeling tool. This last library was applied to perform a
regression analysis, error analysis, grouping, and dimensionality reduction. Additionally,
to manage the geographic data, the free software Qgis 3.16.6 [55] was used to extract
gridded data and spatialize the evaluated variables.

3. Results
3.1. Data Gestion Tools Used

Our results present the advantages of data science tools’ implementation, specifically
tailored for the management of data stemming from phytosanitary monitoring and climatic
stations. This meticulous process enabled us to assess data quality, identify and elimi-
nate outliers, address missing data, compute new variables, and efficiently concatenate
databases, among other essential tasks. To achieve this, we harnessed the power of vari-
ous open source library functions designed for Python and executed them across diverse
environments.

The workflow we implemented proved to be a game changer, as it facilitated a swift,
accurate, and partially automated data management process. This efficiency was made
possible by harnessing the numerous advantages offered by tools available in libraries,
such as Pandas, Matplotlib, Numpy, Plotly, Seaborn, Sklearn, and others. Our utilization of
these resources not only expedited data handling, but also enhanced the precision of our
analysis, ultimately contributing to the robustness and reliability of our findings.

3.2. Part A: Data Quality Management and Visualization Tools for Rice Disease Intensity Estimators

A descriptive analysis of the epidemiological data associated with the SP and PB
monitoring programs was performed. It was observed that, in 2016, a greater number
of samplings were conducted and, consequently, an increase in the presence of diseased
plants was observed compared to the other years analyzed (Figure S1). The abovemen-
tioned results occurred due to the implementation of a special monitoring program, which
allowed the sampled population to increase in that year. By using the boxplot diagram as a
visualization tool, it could be validated that medians close to zero predominated in most
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diseases and there was a high deviation and variation of the data considering the amount
of extreme data (Figure S2).

The visualization based on the weighted means of the data from SP indicated that,
during all phenological stages, the disease with the highest incidence was brown spot (BS),
with values between 35% and 40%, followed by leaf blast (BI), which, from stages 2 to 6,
presented incidences between 18% and 28%. During the stages considered as reproductive,
specifically 5 to 8, the most relevant diseases in addition to BS were crown sheath rot
(CSR), BS, rice sheath rot (ShR), and leaf scald (LS), with incidences between 18% and 40%
(Figure 3a).
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tion. Phenological stages classified as (2) sowing to emergence; (3) seedling to the start of tillering;
(4) maximum tillering to start of floral primordium; (5) start of floral primordium to start of budding;
(6) maximum clogging to start of flowering; (7) flowering with doughy grain; and (8) harvest.
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Regarding the average severity of the diseases evaluated in the SP program, the results
indicate that BI on leaves presents the highest levels, with values between 4% and 8%
during stages 2 to 4. Meanwhile, in the reproductive stages 5 to 8, the BS, rice sheath rot
(ShR), and CSR diseases present severities between 8% and 15%, and grain spot between
7% and 10% (Figure 3b).

3.3. Part B: Management of Climatological Data from In Situ and Estimated or Synthetic Stations

When comparing the climatological normals of precipitation for the periods of 1971–2000
and 1981–2010 from in situ stations, consistency in the values and patterns of precipitation
were found in most of the stations. Specifically, in 96.3% of the analyzed stations, the R2 was
greater than 80%, and in 97% the r was greater than 0.9 (Figure 4a,b). However, six stations
were identified that, in the climatological period of 1981–2010, presented anomalies with
respect to the period of 1971–2000, which physically did not maintain the precipitation
patterns of those areas with respect to the predominant large-scale atmospheric circulation.
This behavior was evaluated with the R2 statistics, whose value tended to be 0, while that of
r was less than 0.2 (Figure S3a,b). Additionally, regarding the analysis of the error metrics,
an average of the RMSE and MAE was obtained for the precipitation variable between 10
to 12 mm, with more than 50% of the data being less than 11 mm (Figure S3c).
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Figure 4. Performance of the annual cumulative values of the estimated datasets (a) CHELSA and
(b) Worldclim with respect to the IDEAM in situ data for the variables PCPT, TMIN, TAVE, TMAX,
and ET, and spatial distribution of the annual cumulative values of PCPT (mm), TMIN, TAVE, TMAX
(◦C), and ET (mm) climatologies of the (c) CHELSA and (d) Worldclim datasets.
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With respect to the estimated or synthetic data, the spatial distribution of the values of
the variables extracted from the datasets for the study area was analyzed. As expected, a
decrease in the temperature with an increasing altitude was evident. CHELSA reproduced
lower minimum and maximum temperature values than WC for the study area. Regarding
the precipitation in the distribution maps, there are important differences between CHELSA
and WC, which can be attributed to the origin of the data, the estimation method, the related
variables, the bias corrections, or other factors (Figure 4c,d).

