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Abstract: Brewers’ spent grain (BSG) is primarily recycled as livestock feed due to its high fiber
content, undegradable protein, and water-soluble vitamins. However, BSG composting represents a
possible alternative to organic waste management. Adding a microbial consortium further enhances
the agronomical properties of the compost intended for fertilizing applications. Microbial-based
fertilizers (plant growth-promoting microorganisms, PGPM) are a means to mitigate the adverse
environmental impacts of excessive or improper chemical fertilizer use, enhance the direct or indirect
uptake of nutrients by plants, and add value to food waste. In a short-term pot experiment on iceberg
lettuce (Lactuca sativa L.), this study assessed the effects of compost and pelletized compost from
brewers’ spent grain, both enriched with a microbial consortium. In a randomized block experiment,
this study compared four organic BSG fertilizers to chemical fertilizer (NPK) and an unfertilized
control treatment. The investigation indicates that BSG compost and BSG pelleted compost, with and
without bio-inoculum, in general, are comparable to mineral fertilizer treatment; lettuce fresh weight
was higher in pots amended with bioprocessed BSG, associated with more significant growth of soil
LAB, fungi, and actinomycetes. The investigation outcomes support composting as an alternative
recycling process for producing PGM for agricultural applications.

Keywords: composting; agro-industry by-product; BSG; bio-waste; pelletizing; circular economy;
nutrients; inoculants; crop production

1. Introduction

In the past decades, to achieve higher crop yields, large amounts of chemical fertilizer
were applied [1]. This intensive management caused a set of negative impacts on soil,
air, and water resources. Indeed, an excessive use of chemical fertilizers can lead to the
degradation of soil organic carbon (SOC) and humus, the destruction of soil structure, an
increase in soil erosion, biodiversity and nutrient losses, and, therefore, to a lower soil
fertility, putting the ecosystem’s sustainability at risk [2].

In the era of eco-sustainability, it is crucial to recognize the importance of treating the
by-products of the agri-food industry in a sustainable manner, transforming what could
be considered waste into a valuable resource [3]. Recently, to face climatic changes, a new
business model based on the recovery and reuse of resources and waste recycling (RRR)
has been defined, able to overcome the traditional linear economic model of “take, make,
and dispose” [4].

The brewery industry produces large quantities of by-products, typically spent hops,
yeast, and spent grain. Brewers’ spent grain (BSG) accounts for 85% of the total by-products
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generated during the brewing process [5], with an estimated annual worldwide production
of about 37.2 million tons [6]. Nowadays, the main way of recycling BSG is through
livestock feed production, due to its high content in fiber, undegradable protein, and
water-soluble vitamins [7].

According to several authors [8–10], the composting process represents an efficient
alternative for organic waste management, allowing for the reduction of landfill disposal
and, at the same time, recycling its agronomic macronutrient content (N, P, and K) by
applying the composted material to agricultural lands. The integration of compost into
agricultural systems not only satisfies the waste minimization scenario proposed by major
world governments, but also provides positive influences on the overall soil fertility. Indeed,
it improves the SOC content directly and thus improves aggregation, hydraulic conductivity,
total porosity [11], and the cation exchange capacity (CEC) [12], supplies a wide range
of nutrients (N, P, K, Ca, Mg, etc.), improves the soil’s physicochemical and biological
characteristics, enhances the soil quality and fertility, [13] and, finally, is able to increase
yields after several crop cycles [14].

The compost can be used efficiently in both organic farming and conventional farming
as a constituent of a system of integrated fertilization. However, the main shortcomings of
common organic amendments are the slow nutrient release, the low macronutrient avail-
ability [15], and the low bulk density, which is usually below 400 kg m−3 [16]. Therefore,
Pampuro et al. 2018 [17] to promote the sustainable development of agriculture, suggest
compacting the compost through the pelletizing process, to homogenize and further dehy-
drate the mass, enhancing both its uniformity and fertilizing/amending properties and, at
the same time, increasing the distance that can be run in case of transport. On the other
hand, Atieno et al., (2020) [18] reported the importance of using microbial-based fertilizers
to overcome the deleterious effects on the environment generated by the excessive and/or
improper application of chemical fertilizers and to improve the direct and/or indirect ab-
sorption of plant nutrients. Yassen et al. (2020) [19] reported that leafy vegetables, such as
lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea), respond well to organic fertilizers.
Moreover, as reported by Radziemska et al. (2019) [20], according to test results, using
lettuce presents several advantages; indeed, it is quick, simple, reliable, inexpensive, and
does not require major equipment.

