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Abstract: Micro-greens or sprouts are commonly used in the diet of many cultures owing to their
health benefits. In this work we use a non-chemical solution method to stimulate the germination
and growth of seeds used for sprouting, based on non-thermal plasma discharge (NTP). Such a
technology could represent an alternative not only for reducing the production costs for growing
micro-greens but also as a pre-sowing method for slow germinating species or those under draught
stress. To evaluate the efficiency of the treatments, Brassica oleracea and Lepidium sativum seeds were
exposed to a non-thermal plasma discharge produced in atmospheric air in different conditions. The
strongest modifications were recorded when the discharge was produced in a closed environment
when the reactive species produced in air remained in high concentrations near the seeds. The garden
cress exhibited stronger modifications, with a decreasing of the water contact angle of the seeds by
up to about 14%, which means an increase of the hydrophilicity of the surface of the seeds. The
stimulation of the growth was evaluated as an increase of the average stem length of (9 ± 0.4)% and
of the root length of (38 ± 0.5)% as compared to sprouts grown from untreated seeds. This indicated
that the reactive species were not only interacting with the surface of the seeds as proved by electron
microscopy imaging but also penetrated inside the seeds, activating biological pathways that lead to
the stimulation of growth in this case. A noticeable influence produced by the reactive species was
also reflected in the biochemical results, where the analysis of the chlorophyll pigments indicated
strong modifications, especially under the intensified action of the reactive species. The results prove
an important contribution from the reactive species and show the possibility of using this technology
to improve the growth of these micro-greens, reducing production time and even presenting the
possibility of treating packaged seeds.

Keywords: seed treatment; sprouting; micro-greens; reactive species; plasma agriculture

1. Introduction

Plasma agriculture is a relatively new and fast developing field in which plasma, an
ionized gas, serves for the processing of different biological materials with the purpose
of changing plant properties and behavior [1–36]. In particular, atmospheric pressure
plasmas are used for such applications, meaning that a high electric field is applied to air,
producing a discharge. Since the air contains at least oxygen and nitrogen, an atmospheric
plasma will contain many reactive species along with the ions, electrons, neutrals, and
emitted radiation. Atmospheric plasmas have a complex chemistry driven by electrons, are
versatile, are produced in relatively simple configurations that can be easily implemented
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in large-scale applications, and operate at low temperature, which is compulsory when
treating biological materials.

The advantages of NTPs for processing biological materials have been shown in
many studies, with the most important being that it is a green technology that is envi-
ronmentally and user friendly and does not use dangerous chemicals such as fertilizers
and pesticides [1–7]. The benefic effects related to plants have led to the fast development
of a new research field—“plasma agriculture”. In the current situation of climate change,
with increasing population, it is necessary to find and perfect novel alternative technolo-
gies to sustain food production by increasing yield, quality, and shelf-life. NTP is a good
alternative that not only has proven to stimulate the germination and growth of plants
but has been shown to reduce the microbiological load from the surface of the seeds and
plants [5,6,11,21]. NTP-based stimulation of germination and sprouting, including through
the indirect action when water is treated and plasma activated water (PAW) is obtained,
has been reported for different seed species, such as radish [2,36], carrot [9], lentil [11],
soybean [27], pea [31], spinach [33], rice [13,28,34], maize [15,18,24], buckwheat [16,23],
corn [20], and others [21–26,30,32,35,37–39]. With minor exceptions, the majority of reported
results are positive, including stimulation of germination and plant development, improved
harvest, and improvement of the benefic compound content. The negative results show
inhibition of germination and growth, and also negative effects on the DNA in some condi-
tions [12,13,17,25]. Despite being unappealing for publishing, the inhibitory effects must be
reported and considered, so that lack of knowledge regarding the mechanisms of interaction
between plasma and different species of plants can be addressed and fine-tuned so as to
obtain the desirable effects. The plasma species (e.g., ions, excited molecules, other reactive
species), radiation, and electromagnetic field are physical or/and chemical stressors for the
plants, just as salinity, radiation, or draught, for example. These stress factors induce positive
and negative effects; it is reasonable to expect and understand both, in order to identify the
optimum conditions for the expected results in each case. Moreover, plasma has proven to
act as a restoring germination factor in the case of rice seeds affected by heat stress [28], and
should be considered as future technology in sustainable agricultural production.