For the specific study area (rice-producing areas in Colombia), the satisfactory perfor-
mance of the annual values of the evaluated datasets was presented, considering the values
of r and R2. When comparing the estimated precipitation with respect to observations from
in situ stations, R2 values of 0.70 and 0.72 were obtained with the data from the CHELSA
and WC sources, indicating that the variation of the observed annual PCPT correlated with
the estimated variation. Regarding the minimum, average, and maximum temperatures,
an acceptable performance was observed for both datasets, with R2 values between 0.65
for TMAX estimated with CHELSA, and 0.84 for the same variable with WC (Figure 4a,b).
Meanwhile, the ET estimated by CHELSA had the worst performance, with an R2 of 0.02
(Figure 4a).

In general, it was observed that the datasets preserved, in most of the points compared,
the seasonality of the climatologies of precipitation, evapotranspiration, and temperature.
It is important to highlight that CHELSA tends to represent the rainiest areas in the country
better than WC. This includes locations in the Pacific and Orinoquía regions, as well as in
the Amazon foothills, among other regions, whose annual rainfall ranges between approxi-
mately 4000 and 11,000 mm. (Figure 4c). Meanwhile, WC better represents temperature
values, since CHELSA tends to represent lower values in this variable (Figure 4d).

3.4. Evaluation of the Quality of Climatological Data from Estimates vs. Data from In Situ Stations

When analyzing in detail the comparison of the values of the monthly PCPT climatolo-
gies between the stations (214 in total), it was found that CHELSA presented an R2 ≥ 0.70
for 66.8% (143) and WC for 63.5% (136) of the stations. Meanwhile, the r was greater
than 0.7 for 93% (199) of the stations evaluated for CHELSA and for 94% (201) for WC
(Figure 5a). However, the bias values were between −143 to 196 mm with an approximate
mean of 20 mm for CHELSA and 13 mm for WC (Figure 5b). At a general level, the error
values are acceptable, considering that different methodological processes may occur in
the calculation of climatological normals, as a result of aspects related to the characteristics
of the time series, number of observations, missing data, and errors in the recording and
processing of the data. Meanwhile, the extreme data reported in the metrics are due to the
stations that present anomalies between the climatological normals.

When analyzing the monthly behavior and seasonality of temperatures (minimum,
average, and maximum) estimated by the datasets with respect to the observed data, it
was evident that WC presented a better approximation than CHELSA, considering the
following results for each variable: TMIN estimated by WC presented an R2 ≥ 0.7 for 9.5%
(8) of the stations, while in CHELSA, the corresponding figure was 10.7% (9) (Figure 5e).
However, r ≥ 0.7 occurred in 72.3% (60) of the stations for CHELSA and in 79.5% (66) for
WC (Figure 5e). TAVE, on the other hand, had an R2 ≥ 0.7 for 25% (21) of the stations
evaluated for CHELSA and 42.85% (36) for WC. Values of r ≥ 0.7 were presented in 84.5%
(71) of the stations for CHELSA and in 95.23% (80) for WC (Figure 5c). Regarding the
TMAX, the WC estimation was obtained for 50.6% (40) of the stations with R2 ≥ 0.7, while
CHELSA had this level of the coefficient in only 8.86% (7) of the evaluated stations. In
this regard, for estimates of the variable in CHELSA, 89.87% (71) of the stations presented
r ≥ 0.7, and with WC, the corresponding figure was 97.5% (77) (Figure 5g).
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The analyses of the RMSE and MAE error metrics used confirm that CHELSA presents
a worse performance than WC, in relation to TMIN, TAVE, and TMAX (Figure 5d,f,h).
Specifically, for the TMIN variable estimated by CHELSA, the values of MAE and RMSE
both range between 0.18 and 3.34 ◦C with an approximate average of 0.89 ◦C, while for the
estimates with WC, they are between 0.10 and 2.92 ◦C, with an average of 0.68 ◦C (Figure 5f).
For TAVE, the value of the errors is between 0.13 and 4.45 ◦C, with an approximate average
of 0.80 ◦C, while WC presents values between 0.04 to 2.96 ◦C, with an approximate average
of 0.5 ◦C (Figure 5d).

