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Abstract: Endophytes are well-known for their symbiotic interaction with plants and their ability
to promote plant growth by producing various metabolites. The most well-studied endophytes are
bacteria and fungi. For generations, viruses were misnamed, and their symbiotic associations were
ambiguous. Recent advances in omics techniques, particularly next-generation sequencing, have
given rise to novel developments in the mutualistic relationships that exist between plants and viruses.
Endogenous viruses have received a lot of attention in the animal world, but limited information
exists on their functions and importance to plants. Therefore, endophytic viral populations inhabiting
the root of a maize plant were assessed in this study for the first time using shotgun metagenomics.
Complete DNA was extracted and sequenced using shotgun metagenomics from the maize roots in
farming sites where organic fertilization (FZ), inorganic fertilization (CZ), and maize planted with
no fertilization (NZ) are being practised in an experimental field. Our results identified 2 orders
namely: Caudovirales (67.5%) and Herpesvirales (28.5%) which dominated the FZ site, although
they do not show any significant difference (p > 0.05) across the sites. At the class level Microviridae,
Phycodnaviridae, Podoviridae, Phycodnaviridae, and Poxviridae dominated the FZ site. Myoviridae and
Podoviridae were more abundant in the CZ site, while only Siphoviridae predominated the inorganic
fertiliser site (NZ). Diversity analysis revealed that viral populations were more abundant in organic
fertilization (FZ). Taken together, this research adds to our understanding of the symbiotic integration
of endophytic viruses with maize plants and that their abundance is affected by farming practices. In
addition, their potential can be exploited to solve a variety of agronomic issues.

Keywords: agricultural sustainability; farming practices; endophytes; metagenomics; viruses

1. Introduction

In the natural environment, plant health relies on an overabundance of interconnection
between micro and macro-organisms. Endophytes are the diverse microbial group that
lives in plant tissues in a mutualistic approach. It has been scientifically proven that
endophytes can benefit their host through the mitigation of various agroclimatic conditions
like broad abiotic and biotic stresses. Endophytic microbes are commonly acknowledged
for the promotion of the growth of plants by metabolite creation, which enhances soil
nutrients [1–3]. The root endophytes are of great significance because of their immediate
imminent relationship with soil [4–6]. Various information exists on the interaction between
the root of plants and endophytic micro-organisms [7–10]. Nonetheless, some viruses
have been reported to be pathogenic in studies involving animals, plants, and humans.
This discovery has presented a general negative image of viruses until recently. The
introduction of next-generation sequencing and omic tools has helped improve our interest
in understanding the symbiotic viral–host associations. The coexistence of viruses with
the host plants and genomic association in an asymptomatic approach were accentuated
by scientific studies [11,12]. Viral diverseness and symbiotic relationships require more
scientific observation because most of them are unknown.

Viruses are ample and important biological individuals on earth. New research found
that they are abundant in soil, desert, plant ecosystems, ocean, and the mammalian gut.

Agronomy 2022, 12, 1867. https://doi.org/10.3390/agronomy12081867 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12081867
https://doi.org/10.3390/agronomy12081867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-2893-6658
https://orcid.org/0000-0001-6798-9966
https://orcid.org/0000-0003-4344-1909
https://doi.org/10.3390/agronomy12081867
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12081867?type=check_update&version=2


Agronomy 2022, 12, 1867 2 of 12

The broad misunderstanding linked with viral associations was highlighted by ecological
surveys [11,12]. Viral interaction may also be mutualistic, but it cannot be symptomatic at
all times. Interconnection between viruses and their hosts is conditional and dynamic in
some instances. Symbiogenesis may easily be led by viral symbiosis through the genomic
fusion of two individuals; this is where the evolution of new species takes place. The
immense plethora of viral sequences in extant genomes can aid coevolution and symbio-
genesis [13,14]. They play a crucial role in the diverseness of living things on the earth,
including the coevolution of viruses and hosts. Based on studies on the diversity of plant
virus biodiversity, viruses discovered in a larger number of plants were found to have
an asymptomatic existence [15]. The influence of biotic and abiotic stresses is improved
by viruses. The ability to survive under extreme temperatures as well as the disease-
suppressive potentials of plants are some of the contributions of viruses to plant health.
In Yellowstone National Park, the plant’s ability to acclimatize to geothermal sectors with
the capability to endure the increased level of temperature was discovered to be correlated
with a novel fungus which consequently was affected by the virus [16]. The development
of a nitrogen-fixing nodule, which is a situation where the quantity of nitrogen is sufficient
in the soil as a means of energy conservation, can be restricted by White Clover cryptic
virus [12].