In this work, we focus on studying the behavior of Brassica oleraceae (broccoli) and
Lepidium sativum (garden cress) under atmospheric pressure NTP treatment in extended
conditions. These species are commonly used to produce sprouts for consumption, a
dietary habit very common in Asia and America, with only recently increasing interest
in Europe. The appealing aspect of micro-greens consumption is related to their content
of antioxidant substances, health promoting compounds, minerals (potassium, calcium,
phosphorus, iron, manganese, zinc), and nutrients, thus preventing anemia and addressing
micronutrient deficiencies [40–42]. It is a benefic species, with its extracts having also many
medicinal uses (e.g., antirheumatic, diuretic, management of asthma, anti-inflammatory,
blood coagulant) [43,44].

Despite the abundance of previous studies, there is still little known about the mecha-
nisms involved in the process, for which we state the necessity of a deeper analysis of the
interactions between plasma and seeds, and the necessity of reporting the inhibitory effects
plasma has in some conditions on the treated seeds. The reported growth and physiological
effects are actually responses to the synergistic physical action of plasma components; thus,
it is normal to expect different responses between species, as we previously discovered in
the case of Japanese radish and broccoli sprouts [39]. Therefore, the purpose of this work is
to deepen the analysis of the interaction mechanisms between atmospheric plasmas and
different sprouting seeds, to bring some insights into the process by using new exposure
conditions with enhanced effects of the oxygen and nitrogen reactive species (RNOS). Due
to the complexity of the synergistic factors that can modify the seeds and produce an effect
on their germination and growth, it is difficult to separate out each contribution. However,
we aim to study the behavior while keeping the produced reactive species in a closed
environment, where the treated seeds are compared with the case when these reactive
species diffuse freely in the environment.
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2. Materials and Methods
2.1. Experimental Device

In this work, we used the same configuration as reported previously [39] with a flexible
electrode as schematically represented in Figure 1. It produces a surface dielectric barrier
discharge that is a non-thermal plasma (NTP); a similar configuration proved to be efficient
for microorganism inactivation on the surface of wrapped medical equipment [45], in liquid
bacteria [46], and in meat [47]. A metallic mesh (5 × 5 cm) representing the power electrode
was placed on top of a glass plate used as dielectric. On the other side of the glass, there
was a metallic tape ground electrode.

Agronomy 2023, 13, x FOR PEER REVIEW 3 of 14 
 

 

species in a closed environment, where the treated seeds are compared with the case when 
these reactive species diffuse freely in the environment. 

2. Materials and Methods 
2.1. Experimental Device 

In this work, we used the same configuration as reported previously [39] with a flex-
ible electrode as schematically represented in Figure 1. It produces a surface dielectric 
barrier discharge that is a non-thermal plasma (NTP); a similar configuration proved to 
be efficient for microorganism inactivation on the surface of wrapped medical equipment 
[45], in liquid bacteria [46], and in meat [47]. A metallic mesh (5 × 5 cm) representing the 
power electrode was placed on top of a glass plate used as dielectric. On the other side of 
the glass, there was a metallic tape ground electrode. 

 
Figure 1. Schematic representation of the flexible configuration used for the seed treatments: (a) 
direct plasma, (b) with cover, (c) picture of the electrode from above without and with discharge. 

To ignite the discharge, a high-voltage (HV) signal source was used, HV18K603AC, 
which produced a 10 kHz signal of up to 18 kV peak-to-peak value. The discharge was 
produced on top of the mesh electrode in open air, without the use of any other gas. For 
the experiments presented here, signals up to 14 kV were used. The I-V characteristics 
were monitored in all studied cases using an HV probe (Tektronix, P6015A) and a current 
probe (Pearson, 4100) connected to a RIGOL DS2072A oscilloscope. The emission spectra 
of the discharges were monitored using Ocean Optics HR2000. 