The values evaluated for TMAX with CHELSA present a magnitude of errors between
0.35 and 6.7 ◦C, with an average of 2.3 ◦C, while with WC, the values are between 0.1
and 3 ◦C, with an average value of 0.6 ◦C (Figure 5h). Regarding bias, the value of
this for TMIN estimates was between −2.38 and 1.95 ◦C, with an approximate mean of
0.3 ◦C for both datasets (Figure 5f). The TAVE values were between 1.5 and 2 ◦C, with an
approximate average of 0.27 ◦C (Figure 5d). The TMAX estimates had a greater magnitude
bias, especially with CHELSA, where it was between 0.8 and 6.7 ◦C with a mean of 2 ◦C,
while for WC, this was between −3.0 and 1.5 ◦C with a mean of −0.2 ◦C (Figure 5h).

When evaluating the estimation of the ET data for CHELSA with respect to the
observed data, it was evident that the estimated ET for most of the stations presented an R2

around 0.1 (Figure 6b). However, r ≥ 0.7 occurred in 70% (159) of the stations (Figure 6a).
The analyses of the RMSE and MAE error metrics used indicated that CHELSA presented a
worse performance, given that the MAE and RMSE values ranged between 4 and 40 mm
with an approximate average of 18 mm, while the BIAS ranged between −38 and 42 mm
(Figure 6c).

To obtain a better performance and enable the use of the WC temperature estimates,
adjustment factors based on linear regression were calculated and applied to the tempera-
ture values and thus reduced biases. When conducting this process, it was observed that
the adjusted WC presented a better approximation than the initial WC. Specifically, the
following results were obtained for each variable: TMIN for adjusted WC presented an
R2 ≥ 0.7 for 63.4% of stations (52 in total) (Figure 7a); for TAVE, R2 ≥ 0.7 for 99.2% of the
evaluated stations (75) (Figure 7c); and, finally, for TMAX, R2 ≥ 0.7 was obtained for 90.4%
of the stations (76) (Figure 7e).

In addition to the results obtained, when evaluating the performance of the adjusted
WC, it was found that the bias tended to zero (0) and the errors were reduced for all
variables (Figure 7b,d,f). The values of the RMSE and MAE metrics for TMIN were between
0.06 to 0.5 ◦C, with an approximate mean of 0.18 ◦C (Figure 7b). In TAVE, the values of both
metrics ranged between 0.03 to 0.4 ◦C with an approximate mean of 0.15 ◦C (Figure 7d).
For TMAX, they were between 0.06 to 0.5 ◦C, with a mean around 0.2 ◦C (Figure 7f).
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Figure 5. Spatial distribution and funnel plot with frequency of the Pearson’s correlation (r) and
coefficient of determination (R2) for each dataset of climatological normal estimates by CHELSA
and Worldclim WC in relation to the data observed in situ from IDEAM for (a) PCPT, (c) TAVE
(e) TMIN, (g) TMAX. Additionally, boxplot with the calculated values of the error metrics RMSE,
MAE, BIAS obtained from the comparison between the in situ IDEAM stations and CHELSA and
Worldclim for each variable (b) PCPT (mm), (d) TAVE (◦C), (f) TMIN (◦C) and (h) TMAX (◦C). Blue
color: WorldClim. Green: Chelsa.
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Figure 6. Spatial distribution and funnel plot with frequency of the (a) Pearson’s correlation (r) and
(b) coefficient of determination (R2), and (c) boxplot with the calculated values of the error metrics
RMSE, MAE, and BIAS, obtained from the comparison between the climatological normal of ET (mm)
estimated dataset for CHELSA in relation to the data obtained from the IDEAM in situ station. When
comparing the results for R2 in relation to the Pearson’s correlation coefficient r, it is observed that the
R2 values vary depending on the station and area in the country. Figure S4 shows a visualization of
the behavior of the multiannual monthly climatologies of precipitation according to R2 and r values.
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3.5. Agroclimatic Zoning for Rice-Producing Regions in Colombia