This study aimed to assess the effects of compost and pelletized compost derived from
brewers’ spent grain [21], both enriched with a microbial consortium, on lettuce plants in
a short-term pot experiment. These organic fertilizers were compared to an NPK ternary
fertilizer and to unfertilized soil used as the control treatment. We formulated several
hypotheses: (i) compost derived from BSG can have a significant short-term benefit as a
fertilizer (not just as an amendment); (ii) the pelletization process does not compromise the
characteristics of the compost (both enriched and non-enriched); and (iii) the application of
organic amendments, particularly enriched compost, leads to a more active and diverse soil
microbial community compared to NPK fertilization, resulting in improved soil quality.

2. Materials and Methods
2.1. Site and Soil Description

This experiment was established under greenhouse conditions during spring 2022 at
the Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS),
Italian National Research Council (CNR), in Turin, Italy (44◦57′ N, 7◦36′ E, 245 m above sea
level).

The trial was performed using pots with a 30 cm diameter, each containing 15 kg of
soil [22] and one plant of lettuce (Lactuca sativa L. var. iceberg). The soil was collected
from the surface horizon (0–30 cm) and analyzed for physical and chemical properties.
The soil was characterized by a sandy loam texture (61.7% sand, 28.4% silt, and 9.9%
clay), containing 7.9 g kg−1 of organic matter, 0.40 g kg−1 of N, 11.5 mg kg−1 of Olsen
available phosphorus (P), and 65.5 mg kg−1 of exchangeable potassium (K) with a pH
of 8.8, measured according to the Official Methods, (1999) [23]. The cation exchange capacity
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(CEC) was 8.25 meq 100 g−1 of dry soil, with 1.01 and 6.4 meq 100 g−1 of magnesium
and calcium, respectively. During the whole experiment, the pots were watered regularly
with distilled water to ensure that the water content was maintained around 70% of field
capacity [24].

A HOBO data logger (USB micro data logger, ONSET Corp., Cape Cod, MA, USA)
equipped with sensors for measuring photosynthetically active radiation (PAR), temper-
ature, and relative humidity, was utilized throughout the whole crop cycle. The maxi-
mum temperature recorded during the day was 41.1 ◦C, while the minimum was 11.5 ◦C,
recorded at night. A maximum relative humidity of 96.2% and minimum of 23.5% were
recorded at night and during the day, respectively. Finally, the maximum PAR was about
681 µmol m−2 s−1, with a minimum of about 92 µmol m−2 s−1 and an overall average of
about 466 µmol m−2 s−1.

2.2. Experimental Design

In this randomized block experiment, with four replicates, six different treatments
were compared (Figure 1). The treatments included four organic fertilizers: compost (COM),
compost enriched with a microbial consortium (COM+), pelleted compost (P6), and pelleted
compost enriched with a microbial consortium (P6+), along with an unfertilized control
treatment (TEST) and a ternary chemical fertilizer (CF, 21-8-16), which was similar to the
fertilizer used in a previous study by Zandvakili et al., (2019) [25]. These organic fertilizers
were produced using a co-composting process of pig slurry solid fraction and brewers’
spent grain (BSG), kindly supplied by a brewery in the Province of Biella (Piedmont, Italy),
as detailed in Assandri et al., (2021) [21]. Subsequently, the compost was pelletized using a
laboratory-scale PLT-100 SMARTEC (Smartwood, Villafalletto City, Cuneo, Italy) flat die
pellet mill with a diameter of 6 mm. The maximum temperature reached by the pellets
during the pelleting process was 41.5 ◦C, while the flat die reached a maximum temperature
of 37.6 ◦C.
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Figure 1. Details of organic fertilization before the incorporation into the soil and of the transplanting
of the plants. CF—chemical fertilizer; P6—pelleted compost; P6+— enriched pelleted compost;
COM—compost; COM+— enriched compost; TEST—not fertilized.