The ribosomal RNA gene, which lacks a universal coding sequence, is discovered
in all biological life making it difficult to analyse the diverseness of viruses. To unveil
the enormous wealth of viral details from dissimilar environmental tests, metagenomic
research using shotgun sequencing serves as a promising approach [15,17]. Sequences of
viral endophyte were also contracted with the indigenous viral group of the soil to detect
the particular relationship or straight transference coming to the root of the plant from the
soil. A broad analysis was given to propose the likely useful impact of such a symbiotic
relationship. This present study is crucial to discovering the wider expectation of an internal
viral relationship. Having a better understanding of the viral interactions with plants and
their abundance will help in addressing disease emergence in plants and identifying
beneficial integration that might be used to treat a variety of agricultural concerns.

The majority of maize producers in South Africa utilise conventional farming practices
and inorganic fertilisers to increase plant production. In addition to having negative envi-
ronmental consequences, excessive usage of inorganic fertiliser also has negative effects
on the seed quality, microbial populations, and increased lodging in the plant [18]. Simi-
larly, chemical fertilisers are not economical and a non-renewable nutrient source for the
plant [19]. Examining microbiological sources and organic farming, which have excellent
properties for stimulating plant development and productivity, is urgently necessary.

Furthermore, it is uncommon to find a well-organised study on how various agricul-
tural practices affect endophytic virome in maize roots. According to reports, the biggest
population of endophytes is found in a plant’s roots [20,21], which is why maize roots were
chosen in this investigation. To the best of our knowledge, there has not been any research
on how agricultural practices affect the composition and variety of endophytic viromes
inhabiting the roots of maize plants using the shotgun metagenomic technique.

To acknowledge the enormous wealth of viral details from dissimilar environmental
tests, metagenomic research employing shotgun sequencing has presented itself as one
of the best approaches [15,17,22,23]. Therefore, we present the first study assessing the
community structure of endophytic viromes in the roots of maize plants using the shotgun
metagenomic techniques.

2. Materials and Methods
2.1. Seed Sourcing

The drought resistant WE 3127 maize seed used in this experiment was collected
from North-West University School Farm, Molelwane, Mafikeng, North West Province,
South Africa.
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2.2. Root Sampling

Because of the experimental farmland’s triangular form, each agricultural site was
separated into 3 divisions for sampling purposes. The roots of the ten fresh plants in each
division were selected randomly from the farming site and pooled to represent biological
replicates with a total of 30 plants for each site. The maize roots were then uprooted for
the experimental purpose at the fruiting stage of growth [24]. A total of ninety samples
of the plant were assessed, with 3 replicates for the individual sampling site, indicating
three regions. The collected samples were stored in ice, and then promptly taken to the
laboratory for subsequent analysis.

2.3. Description of the Study Site and Experimental Design

Organic and inorganic experimental fields (approximately 500 acres) had been estab-
lished for 15 years at the University School in Molelwane, North West of South Africa
(25◦47′25.24056′′ S, 25◦37′8.17464′′ E). Shrubs and trees dominate this province. The aver-
age province temperature varies from 3–21 ◦C and 17–31 ◦C during winter and summer,
respectively. The annual province’s rainfall is about 360 mm. For a long period, the main
crops planted at this experimental site were sorghum, maize, and soybean (maize-soybean-
sorghum), with sorghum sown in 2019. The physicochemical parameters of the soil samples
from the sampling sites were identical (66% silt, 22%, 12% clay, pH 6; 0.15% total N, 0.48%
organic C, 101.5 ppm p, and 0.962 ppm) (Supplementary Table S1).

The two regimes of fertilization that were employed are organic fertilization (FZ) and
inorganic fertilization (NZ) and have been existing for more than fifteen years, along with
control with no fertiliser application (CZ). The quantity of the inorganic fertiliser that had
been in use is 75 P2O5, 75 K2O, and 150 N in kg ha−1, while the organic fertiliser site had
been applying cow manure with a 10,625 kg ha−1 dosage for more than 15 years following
the international best practices [25], and the last site has never experienced the application
of fertiliser. The WE 3127 seeds were planted on 3 sites, respectively, using a farming space
measuring up to 10 m × 4 m, and was terminated during the summer of the year 2019.
To avoid drought stress, all of the sites were irrigated as needed. Manual weed control
was employed.