Based on the elbow method, it was determined that the optimal number of groups, or
the climatic cluster, for the rice-producing areas in Colombia was four, when considering
the climatic variables evaluated (Figure 8a). It was found that the first component, com-
posed mainly of the precipitation and annual accumulated evapotranspiration variables
(Table S3), explained 97.7% of the climatic variance of these areas (Figure 8b), observ-
ing a high variability in these two variables for each climatic cluster (Figure 9), which
allowed groupings of climatically homologous zones based to their specific characteristics
to be generated.

Cluster 1 includes plots at altitudes between 2 and 1253 m above sea level, located
mainly in the northwest, termed Bajo Cauca by Fedearroz, in the north of the Caribbean
region and in a large part of the Zona Centro (Figure 8c). These regions are characterized
climatically by presenting the lowest annual accumulated PCPT, with values between
700 and 2200 mm per year (it should be noted that these areas may present a difference
in the distribution of annual rainfall, which was not considered), with an aridity index
between 0.5 and 1.8. In this area, the TMAX ranges between 26 and 35 ◦C, and the TMIN
between 21 and 29 ◦C. The ET is between 1100 and 2100 mm per year, RSDS between
15 and 20 MJ m−2 day−1, and DPV between 5 and 18 hPa (Figure 9).

Cluster 2 includes plots with altitudes between 20 and 1370 m above sea level, lo-
cated mainly in the Llanos Orientales, southern Bajo Cauca and eastern Santanderes
(Figure 8c). The accumulated annual PCPT ranges between 2800 and 3800 mm per year,
with an aridity index between 1.5 and 2.5, TMAX ranging between 25 and 33 ◦C, TMIN
between 17 and 22 ◦C, ET between 1300 and 1800 mm per year, RSDS between 16 and
19 MJ m−2 day−1, and DPV between 8 and 18 hPa (Figure 9). Cluster 3 is composed of
plots that are at altitudes between 12 and 1450 m above sea level, located mainly north of
the Llanos Orientales, which includes a large part of the department of Casanare, eastern
Meta, and some small areas in Bajo Cauca and Costa Norte (Figure 8c). This group presents
an annual accumulated PCPT that ranges between 2000 and 3000 mm per year with an
aridity index between 1.2 and 2.5, TMAX between 25 and 35 ◦C, TMIN between 15 and
23 ◦C, ET between 900 and 1800 mm annually, RSDS between 12 and 20 MJ m−2 day−1,
and DPV between 7 and 18 hPa (Figure 9)

Finally, cluster 4 is at altitudes between 178 and 790 m above sea level, located mainly
in what is known as Piedemonte Llanero, in the department of Meta (Figure 8c). It presents
the highest annual accumulated PCPT, which ranges between 3800 and 5400 mm annu-
ally, with an aridity index between 2.5 and 3.5, TMAX between 27 and 32 ◦C, TMIN
between 18 and 22 ◦C, ET between 1300 and 1800 mm annually, RSDS between 18 and
20 MJ m−2 day−1, and DPV between 8 and 18 hPa (Figure 9).
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Figure 8. (a) Optimal number of clusters or homologous climatic zones for rice production in
Colombia, obtained using the elbow method. (b) Scatterplot by group and variance explained by each
principal component obtained from the analysis. (c) Spatial distribution of the homologous climatic
zones of rice production obtained from the K-means clustering analysis based on climatological
variables and the bottom of the reference image with the grouping of Fedearroz areas.
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4. Discussion
4.1. Management of Epidemiological and Climatic Data in Rice Production Systems

We were able to have versatile and automated elements for the collection, storage,
processing, and evaluation of large-scale data through the application of a multiple set of
data science tools in a responsible way and under a step-by-step protocol. This, in turn,
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enabled agile and timely analyses and decision-making behavior in the context of the
phytosanitary and comprehensive management of rice cultivation based on the integration
of epidemiological and climatological monitoring. This new field represents an excellent
opportunity, given its applicability in basic sciences, such as atmospheric and applied
sciences, including agrometeorology, agronomy, and especially in epidemiology, where
advances have been achieved with excellent results [53,56].