The pots were fertilized at a consistent nitrogen application rate (equivalent to
120 kg N ha−1) [26]. The total nitrogen content of the organic fertilizer was about 1.91%.
Therefore, 4 g pot−1 and 44.4 g pot−1 were used in the chemical fertilizer treatment (CF) and
organic fertilizer treatments, respectively. Furthermore, 8 g pot−1 of a solution consisting
of a microbial consortium composed of rhizospheric bacteria and water in a ratio of 1:20
was distributed via spray on the COM+ and P6+ treatments.
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2.3. Plant Analyses

The plants were harvested 47 days after transplanting. Both yield and quality pa-
rameters were evaluated. The parameters of the phenological development stage of the
plants (BBCH scale—Biologische Bundesantalt, Bundessortenamt, and CHemische Indus-
trie, Berlin, Germany), leaf area index (LAI), and chlorophyll content were measured by
using an Apogee MC-100 chlorophyll concentration meter during culture growth, and the
results were expressed as the average of ten readings of different plants.

Image J 1.41 software (https://rsb.info.nih.gov/ij/, accessed on 17 September 2023)
was employed for LAI analysis [27]. Additionally, measurements of plant height (cm),
plant width (cm), leaf count per plant, and fresh and dry weight (g per plant) were taken at
harvest time. The plant samples were cleaned, rinsed with distilled water, dried in an oven
at 60 ◦C until a constant weight was achieved, and then stored for chemical analysis.

To determine the total N, P, and K content in the plant samples, the samples underwent
digestion using a mixture comprising 350 mL of H2O2, 0.42 g of selenium powder, 14 g
of LiSO4 H2O, and 420 mL of concentrated H2SO4 [28]. For total N determination, 5 mL
of the digested sample was distilled with 20 mL of 40% sodium hydroxide, using a micro
Kjeldahl’s distilling unit, into an Erlenmeyer flask containing 10 mL of boric acid mixed
indicator solution. After distillation, the total N content was determined in the distillate
through titration with a standardized 0.01 of N sulfuric acid [29]. The total phosphorus
content was determined spectrophotometrically using the stannous chloride phosphor
molybdic acid method in a sulfuric acid system. The total K content was determined using
the flame photometer method [22].

The content of chlorophyll a, b, ab (mg g−1), carotenoids (mg g−1), phenolic com-
pounds (ppm of fresh weight), nitrates (ppm of fresh weight), and brix degrees was also
measured after harvest. The chlorophyll and carotenoid contents were measured in the
same way as reported by Slamet et al., (2017) [30]. Specifically, fresh leaves were ground
in a mortar to obtain 500 mg, and then 2 mL of 80% acetone was added to the mixture.
Subsequently, 10 mL of 80% acetone solution was added, and the resulting solution was
filtered using Whatman paper 42. Three milliliters of the filtrate were transferred into a
cuvette, and its absorbance was measured using a spectrophotometer. The spectropho-
tometric chlorophyll assay was conducted at wavelengths of 663 nm (A663) and 645 nm
(A645). The chlorophyll concentration was determined using the following formula:

Total chlorophyll = 8.02 (A. 663) + 20.2 (A. 645) mg l−1 (1)

The contents of the phenolic compounds and nitrates was determined spectropho-
tometrically using the Folin–Ciocalteu reagent [31] and the Griess–Ilosvay reagent [32],
respectively. Finally, the ◦Brix was measured directly using a digital refractometer (Hanna
Instruments, Padova, Italy) at room temperature.

2.4. Efficiency Coefficients

The nitrogen efficiency coefficients were calculated as follows:

• R/F, or removal to fertilizer ratio, was calculated according to the following equation:

R/F =
Nremoval
Nfertilizer

(2)

where Nremoval is the nitrogen taken up as yield, and Nfertilizer is the total quantity
of nitrogen applied.

• AR, or apparent recovery, was calculated as suggested by Zavattaro et al., (2016) [33]:

AR =
Nremoval−Nremoval TEST

Nfertilizer
(3)

https://rsb.info.nih.gov/ij/
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where Nremoval and NremovalTEST are the amounts of N removed by a fertilized
treatment and the TEST (not fertilized) treatment, respectively.