2.2. Biological Material and Treatment 
The seeds were commercially procured. Plasma treatment represents the simultane-

ous action of several factors among which reactive species might play a very important 
role, especially in the case of atmospheric air discharges. Thus, we chose to perform the 
seed treatments in two configurations: in one, the seeds were simply put on the mesh 
electrode—direct exposure; in the second, a cover was used to keep the reactive species 
produced in plasma from diffusing in air far from the sample, thus enhancing the effects 
produced by the reactive species—with cover. Seeds were placed in one layer over the 
mesh electrode (approx. 100 seeds) without any prior preparation. All experiments were 
performed in triplicate. 

  

Figure 1. Schematic representation of the flexible configuration used for the seed treatments: (a) direct
plasma, (b) with cover, (c) picture of the electrode from above without and with discharge.

To ignite the discharge, a high-voltage (HV) signal source was used, HV18K603AC,
which produced a 10 kHz signal of up to 18 kV peak-to-peak value. The discharge was
produced on top of the mesh electrode in open air, without the use of any other gas. For
the experiments presented here, signals up to 14 kV were used. The I-V characteristics
were monitored in all studied cases using an HV probe (Tektronix, P6015A, Beaverton,
OR, USA) and a current probe (Pearson, 4100, Palo Alto, CA, USA) connected to a RIGOL
DS2072A oscilloscope. The emission spectra of the discharges were monitored using Ocean
Optics HR2000.

2.2. Biological Material and Treatment

The seeds were commercially procured. Plasma treatment represents the simultane-
ous action of several factors among which reactive species might play a very important
role, especially in the case of atmospheric air discharges. Thus, we chose to perform the
seed treatments in two configurations: in one, the seeds were simply put on the mesh
electrode—direct exposure; in the second, a cover was used to keep the reactive species
produced in plasma from diffusing in air far from the sample, thus enhancing the effects
produced by the reactive species—with cover. Seeds were placed in one layer over the
mesh electrode (approx. 100 seeds) without any prior preparation. All experiments were
performed in triplicate.

2.3. Seeds Surface Morphology and Wettability

The surface of the seeds was analyzed by environmental scanning electron microscopy
(ESEM) using a FEI Quanta 450 (Thermo Fisher Scientific, Hillsboro, OR, USA) system
in low vacuum mode (100 Pa), so that the seeds would not to shrink due to dehydration
in high vacuum conditions. The surface of the seeds mounted on aluminum stubs with
adhesive carbon double tape was imaged with a 15 kV electron accelerated beam without
any prior preparation, because ESEM allows the imaging of non-conductive samples.
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The wettability of seeds’ surface was determined immediately after the treatments
using the water drop method. A total of 1µL of pure water was dropped on the surface
of the seed; then, a picture was taken and analyzed to determine the water contact angle
using imageJ software with the drop snake plugin [48]. For the cress seeds, ESEM images
were analyzed with the same software using the roughness estimation plugin, because
there was no obvious change of the surface morphology of exposed seeds when analyzed
by electron microscopy. The presented results were statistically processed based on the
measurements from each batch of seeds in each condition.

2.4. Biometric Measurements

After performing the treatments in the above-mentioned conditions, the seeds were
put in containers with 2 mL of water in each. The average temperature of the environment
during the experiment was 20 ◦C, while the relative humidity varied between 45 and
60%. The germination potential for each treatment condition was evaluated starting on
day 3 after the initial treatment; it represents the number of germinated seeds divided
by the initial number of seeds times 100. The biometric measurements (stem length and
root length) were done on the 7th day after plasma treatment. In all cases, values were
compared to the control, untreated samples. A statistical analysis was made with data
being compared by unidirectional analysis variance (ANOVA).