Data management for epidemiological information in rice cultivation enabled the
identification of temporal patterns and phenology based on the levels of incidence and
severity for the period of analysis, allowing us to validate that, although pathogens were
present throughout the crop cycle, their impact occurred at critical periods [28]. In this
regard, the reproductive and maturation phases increased the intensity of diseases, such
as BS, CSR, and ShB, while in the vegetative period, there was an increase in BI, a finding
that is consistent with previous reports [57]. It is important to highlight that the results
obtained show the intensity values of the different pathologies evaluated, which does not
necessarily mean that they are the diseases that have the most economic importance, given
that, in many cases, the producer performs the strict control of those pathologies that have
a potential to damage crops and cause losses. An example that illustrates this point is BI
on the leaf and stem, which is considered the disease that most significantly limits the
crop [58].

On the other hand, the evaluation of the estimated datasets from the CHELSA and WC
sources showed that the rainiest areas of the country, especially the Pacific and Orinoquía
regions, and areas of the Amazon foothills close to the Andes Mountain range were
best represented by CHELSA. This may have been because this database captured the
topographic heterogeneity of precipitation at small scales and showed a more consistent
relationship between the terrain and the resulting precipitation patterns, while for WC, it
produced poor correlations between elevation and precipitation [14]. These results coincide
with those reported in [59].

Regarding the temperature represented by the datasets, TAVE values of around 27 ◦C
can be observed in the rice-growing areas, especially the Llanos Orientales, Costa Norte,
and Santanderes regions, which match the findings of [60]. This indicates that these regions
present a homogeneous relief, composed mainly of extensive cultivated grass savannahs,
especially in the Llanos Orientales. Due to the abovementioned points, the distribution of
the average air temperature was very uniform, presenting values that varied around 25 ◦C.

The r for the PCPT presented values above 0.7 for both sets of data estimated at most
observed points. However, the behavior of R2 indicated that, depending on the location
and dataset, the values tended to be overestimated or underestimated, thus generating
biases, given that said coefficient was considered hypersensitive to external values and
insensitive to additive and proportional differences between the model predictions and
measured data, as established by [61].

The synthetic databases evaluated mostly maintained the seasonality of the meteo-
rological variables analyzed (PCPT, ET, TMIN, TAVE, and TMAX). Regarding the PCPT
from CHELSA, this presented better behavior in terms of monthly magnitudes, although
it presented slightly higher errors and biases than WC, This was because, whether the
variable was calculated or measured indirectly for both CHELSA and IDEAM, there may
have been aspects related to the characteristics of the time series, number of observations,
missing data, and errors in the recording and processing of the data, which generated a
greater bias between estimation and observation values.

CHELSA 2.0 based the data for this variable on ERA5, including orographic wind
effects, combined the height of the planetary boundary layer to approximate the oro-
graphic effect on precipitation intensity, and included cloud cover information derived
from MODIS [62]. On the other hand, WC was based on the data from weather stations
that were interpolated with latitude, longitude, and elevation as independent variables,
and, in version 2.1, it was refined to include additional stations and other factors, such as
cloudiness, distance to the ocean, and satellite-derived covariates [15]. Other studies ob-
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tained similar results, finding a satisfactory performance of CHELSA for PCPT in mountain
areas of the Himalayas, Brazil, and Colombia [16,59,63].

When analyzing the monthly behavior and seasonality of TMIN, TAVE, and TMAX,
it was evident that the monthly seasonality of the variables was preserved in both sets of
data. However, there were considerable biases between the estimated temperature values
with respect to the observed ones, especially for TMIN and TMAX. This was the case for
both datasets, with CHELSA presenting a worse performance than WC for the zone of
study. This was attributed to local influences on the climate, which were not included in the
estimated dataset, since, due to the origin of the downscaling from ERA5 and the differences
between the altitude and location of the stations, uncertainties inherent to the process arose.
This coincided with some previously reported results where, when evaluating the reliability
of ERA5 in the replication of average and extreme temperatures throughout Europe, it was
found that this tended to underestimate the temperature values [64]. In another study, in
the Urabá area in Colombia, when comparing CHELSA 1.2 and WC 2.0, it was found that
CHELSA presented a worse performance for average temperatures [16].