2.5. Microbiological Analysis

Ten grams of each fertilizer, bare soil, and soil amended with the different fertilizers
were dissolved in 90 mL of sterile distilled water, homogenized for 2 h, and serially
diluted in peptone water. From these samples, the total population of cultivable fungi and
bacteria was estimated after plating on Wallerstein Laboratory Nutrient agar (WL; VWR
International Srl, Milan, Italy) + 0.01% chloramphenicol, and brain heart infusion (BHI;
VWR International Srl, Milan, Italy) + 0.01% cycloheximide, after incubation for 48 h at
26 ± 2 ◦C and 30 ± 2 ◦C, respectively. The population of Lactobacillaceae was estimated on
Man Rogosa and Sharpe (MRS; VWR International S.r.l., Milan, Italy) agar plates added
with 0.01% cycloheximide after 48 h of incubation at 30± 2 ◦C. Cultivable Actinomycetes spp.
and Pseudomonas spp. were determined on Actinomycete Isolation agar (AIA, Millipore and
Sigma-Aldrich, Oakville, ON, Canada; St. Louis, MO, USA) and Pseudomonas Selective
agar (PSA, VWR International Srl, Milan, Italy), respectively, after incubation for 48 h at
30 ± 2 ◦C.

The enumeration of Escherichia coli was performed on Tryptone Bile X-GLUC agar
plates (TBX, Microbiol, Cagliari, Italy) after incubation at 37 ◦C for 4 h, followed by incu-
bation at 44 ◦C for 21 ± 3 h [34]. The contamination by Salmonella spp. was evaluated
as previously described [35]. Briefly, 25 g of vermicompost were suspended in 225 mL
of peptone water at 37 ◦C for 18 h, and Salmonella spp. enrichment was carried out in
Rappaport Vassiliadis broth (RVS, Microbiol, Cagliari, Italy) and in Muller Kauffmann
tetrathionate/novobiocin broth (MKTTn, Microbiol, Cagliari, Italy) for 24 h at 42 ◦C and
37 ◦C, respectively. Finally, the enriched samples were streaked on xylose lysine deoxy-
cholate (XLD) agar and in Salmonella Shigella agar and incubated at 37 ◦C for 24 h.

Microbiological analyses were carried out in triplicate for each sample and are reported
as colony-forming units (CFU) × dilution factor × sample weight (g−1).

2.6. Statistical Analysis

All data were analyzed by a one-way analysis of variance (ANOVA), performed using
R statistic software (R-4.0.3). Differences between means were compared using a Bonferroni
post hoc test at p = 0.05. The data were previously tested for normal distribution using the
Shapiro–Wilk test, and the homoscedasticity using Levene’s test. The results are presented
as mean ± standard deviation (s.d.). The differences among microbial communities were
evaluated by computing the standardized mean difference (Cohen’s d) and the confidence
intervals between the control (TEST) and treatments, as implemented in the R package
“effsize” (ver.0.8.1).

3. Results
3.1. Plant Growth

The chlorophyll concentration, measured by MC-100, did not show significant dif-
ferences between treatments, while there was a significant effect on all other parameters
(Table 1). In detail, lettuce plants showed higher growth characteristics in the fertilized
whit compost (COM) than those grown in the TEST treatment (p < 0.05). The plants fer-
tilized with enriched compost (COM+) showed no differences with those fertilized with
the COM or CF treatments (p > 0.05); however, the statistical analysis showed significant
differences between the COM and CF treatments in fresh weight parameter. The treatments
with pelleted compost (P6) and enriched pelleted compost (P6+) showed no significative
differences between them (p > 0.05), but intermediate growth characteristics between the
COM and TEST treatments, with significant differences in both fresh weight and BBCH
parameters, with only differences in the LAI parameter and leaf number for P6 and P6+,
respectively.
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Table 1. Growth characteristics of lettuce plants. Values represent the mean (n = 4) ± standard
deviation. Letters a, b and c indicate significant differences between treatments in the post-hoc
Bonferroni.