2.5. Biochemical Measurements

After 7 days, the chlorophyll contents (chlorophyll a, b, and total carotenoids) in
untreated and NTP-treated samples in different conditions were evaluated using a trichro-
matic spectrophotometric protocol [49]. The pigments were extracted by grinding 5 g of
fresh vegetal product, then filtrating the sample using 96% ethanol. The resulting solution
was analyzed by measuring the absorption from 200 nm to 900 nm using a spectropho-
tometer (Specord 210 Plus, Analytikjena, Jena, Germany). The concentration was calculated
using the absorbances of the sample extracts at 665, 649, and 470 nm against a blank sample.
In each case, three repetitions were carried out; average values, standard deviations, and
t-test were determined.

3. Results and Discussion

The electrical characteristics of the discharge were determined (Figure 2a), and the
discharge power was estimated from current—voltage characteristics measured for different
HV applied signals; the dependence between the value of the power and the peak-to-peak
value of the applied HV was found to be almost linear. The data are presented in Figure 2b.
The obtained values for the power are consistent with others reported for similar discharges,
as are the emission spectra [45–47,50]. The temperature of the flexible electrode during the
treatments did not exceed 34 ◦C, as measured with an infrared thermometer; thus, any
thermal damage of the seeds during the treatments can be excluded.
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Optical emission measurements (Figure 3) aided us in identifying some of the re-
active species produced in the discharge, species that impacted the seed. The radiative
species identified are -OH radical, N2, and N2

+. Oxygen reactive species were produced
in the discharge (ozone generation was felt during the treatments), but oxygen emitting
species tend to lose energy before being detected, thus explaining their absence in the
emission spectrum.
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With cover, the germination potential of broccoli seeds is smaller in all voltage cases, as
can be seen from Figure 4a, similar to our previous work [39]. For processing periods of 60s
and longer, the germination process is inhibited, especially for voltages higher than 10 kV,
which corresponds to an approximate power density of about 0.03 W/cm3. Still, small but
significant increase of the stem length of the sprouts was noticed for the 9 kV, 60s treatment
and 10 kV, 30s conditions. For short exposure intervals, there is no linear correspondence
between stem length or root length and voltage or discharge power (Figure 4b,c). With
cover, the inhibition effects are much stronger than for direct treatment without cover,
indicating a strong contribution of the reactive species.
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To explain this phenomenon, we analyzed the surface of the seeds using ESEM. The
images in Figure 5 can be correlated with the above-mentioned results; Figure 5f indicates
drastic changes in the surface morphology under 14 kV with cover treatment of the seeds.
In these treatment conditions, we also saw a decrease of the water contact angle. Overall,
using high discharge voltages and the concentrated action of reactive species, the surface
of the broccoli seeds is first cleaned; then, the etching process reaches the inside layers,
decreasing the water contact angle, facilitating the diffusion of reactive species towards the
inside of the seed, and stimulating the growth of sprouts, or for intense treatments (longer
and high voltage NTP), rupturing of the cell walls on the epidermis with exposure of inner
layers is evident (Figure 5f). The changes are more obvious for broccoli than for cress.
Similar disintegration of the outer layer of the seeds and irregular shape agglomerations (as
seen in Figure 5) have been also reported in DBD-treated quinoa seeds [51], low pressure
treatment processing of Arabidopsis thaliana [52], and wheat treatment [53]. With cover,
the broccoli seed surface outer cell layer is removed (Figure 5e), while for cress, although a
change is not obvious (Figure 5g–i), the evaluation of roughness, as performed using imageJ,
indicates only slight modification for simple sDBD treatment (83.01 ± 1.30) compared to
untreated samples (88.77 ± 1.30), and stronger modification for the concentrated reactive
species treatment (Figure 5i) (113.70 ± 1.30).
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Figure 5. ESEM images of the surface of untreated and treated broccoli (a–f) and cress (g–i).
(a) untreated broccoli seed, (b) broccoli seed treated with 12 kV NTP for 60s without cover, (c) broccoli
seed treated with 12 kV NTP with cover, (d) broccoli seed treated with 12 kV NTP for 120s without
cover, (e) broccoli seed treated with 12 kV NTP for 120s with cover, (f) broccoli seed treated with
14 kV NTP for 120s without cover, (g) cress seed untreated, (h) cress seed treated with 12 kV NTP for
120s without cover, and (i) cress seed treated with 12 kV NTP for 120s with cover.
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For the treatment conditions for which we found the strongest modifications of the
seed surfaces, we also evidenced a decrease of the water contact angle, as can be seen in the
results in Table 1. In some conditions, we see an increase of water contact angle, especially
for the intensified reactive species conditions, with up to 14%, while for other conditions
(high voltage, long treatment time, and concentrated reactive species), there is a decrease
with about the same percentage. The increase in hydrophilicity of the seed surface is similar
to other reports and accompanies an increase of wettability and water uptake capacity,
both through physical (etching) and chemical interactions. The values smaller than the
control recorded in this experiment might be caused by strong damage of the epidermis, as
confirmed by the ESEM imaging.