4.2. Agroclimatic Zoning for Rice-Producing Regions in Colombia

The application of gridded data from estimates of a fine spatial resolution (~1 km),
together with the application of the K-means method, allowed for an exhaustive, quantita-
tive, and coherent classification of rice-growing areas in Colombia based on the existing
spatial climate variability. Traditionally, Fedearroz classified five areas as rice-growing re-
gions based on their agrological and geographical conditions [27]. However, the clustering
obtained determined four homologous areas that partially differed from the classification
established by Fedearroz, given that it included the spatial variability of climate and not
just geographical delimitation.

Annual precipitation, evapotranspiration, and aridity index were the variables that
had the greatest influence on the generation of homologous and heterologous climate
zones for the rice production system in Colombia. These variables were related to one
another and were used with the zoning method conducted at other latitudes [65]. The
annual accumulated value of the PCPT was an important factor for the classification of the
homologous rice-growing zones, which was the basis for the determination of dryland and
irrigated production systems. The high variability found in this variable was associated
with the behavior and distribution of rainfall in Colombia, given that the monthly level
was determined by the cloudiness systems associated with the local circulation of each
slope and, in turn, was conditioned by the altitude, the orientation of the mountains, and
the convective activity in each locality [66].

The rice-growing areas analyzed included areas with a single rainy period in the year
and unimodal behavior. This was particularly the case in the Llanos Orientales region,
which had maximum rainfall levels in the months of June and July [60] and was where
clusters 2, 3, and 4 were found. This is also the case for the regions that directly receive
trade winds from the north, such as Bajo Cauca and part of Costa Norte (clusters 1, 2, and 3),
which present a unimodal distribution with a dry period defined between December and
March [60]. Meanwhile, bimodal distributions, with two periods, occurred in the regions
through which the intertropical confluence zone (ITCZ) passes twice a year [60], which, in
the context of this study, mainly comprised the Zona Centro (most of cluster 1 and some
parts of cluster 3). On the other hand, some regions did not present a defined monomodal
or bimodal distribution, but rather sustained rains with little variation from one month to
the next [60]. These areas included the upper basin of the Magdalena River at latitudes
lower than 3◦ in the department of Huila, which was in cluster 1.

In general, the climatic clusters found coincided with the climatic demands of rice
cultivation for the areas concerned. As such, TAVE, depending on the phenological
stage, can range between 18 to 33 ◦C, solar radiation between 300 and 700 Cal cm day
(12.6–29.3 MJ m−2 day−1), and PCPT can be higher than 1800 mm [67,68]. In studies con-
ducted in northern Bangladesh, it was reported that the highest production was achieved
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with rainfall between 1800 and 2500 mm, given that with less rainfall, there was drought
stress, while in the opposite situation of >2500 mm, excess rainfall and flooding were
presented [69]. However, it is important to specify that such conditions are determined by
the water balances in each area and its characteristics, given that the water consumption of
crops is also affected by losses that occur due to runoff, infiltration, and evapotranspira-
tion, which in turn depend on other aspects, such as the type of soil and distribution of
rainfall. Regarding the distribution of rainfall, this is even more important than the level,
especially in vegetative states of the plant [70]. It is also important to clarify that, since
zoning was conducted based on average monthly values, it was likely that variables, such
as solar radiation, were reduced with respect to crop requirements; moreover, this variable
is influenced by cloud coverage, which changes frequently, even in one day.

In the context of a modern and sustainable agricultural utilizing data analysis tools for
the management of epidemiological monitoring and climate-related data, it is imperative to
acknowledge and address the inherent advantages previously described, but is important
to acknowledge the limitations of our study and present the potential perspectives. These
may serve as crucial reference points for interpreting our findings and also pave the way
for future investigations in this field.