2.4. Surface Sterilization of Maize Roots

Soil particles that came with the roots of the plants from the experimental field were
removed via sieving, the procedure outlined by [26], was employed for surface washing
of the new roots. The roots were first immersed in 70% ethanol for 3 min. After which,
they were washed for 5 min with a 2.5% sodium hypochlorite solution. They were then
washed again with 70% ethanol for 30 s before being washed with distilled water that
had been sterilised. To make sure that epiphytes were perfectly taken out and that the
sterilization process was successfully done, the washed roots were chopped into little pieces
and cultured on a yeast extract-mannitol medium (YEM) [27]. After 72 h, the Petri dishes
were incubated at 30 ◦C and were then inspected for the growth of bacteria. The roots of
maize plants from uncontaminated plates were selected for DNA extraction [28,29].

2.5. Extraction of DNA and Shotgun Sequencing

Using a sterilised knife, the maize roots were sliced into minute pieces and macerated
using a Qiagen TissueLyser. Qiagen DNeasy Plant Mini Kit (Dusseldorf, Germany) was
used to extract completed metagenome DNA from the root of the plant samples. The
extracted DNA samples were then sent to the Molecular Research LP in Shallowater, TX,
USA, where shotgun metagenomic sequencing was performed. The Nextera DNA Flex kit
(Illumina, San Diego, CA, USA) was used to prepare the libraries, and the typical protocol
was followed. The Life Technologies Qubit®dsDNA HS Assay Kit was employed for the
determination of the actual DNA concentration in all of the samples. After the formation of
the library, its final concentration was determined by employing the Qubit®dsDNA HS
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and the Agilent 2100 Bioanalyzer.
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The size of the library ranges from 683 to 877 bp, with an average of 731 bp. Library pooling
was done with 0.6 nM ratios and paired-end sequencing was carried out using 300 cycles
via the Illumina NovaSeq 6000 equipment.

2.6. Data Analysis

Sequences obtained for each metagenome were uploaded to the metagenomics rapid
annotation online server (MG-RAST) [30], where QC of the raw sequences was performed,
including the removal of adapter and low-quality reads using the Trimmomatic v 0.33 tool
with default parameters [31]. Artificial sequences were removed, ambiguous bases ere
filtered, a minimum read size was specified, and length filtering was all part of the quality
control process. Following quality control, sequence annotation was performed using
BLAT [32], against the M5NR database [33], which allows nonredundant database in-
tegration. The SEED database was used to categorise endophytic microbiomes, with
characteristics including a 10−5 e-value cut-off and at least 60% similarity of the sequence
to a subsystem. Sequences that failed that annotation test were not taken into consideration.
However, because we focused on endophytic virome, we ignored sequences from bacteria,
eukaryotes, archaea, and maize plants. The MG-RAST data normalization option was
selected to reduce the impact of experimental error/noise. Each taxon’s endophytic virome
table was produced, and unclassified sequence reads were retained for statistical analysis.
Furthermore, after an independent examination of the nine (9) sequences using MG-RAST,
the relative abundance of the taxa in percentages was computed. For statistics, the mean
values of the relative abundance of the three replicates for the experimental sites (CZ, FZ,
and NZ) were employed. These standard sequences can be obtained in the PRJNA607664
NCBI SRA dataset.

2.7. Statistical Analyses

At the order level, the Shinyheatmap was used to plot a relative abundance graph of
endophytic virome communities [34]. The Pielou evenness and Shannon diversity indices
for all the sampling sites were analysed using PAST version 3.20 [35], and the indices
across the farming sites were compared using the Kruskal–Wallis test. The beta diversity
was defined using principal coordinate analysis (PCoA) based on a Kruskal–Wallis matrix,
and the differences in community structure were assessed by employing the one-way
analysis of similarities (ANOSIM) [35]. How the identified endophytic viral order was
distributed among the maize plant fields was presented using Euclidean matrix-based
principal component analysis (PCA).

3. Results
3.1. Metagenome Dataset and Quality Control

The sequence readings of samples were CZ (4839895527), FZ (2977205570), and NZ
(48270695214), obtained for the three experimental sites. The sequenced reads for CZ were
334,259,767 with an average G + C content of 44%, FZ had 415,505,341 with an average
G + C content of 44%, and NZ had 817,699,487 with an average G + C content of 49%, were
obtained after quality-control analysis in MG-RAST. Sequences that mapped for identified
proteins in the metagenome samples that passed the quality control assessment were
371,329, 325,439 and 643,141 for CZ, FZ, and NZ, respectively (Supplementary Table S2).