Table 1. Water contact angle of cress seeds treated in different conditions: without cover and with cover.

Voltage DP/IP 0 30s 60s 90s 120s

11 kV DP/

101.3

106.3 105.2 108.4 106.4
/IP 107.5 110.2 99.5 100.2

12 kV DP/ 106.0 107.5 101.1 107.5
/IP 109.1 116.0 100.9 101.8

13 kV DP/ 102.4 101.2 100.5 100.4
/IP 113.4 115.6 109.1 100.5

14 kV DP/ 93.8 91.5 90.3 87.1
/IP 88.9 97.3 87.0 83.2

Overall, using high discharge voltages and the concentrated action of reactive species, the
surface of the broccoli seeds is bombarded by the reactive species, which produce physical and
chemical changes of the outer epidermis, decreasing the water contact angle. Similar changes
have been reported in other plasma processing experiments of seeds [26]. The effects seem to
strongly depend on the type of treatment and also on the species treated, since different species
would have different morphology of the seed coats. In our case, a section through the seed
was performed to assess the dimension of different layers; it shows that the broccoli seed has a
thicker coat seed towards the hilum and thinner towards the apex, while garden cress has a
thick coat all over the seed, much thicker than broccoli (Figure 6).
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The biometric data for cress seeds presented in Figure 7 shows that the length of
the stems and roots increases at 11 kV and starts decreasing at 12 to 14 kV, with a non-
linear behavior; using the cover, we obtain an improvement of plant length for almost
all conditions, higher than for the no cover case, indicating the importance of reactive
species contribution. The same data indicate an overall increase of the stem length with
processing time; however, it starts with an inhibition of growth stimulation. Data shows
that most of the treated seeds up to 120s will grow in sprouts of smaller length than
untreated seeds. This behavior might be an abiotic stress response. The results seem to
be less dependent on the dissipated energy and more on the intensified action of reactive
species. The electromagnetic field could also have a small contribution to the stimulation
of growth, as other studies have found, but without influencing the germination [16,54,55].
Still, this might produce modifications at the cell level by increasing the production of
reactive oxygen species in the seeds. In our case, the exposure with and without cover
was performed in the same electromagnetic field conditions; thus, comparing between the
same voltage conditions with and without cover, the effects can be directly attributed to
the reactive species confined near the seeds in the case of using the cover.
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The reactive species are known to play key roles in different stages of the seed life,
with both detrimental and positive effects. Recent research has indicated that ROS can be
beneficial, influencing the germination through different signaling pathways and regulating
the growth [56–59]. Not only oxygen reactive species but also nitrogen reactive species seem
to have an important role; researchers found nitrogen reactive species to better stimulate
the germination of wheat in the case of higher RNS concentrations, but longer shoots
were found for higher ROS [59]. Based on the emission spectrum and other literature
reports, we expect high concentrations of reactive species such as O3, 1O2, ·O2, ·NO,
·OH, and N2