In our study, the following parameters were considered as limited factors. (i) Availabil-
ity and quality of data sources, both for epidemiological monitoring and climate data.
(ii) Temporal and spatial resolutions, because the data used in our analysis may not
have been fine-grained enough to capture localized variations in rice production sys-
tems. (iii) The specific context in which rice production systems operate can vary greatly,
depending on factors, such as cultural practices, regional climate variations, and socioe-
conomic conditions. Our study may not have accounted for all these contextual factors,
which could have influenced the generalizability of our findings.

From these perspectives, we believe that that future research should emphasize the
integration of multiple data sources, including remote sensing, IoT devices, and ground-
based monitoring, to provide a comprehensive view of rice production systems. In addition,
advanced machine learning and artificial intelligence techniques can further enhance data
analysis tools. These methods can help in pattern recognition, early warning systems,
and decision support for managing rice production under changing climate conditions.
Likewise, it is necessary to conduct localized studies that account for regional variations and
the influence of cultural and socioeconomic factors, and should be integrated into long-term
studies that consider the dynamic nature of climate and disease trends in rice production
systems, which can provide a more accurate picture of the challenges and opportunities.
On the other hand, this kind of study may involve farmers, agricultural extension services,
and local communities in the design and implementation of data analysis tools that can
enhance the practicality and adoption of these systems.

5. Conclusions

Four phases of the data science process were used (data cleaning and organization;
data management; visualization techniques; and analysis only of climate data) as data
management tools for the variables associated with the epidemiological and climatology
monitoring of rice production systems. This approach made it viable, rapid, efficient,
timely, and highly automated with the help of implemented algorithms. Taking these
aspects into account, temporal patterns and changes in disease incidence and severity
were identified according to the phenological stage of rice cultivation. Furthermore, the
application of data science allowed us to characterize the climatic zones in rice-producing
areas in Colombia, evaluating and integrating different synthetic databases (CHELSA and
Worldclim) and in situ measurements. The implemented statistical clustering tools favored
the determination of homologous areas based on climatic characteristics, allowing the
grouping of rice-producing areas based on multiple variables and agroclimatic indices.
Overall, the application of data science had a positive impact on the management of the
epidemiological and climatic data associated with the rice production system, enabling a
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more effective and automated approach, which led to a better understanding and decision-
making practices in the agricultural field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy13112844/s1, Supplementary Materials: A comprehensive step-
by-step.docx. Figure S1: Quantification of the intensity variables of presence and absence due to
disease in rice in Colombia based on observations made per year in the sampling of sensor plots
(SP). Figure S2: Variability of disease incidence by phenological stage based on boxplot diagram
according to rice phenology. Phenology: (2) sowing to emergence; (3) seedling to the start of tillering;
(4) maximum tillering to start of floral primordium; (5) start of floral primordium to start of budding;
(6) maximum clogging to start of flowering; (7) flowering with doughy grain; and (8) harvest. Figure
S3: frequency of in situ stations by (a) value of the coefficient of determination R2; (b) Pearson’s
correlation (r); and (c) boxplot with calculated values of error metrics RMSE, MAE, and BIAS, obtained
from the comparison of the climatological normals of the IDEAM for 1917–2000 and 1981–2010 for
the variable PCPT. Figure S4: Spatial distribution of R2 (left) and Pearson’s coefficient (r) (right)
together with climatologies of the multiannual monthly PCPTs observed by IDEAM (blue lines) and
estimated by CHELSA (red lines) from 3 representative stations. From top to bottom: the San Luis de
Palenque station (Casanare department) with values of R2 = 0.57 and r = 0.99; Pompeya Station (Meta
department) with R2 = −0.23 and r = 0.99 values; and La Victoria Station (Huila department) with
R2 = 0.99 and r = 1.00 values. Table S1: Diseases evaluated in the monitoring of SP sensor plots and
their causal agents; Table S2: Diseases evaluated in the sampling of phytosanitary brigades (BFs) and
their causal agents; Table S3: Principal components analysis; Table S4: Distribution of the IDEAM
stations in the rice-producing areas in Colombia. The data used correspond to 214 meteorological
stations for PCPT, 227 stations for ET, and 82, 84, and 79 stations for TMIN, TAVE, and TMAX,
respectively.
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