Parameter Unit
Treatments

F-Value p-Value
COM COM+ CF P6 P6+ TEST

Diameter (cm) 28 a ± 0.85 27 a ± 0.85 27 a ± 0.63 26 a ± 0.50 27 a ± 0.75 22 b ± 0.00 34.53 0.000
MC-100 12.2 a ± 2.45 10.6 a ± 2.69 10.1 a ± 1.84 11.0 a ± 2.59 9.8 a ± 1.28 10.9 a ± 0.85 0.66 0.66
BBCH 49 a ± 0.00 48 ab ± 0.50 48 ab ± 0.82 47 b ± 0.58 48 b ± 0.58 44 c ± 0.00 39.75 0.000
Fresh

weight (g plant−1) 461.8 a ± 67.4 331.1 ab ± 61.9 311.9 b ± 48.2 273.5 bc ± 26.4 264.0 bc ± 50.0 155.3 c ± 42.0 11.78 0.000

Leaf (number) 29 a ± 2.65 26 ab ± 0.00 28 ab ± 0.58 26 ab ± 1.15 25 b ± 0.96 22 c ± 1.15 11.59 0.000
Dry

matter
(% g

plant−1) 0.06 b ± 0.01 0.08 ab ± 0.01 0.07 ab ± 0.01 0.07 ab ± 0.01 0.08 ab ± 0.00 0.08 a ± 0.01 3.85 0.02

LAI (cm2) 630 a ± 32.2 551 ab ± 33.6 607 ab ± 50.7 523 b ± 13.1 567 ab ± 33.0 418 c ± 7.1 16.65 0.000

Apogee MC-100 chlorophyll concentration meter; BBCH—phenological development stages of plants; LAI—leaf
area index.

The parameters of diameter, BBCH, number of leaves, and LAI were lower (p < 0.05) in
plants grown in the TEST treatment than those grown in all other treatments. Considering
the fresh weight parameter, significant differences were found between the COM, COM+,
and CF treatments, while in the dry matter parameter, the TEST treatment only resulted
higher than and significantly different from the COM treatment.

3.2. Quality Characteristic

Significant differences were found in Chl. A, carotenoid content, ◦Brix, C, and K, while
there was no significant effect on Chl. B, phenolic content, NO3-N, N, and P (Table 2).

Table 2. Quality characteristics of lettuce plants. Values represent the mean (n = 4) ± standard
deviation. Letters a, b, c and d indicate significant differences between treatments in the post-hoc
Bonferroni.

Parameter Unit
Treatments

F-Value p-Value
COM COM+ CF P6 P6+ TEST

Chl. A (mg g−1) 0.61 ab ± 0.09 0.56 ab ± 0.14 0.56 ab ± 0.07 0.89 a ± 0.07 0.55 ab ± 0.16 0.46 b ± 0.22 3.64 0.03
Chl. B (mg g−1) 0.24 a ± 0.07 0.19 a ± 0.05 0.19 a ± 0.03 0.28 a ± 0.09 0.15 a ± 0.09 0.21 a ± 0.11 1.27 0.32

Caroten. (mg g−1) 43.2 ab ± 12.4 27.0 b ± 8.9 30.5 ab ± 6.7 49.9 a ± 3.9 33.5 ab ± 8.1 21.9 b ± 8.3 4.87 0.008
Phenolic (µg g−1 FW) 242.1 a ± 18.2 247.5 a ± 38.4 249.3 a ± 32.9 209.6 a ± 23.6 262.0 a ± 33.7 199.8 a ± 47.9 2.02 0.13

NO3 (mg kg−1 FW) 22.9 a ± 6.2 25.2 a ± 4.3 24.3 a ± 4.3 18.2 a ± 7.7 21.5 a ± 5.6 27.1 a ± 2.8 1.31 0.31
◦Brix 4.00 bc ± 0.44 6.50 a ± 0.68 5.06 b ± 0.25 3.33 cd ± 0.33 3.42 c ± 0.62 2.17 d ± 0.30 37.54 0.000