· [60–63]. These species introduce oxidative and nitrosative stress into the
exposed cells and lead to the production of other reactive species inside the cells as a
response to the initial stress. This process is very common as a response to other stressors
in plants, such as drought or salinity, influencing different stages of plant development
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and physiological characteristics [64]. During the treatments with cover, long life RONS
would be concentrated near the samples. The same non-linear trend is also common as
a stress-induced change: for a low stress impact on the seeds, favorable mechanisms of
growth and enhancement of physiological parameters are in place to counteract the stressor,
but in the case of high stress, the physiological processes are disturbed, which results in the
inhibition of germination, growth, synthesis of bioactive compounds, etc. [64].

Despite the thick and little-affected outer epidermis of cress, reactive species seem to
reach the inside of the seed, stimulating the growth of the sprouts. The physical penetration
depth is less important than the extension of the chemically induced effects, since RONS are
strongly reactive and trigger the production of other reactive species inside the cells. The
stimulation effects found in this work, higher in the case of concentrated reactive species
exposure, could be explained through this kind of mechanism, underlining the importance
of the reactive species in plasma more than the contribution of other components. From
the latter, the electrical field could also have an influence; it has been long known that the
exposure to electric fields alone might influence the germination in some cases [16,54,55],
though in this situation, probably to a smaller extent.

The chlorophyll content of radish sprouts shows minor variations, including the
case of concentrated reactive species exposure, while the most affected parameter is the
germination potential and thus the viability of the broccoli seeds. Cress sprouts exhibit a
different behavior: while the viability of the seeds remains close to 100% and the surface
morphology of the seeds is less affected, we measured stronger variations of the biochemical
parameters than in the case of broccoli, and stronger for the case with cover compared
to no-cover treatments. The latter cases differ in behavior as well: for no cover, both
Chlorophyll a and b concentrations slightly increase with treatment time, while when the
seeds are exposed to concentrated reactive species, the concentrations of both pigments
strongly decrease, as can be seen in Figure 8.
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The chlorophyll pigment concentration changes in Figure 8 confirm the important
contribution of the reactive species. These physiological responses come from the chemical
and less physical interaction of plasma-produced reactive species at the cell membrane level
and probably inside the cell, activating signaling factors, changing the membrane transport,
and producing oxidative stress. Much higher concentrations of chlorophyll pigments were
also found in the case of maize seed treatment in the presence of nitrogen reactive species,
with these seemingly having a crucial role in this effect [18,59].
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4. Conclusions

The processing of seeds in NTP with and without the concentrated action of plasma-
produced reactive species indicates the importance of the reactive species in the reported
effects on the germination and growth of micro-greens. The behavior of different species is
different probably due to the difference in their morphology and biology.

The effects evidenced are actually responses to abiotic stress that clearly influence the
growth (changes of germination potential, biometric values), physiology (changes in the
concentration of the photosynthetic molecule concentrations of developing sprouts), and
molecular biology of the samples. Difference in the response to plasma and reactive species
treatment could be explained through the difference in the tolerance mechanisms within
species. The results show good premises for using NTP as a convenient and sustainable
technology in stimulating the growth of micro-greens in a reduced timeframe. More studies
need to be performed to better quantify the effects of reactive species produced in NTP, and
also to deepen the knowledge on other biochemical parameters that could be influenced by
these treatments, such as the content of antioxidant compounds or important enzymes.
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Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley. Int. J. Mol. Sci. 2021,
22, 2833. [CrossRef]

26. Recek, N.; Holc, M.; Vesel, A.; Zaplotnik, R.; Gselman, P.; Mozetič, M.; Primc, G. Germination of Phaseolus vulgaris L. Seeds after a
Short Treatment with a Powerful RF Plasma. Int. J. Mol. Sci. 2021, 22, 6672. [CrossRef]
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