3.2. Community Structure and Abundance of Endophytic Virome Inhabiting Maize Root Samples

Two major viral orders identified in this experiment are the Caudovirales (67.5%) and
Herpesvirales (68.5%) and are more abundant in the FZ site samples, although no significant
difference (p > 0.05) exists across the sites (Figure 1). At the class level, Microviridae,
Phycodnaviridae, Podoviridae, Phycodnaviridae, and Poxviridae dominated the FZ site (Figure 2).
Myoviridae and Podoviridae were more abundant at the CZ site while Siphoviridae was found
to be more abundant only in the site with the inorganic fertiliser (NZ), although, the
difference across the experimental sites was found not to be significant (p > 0.05).
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Figure 1. Heatmap of the order distribution of the notable endophytic virome from samples across
the sites. The scale bar displays a colour-saturation gradient based on relative abundances that have
been modified using the z-score for the endophytic virome.

Furthermore, at the genus level, unclassified Siphoviridae, Badnavirus, P2-like viruses,
SPO1-like viruses, LUZ24-like viruses, N4-like viruses, Bpp 1-like viruses, Phi29-like
viruses, T4-like viruses, T7-like viruses, L5-Like viruses, Lambda-like viruses and N15-like
viruses dominated FZ sites. Chlamydiamicrovirus, unclassified Podoviridae, unclassi-
fied Myoviridae, and P22-like viruses were dominant in the CZ site, while unclassified
Microviridae, Chlorovirus and T1-like viruses were found to be dominant in the NZ site
(Figure 3). The PCA graph was employed in showing the virome distribution of the identi-
fied between the sites with the most abundant distribution observed in the organic farming
site (FZ) (Figure 4).

3.3. Alpha (α) and Beta (β) Diversity of the Viral Endophytes across the Experimental Sites

The evenness and Shannon indexes derived for the order of the endophytic virome
do not differ significantly (p > 0.05), while a significant difference (p < 0.05) was found at
the genus level (Table 1). The virome community composition was analysed using PCoA
with a Bray–Curtis dissimilarity matrix (Figure 5). The PCoA figure revealed that the FZ
samples varied considerably from the CZ and NZ samples (Figure 5). ANOSIM revealed a
significant difference (ANOSIM, R = 0.67, p = 0.01) in the diversity of the viral endophytes
virome across the farming sites.
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Table 1. Evenness and diversity assessment of endophytic virome across the sampling sites.

Level Indices CZ FZ NZ p-Value

Endophytic Virome

Order Shannon_H 0.59 ± 0.03 0.68 ± 0.14 0.48 ± 0.11 0.42
Evenness_eˆH/S 0.90 ± 0.03 0.66 ± 0.05 0.80 ± 0.14

Genus Shannon_H 1.77 ± 0.39 1.85 ± 0.22 1.60 ± 0.21 0.007
Evenness_eˆH/S 0.73 ± 0.23 0.85 ± 0.17 0.82 ± 0.17

Mean ± SD (n = 3). p-values based on Kruskal–Wallis matrix test. NZ = samples from the inorganic experimental
site, FZ = samples from the organic experimental site, and CZ = no fertiliser site/control samples.
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4. Discussion

Farming techniques have a considerable effect on the abundance, diversity, and func-
tions of microbial communities in the soil, and can thus be connected to increased crop out-
put and development, as well as improve crop resistance to abiotic and biotic stress [36–38].
Using shotgun metagenomics, we investigated the effects of various farming practices on
the community structure and abundance of endophytic virome inhabiting the root of maize
grown under various fertiliser regimes. For years, viruses had a poor reputation and were
mostly recognised for their capacity to spread disease. But more recently, symbiotic aspects
using omics technologies have come into emphasis. The viral community discovered from
maize root samples which are endogenous in origin were discussed in this study using
the shotgun metagenomics. Interestingly, we also discovered phage virus genomes from
the Caudovirales family, which may have spread from soil [39]. MG-RAST was used to
examine the sequenced metagenome data collected. Genomes for the endophytic virome
were identified, but plant-derived sequences were discarded.