N (% DM) 1.66 a ± 0.13 1.62 a ± 0.26 1.96 a ± 0.14 1.73 a ± 0.25 1.88 a ± 0.16 1.58 a ± 0.24 2.32 0.09
C (% DM) 39.4 ab ± 0.16 39.6 a ± 0.50 38.9 ab ± 0.11 39.2 ab ± 0.32 39.2 ab ± 0.24 38.6 b ± 0.28 4.50 0.009
P (% DM) 0.32 a ± 0.02 0.30 a ± 0.02 0.32 a ± 0.02 0.31 a ± 0.02 0.32 a ± 0.01 0.31 a ± 0.01 1.06 0.41
K (% DM) 2.49 b ± 0.13 1.97 c ± 0.11 3.27 a ± 0.25 3.44 a ± 0.14 3.51 a ± 0.20 3.36 a ± 0.38 35.25 0.000

R/F 0.49 a ± 0.07 0.45 a ± 0.12 0.53 a ± 0.10 0.44 a ± 0.19 0.46 a ± 0.08 0.35 0.84
AR 0.23 a ± 0.06 0.20 a ± 0.05 0.27 a ± 0.06 0.18 a ± 0.12 0.20 a ± 0.15 0.54 0.71

R/F—removal to fertilizer ratio; AR—apparent recovery.

The nitrogen efficiency coefficients (R/F and AR) did not show significant differences,
probably due to the same N content between treatments.

Considering the qualitative parameters, the P6 and P6+ treatments did not show
significant differences between them (p > 0.05), highlighting low ◦Brix values, with the
exception of the plants grown in the TEST treatment, which showed the lowest ◦Brix values.

The differences between COM and COM+ emerged in the ◦Brix and K content, the
first higher in COM+ than COM, while inverted for the second parameter.

Statistical analysis showed significant differences between the organic fertilizer and CF
treatments in the ◦Brix and K content parameters. In detail, the higher values of ◦Brix were
found in COM+, followed by CF and COM, while higher values of K content were found
in all treatments, except in COM and COM+, with their whit values being intermediate
and the lowest, respectively.
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3.3. Microbial Growth

The different substrates used as fertilizers showed different microbial loads (Figure 2).
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Figure 2. Viable counts of microbial groups in the different substrates. For each microbial group,
different letters indicate significant differences among substrates, as determined by ANOVA followed
by Bonferroni post hoc test (p < 0.05).

Particularly, the total bacteria, lactic acid bacteria (LAB) and Actinomycetes, were
detected at significantly higher populations in the COM and P6 fertilizers. Interestingly,
compost pelletizing had a significant effect on the abundance of fungi, which were detected
at significantly higher concentrations in P6. The bio-inoculant was characterized by the
presence of Pseudomonas spp. and the absence of LAB.

To evaluate the effect of the addition of the different fertilizers, the microbial commu-
nities of the bare soil and treated soils (CF, COM, COM+, P6, and P6+) were evaluated
before lettuce transplanting and after lettuce harvesting (Figure 3).
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Overall, the chemical fertilization before lettuce transplanting reduced the microbial
abundance of the soil, the standardized mean difference in the CF samples always being
lower than zero. A negative effect on the viable microbial counts was also observed
following P6 addition to the bare soil. On the contrary, the fungal and bacterial counts were
higher in the soil treated with the compost (COM) than in the TEST soil. A stimulating effect
was particularly evident following the addition of the bio-inoculant to the compost and
the pelleted compost. Indeed, the total bacterial population and particularly Pseudomonas
counts were higher in soil fertilized with COM+ and P6+ than in all the other treatments.
The ability of the analyzed microbial communities to thrive and establish in soil was
evaluated by analyzing fertilized and untreated soil samples after lettuce harvest. At this
time point (47 days), the abundance of all the microbial groups was generally higher in
the TEST pot than in the fertilized pots. An exception was represented by the COM+
treatment that resulted in higher viable fungal and Pseudomonas counts. Similarly, high
Pseudomonas counts were observed in P6+, suggesting the significant effect of the addition
of the bio-inoculant to both the composted and pelleted BSG, in providing microbial taxa
more adapted to the soil environment.

4. Discussion

Chemical fertilizers offer quick results after application, but their continuous use and
overexploitation can result in numerous environmental issues, such as soil degradation,
leading to long-term damage to agricultural lands. In contrast, organic fertilizers release
nutrients gradually, allowing plants to absorb them in accordance with their nutritional
needs, while simultaneously reducing the risk of nutrient leaching. The nitrogen use
efficiency coefficients (R/F and AR) are influenced by the nitrogen supply. The R/F
indicator quantifies the amount of nitrogen removed by the plant per unit of fertilizer.
A value exceeding 1.00 is attainable when the plant relies on natural reserves from soil
mineralization. Conversely, values below 1.00 arise when the plant’s nitrogen needs are
satisfied by the nitrogen supplied through fertilization. The AR coefficient offers a more
comprehensive description of nitrogen use efficiency, as it estimates soil supply based
on the control and then subtracts it. Both coefficients reveal low efficiency, underscoring
reduced nitrogen uptake by plants.

Soils are viewed as complex communities of organisms that are continually changing
in response to soil characteristics, climatic and management factors, and especially in
response to the addition of organic matter [36].

Despite the short duration of the crop cycle (47 days), the synergy between the organic
fertilizers and PGPR (plant growth-promoting rhizobacteria) showed positive effects on the
growth, yield, and quality characteristics of lettuce plants. This could also be ascribed to
the total nitrogen content (about 2%) in the BSG compost, which made the nitrogen readily
available for microbial growth without depleting it from the plants’ initial needs.

The chlorophyll physiological adjustments induced by the FCA treatment appeared
to be linked to an increase in photosynthesis, as the proteins related to this metabolism
accumulated in the shoots.

A recent study showed that the PGPR inoculation of lettuce increased productivity
and mineral uptake, resistance to salt stresses, and root development [37]. Angelina
et al. (2020) [38] showed that management history of the soil (the substrates of lettuce
growth) influences the effect of microbial inoculation. Here, composted and pelleted
BSG samples were enriched in a microbial consortium consisting of bacteria (including
LAB and actinomycetes), fungi, and yeasts, in accordance with the already observed
increased occurrence of microbial taxa during the composting process [39]. These microbial
groups have been considered among plant growth-promoting microorganisms (PGPM).
Particularly, LAB can regulate phosphate in soil, fix atmospheric nitrogen, act as biocontrol
agents, and increase the shelf life of the amendment [40]. Yeasts have been described
as antagonists of various plant pathogens and are currently considered for biocontrol
applications [41]. Thus, it is conceivable that composted and pelleted BSGs have a microbial
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consortium that is stable and effective on lettuce growth. A recent study [42] showed that
the core bacterial community of compost is represented by the ubiquitous Thermobifida,
while Lactobacillus prefers vegetable waste.

Pseudomonas, which was not detected in the control soil or in the composted and
pelleted BSG samples, but was included in the bioinoculant, plays an important role in
improving crop yield directly or indirectly. Particularly, Pseudomonas spp. and Bacillus
spp. are the most widely known plant growth-promoting rhizobacteria (PGPR), frequently
commercialized as they can survive different conditions and promote plant accessibility to
macronutrients during root colonization. Among the various PGPR genera, Pseudomonas is
considered an ideal bioinoculant due to its ability to promote plant growth and control phy-
topathogen occurrence. These properties are related to siderophore production, phosphate
solubilization, nitrogen fixation, antibiotic synthesis, and the induction of plant systemic
resistance. In addition, Pseudomonas regulates plant growth and phytopathogen resistance
by secreting phytohormones (auxins and gibberellins), secondary metabolites (flavonoids),
and enzymes (aminocyclopropane-1-carboxylate and phenylalanine ammonia-lyase) [43].
These activities have been described in detail in Pseudomonas fluorescens, Pseudomonas putida,
and Pseudomonas syringae [43].

5. Conclusions

Organic fertilizers play a vital role in organic and sustainable agriculture as alternatives
to inorganic fertilizers. This study found that both BSG composts and enriched composts
performed equally well in qualitative parameters, and even better when bio-inoculum was
present, likely because of the increased growth of beneficial microorganisms. As a result,
these findings endorse the ongoing use of BSG composts in agriculture, contributing to
food waste recycling efforts.
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