Caudovirales and Herpesvirales were the major viral order in samples and the most
predominant FZ site. This result agrees with an earlier study by Das, et al. [39], this may be
a result of the application of organic fertiliser in the organic site, which might harbour more
microbes. Caudovirales are a family of group-I viruses containing double-stranded DNA
and an icosahedral head connected to a tail by a connector protein. The Caulimoviridae
family provided the majority of unclassified sequences (Figure 1). Caulimoviridiae is a type
of DNA virus with two strands of DNA. Their endogenous pararetroviral sequences have
received a lot of attention (EPRVs). Natural integration into the host DNA has also been
documented [40,41]. This natural interaction with the DNA of the host plant also points to
a co-evolutionary relationship with the plant–virus pathosystem [42–44].

Also, at the class level Siphoviridae, Microviridae, Phycodnaviridae, Podoviridae, Phycod-
naviridae Poxviridae Myoviridae, Podoviridae, and Siphoviridae were identified at the root of
the maize plant. Most of the viral sequences discovered were comparable to those found in
tea plants [39]. However, this study could imply that their relationship as an endogenous
viral particle is well-known. Furthermore, at the genus level unclassified Siphoviridae, Bad-
navirus, P2-like viruses, SPO1-like viruses, Bpp 1-like viruses, LUZ24-like viruses, N4-like
viruses, Phi29-like viruses, T4-like viruses, T7-like viruses, L5-like viruses, Lambda-like
viruses, N15-Like viruses dominated the FZ site, Chlamydiamicrovirus, unclassified Podoviri-
dae, unclassified Myoviridae, P22-like virueses dominated the CZ site, while unclassified
Microviridae, Chlorovirus, and T1-like viruses were found to be dominant in the NZ site.

Badnavirus belongs to the Caulimoviridae family with the plant-associated bacilli-
form DNA virus. They have been reported to be a major pathogen of a variety of
horticultural crops, including citrus, black pepper, cocoa, banana, taro, sugarcane, and
yams [45,46]. Diseases of plants including root necrosis, leaf chlorosis, red vein banding
in early leaves, tiny speckled pods, and the swelling of the stem/root followed by die-
back are all caused by Badnavirus [39,45]. Several researchers have reported Badnavirus
endogenous connection [47,48]. Endogenous recombination with the host genome, on the
other hand, may not lead to infection in the host plant and can give protection against
non-integrative counterparts [45]. Not many reports exist on its presence in maize plants.
However, only one report of Badnavirus from the tea plant has been published, and it comes
from Hao, et al. [49], who used metagenomic sequences of leaves and shoot samples.

The genus level was used for PCA due to the abundance of the virome at the genus
level. The PCA graph revealed that each site has its unique viral genus, which accounts
for 73.4% of the variance between all fertilization locations (Figure 4). The composition
of sequences connected to each genus is reflected in the position of each endophytic
virome; the vector arrows indicate the genus most heavily affected by the distribution.
This information can be used to discover which viral genera are more prevalent at each
sampling site when compared to others (Figure 4). In this investigation, viral genera were
shown to be more prevalent in the FZ site than in other sites (Figure 4).
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The Shannon and evenness indexes evaluated for each viral order revealed no signif-
icant differences (p > 0.05), while the result from the viral genus showed that they differ
significantly (p > 0.05). Endophytic virome in maize grown in the organic farming site was
more diverse and equally distributed than those in maize grown with inorganic or without
fertiliser (Table 1). The result also agrees with the findings of Das et al. [39]. FZ’s viral
endophyte community structure differed from that of CZ and NZ, according to the PCoA
plot (Figure 5). The endophytic virome in the root of maize plants differed significantly
between sample sites, as seen by the Bray–Curtis dissimilarity matrix-based figure.

5. Conclusions

This is one of the foremost studies unravelling the diversity of endophytic virome
inhabiting maize plants employing the shotgun metagenomics approach. This study gave
a detailed taxonomic distribution of viral endophytes in maize roots and showed that
farming practices have a significant effect on the abundance and diversity of these viromes.
Endophytic viromes which were found to majorly dominate the roots of maize plants are
Caudovirales and Herpesvirales. This report has added to our understanding of endogenous
viruses, with a focus on the maize plant. There will be many more mutualistic viruses
that need to be further studied to grasp their evolutionary significance. Understanding
how viruses interact with plants and their diversity will help in communicating disease
disclosure in plants and identifying the most favourable combination, which might be
important in addressing a variety of agricultural issues. The findings of this study further
add to our understanding of the virus–plant symbiotic connection.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy12081867/s1, Table S1: Physicochemical characteristics of the
experimental field; Table S2: Analysis of sequenced data and diversity evaluation of the shotgun
metagenomes of the maize plant from across the fertilizers sites.
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