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Abstract: The success of the seed-metering device of a seeder determines the quality seeding and
final plant stand. The adjustment of the optimal vacuum pressure of air-suction-type seed-metering
devices is a key factor affecting the success of seed-metering devices. The optimal value of vacuum of
the seed-metering device should be adjusted in relation to the physical properties of the seed before
seeding in the field. This research was carried out to estimate the optimal value of vacuum pressure of
an air-suction seed-metering device of a precision seeder by using an artificial neural network method.
Training of the network was performed by using a Levenberg–Marquardt (LM) learning algorithm.
Training and testing were carried out using Matlab software. The inputs were physical properties of
seeds such as surface area, thousand kernel weight, kernel density and sphericity. Optimum vacuum
pressures were determined for soybean, maize, cucumber, melon, watermelon, sugarbeet and onion
seeds in laboratory. Surface area, thousand kernel weight, kernel density and sphericity of seeds
varied from 0.05 to 0.638 cm2, 4.4 to 322.4 g, 0.43 to 1.29 g cm−3 and 42.8 to 85.75%, respectively. The
optimal vacuum pressure was determined as 1.5 kPa for onion; 2.0 kPa for sugarbeet; 2.5 kPa for
melon and watermelon; 3.0 kPa for soybean; and 4.0 kPa for maize seeds. A trained program using
an artificial neural network could satisfactorily estimate the optimum value of vacuum pressure of
the air-suction type seed-metering device of precision seeders with a prediction success (R2) of 0.9949
for both linear and polynomial regressions.

Keywords: artificial neural networks; vacuum seeder; seed metering; seed distribution uniformity;
precision seeding

1. Introduction

Seeding is the process of putting seeds at a certain depth of the soil with a suitable
distribution for plant requirements and closing them for plant production. Seeding methods
can generally be grouped into three groups according to seed distribution over field:
broadcasting, banding and drilling. While the seeds are scattered to 100% of the field
surface in the broadcasting method, the seeds are scattered to 50% and 10% of the field
surface in banding and drilling, respectively. In precision seeding, the seeds are sown in
furrows, and the spacing of seeds within the furrows is uniform. Transplanting seedlings
into a field is the fourth method of planting. Seeders or transplanters have been developed
or manufactured to enable each of these seeding or transplanting methods [1,2].

A precision seeder is a type of row-crop seeder that is designed to deposit a single seed
at equal row intervals. When precise seeding is considered, the seeding of plants such as
sugarbeet, corn, cotton and soybean is the first thought. In addition, the precision seeding
method is not yet widely used in vegetable production, which has a higher economic value.
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The precision seeders can be classified according to seed-metering systems. While
there is a large range of precision metering systems, most can be broadly classified as finger
pick-up, plate (horizontal, inclined, and vertical plate types), belt, air-suction (vacuum disc)
and pressurized drum types. The classification of metering systems largely depends on the
design of the seed singulation (selection of single seeds from seed hopper) part of metering
systems that enables seed singulation [3].

The most used metering device in precision seeders are air-suction-type precision
metering devices. This metering devices consist of a vertical rotating disc that has a row of
holes around its circumference, a seed hopper, and a fan or blower. The vertical disc differs
from the plate used in plate-type precision metering systems in that the seeds do not fall
into, nor pass through, the hole. The hole diameter of vertical disc should be smaller than
the smallest cross-sectional dimension of the seed in the seed lot.

In many studies carried out with precision seeders equipped with an air-suction-type
metering device, the success of the seeder has been emphasized for some seeds such as
cotton, maize, soybean, sugarbeet, rape and onion [4–9]. Xu et al., determined struc-
tural parameters of air-suction type seed-metering device using the DEM-CFD coupling
method. The optimal combination of seeding performance parameters in the air-suction
seed-metering device were a seed-throwing angle of 13◦ and negative pressure of 3.1 kPa
for pelletized vegetable seeds. When the optimal combination of parameters adjusted on
seeder, the quality of feed index, miss and multiple indexes of seed-metering device were
95.9, 2.9 and 1.2%, respectively [10]. The main parameters affecting the seeding perfor-
mance of air-suction-type metering devices are vacuum pressure, angular velocity of the
metering tray, and taper angle of the sucking hole. Sun et al., identified the optimum level of
these parameters as a vacuum pressure of 2.16 kPa, angular velocity of 29.43 rpm and taper
angle of 61.51◦ for Chinese cabbage [11]. Karayel et al., analyzed the relationship between
physical property of the seeds and vacuum pressure of an air-suction-type seed-metering
device and determined the optimum vacuum pressure of a precision vacuum seeder by
developing mathematical models using the physical properties of seeds [8].

Various methods such as grease belt, optical sensor or high-speed camera are used
to evaluate the seeding performance of the seeders in laboratory. Among these methods,
the most commonly used method is a grease belt. Although it is a convenient method
for seeders, there are some restrictions. The greased belt length limits the data that can
be taken, and it is time consuming. Nevertheless, it has been used by many researchers
to determine the seeding quality of seeders. Easier and faster methods are needed to
determine or estimate the design and operating parameters (such as vacuum pressure and
feed rate) of seeders [12]. Artificial neural network (ANN) models can be an alternative to
field or laboratory experiments for the determination of the optimum values of design and
operating parameters of seeders.

Artificial neural network is a research area under the science of artificial intelligence in
which researchers are very interested. It concerns the study of computer learning. Artificial
intelligence technology is developing at an increasing rate. New products are emerging
that apply artificial neural networks to everyday life. Automation systems are equipped
with artificial intelligence technology to take advantage of the decision-making power of
the computer. Increasing numbers of commercial systems are emerging each day, and the
functional properties of the systems are increasing.

Artificial intelligence technologies include:

• Expert systems;
• Artificial neural networks;
• Genetic algorithms;
• Fuzzy logic; and
• Hybrid systems [13].

These technologies contribute to the formation of useful products for people in daily
life. Artificial neural networks provide computer learning. Machine learning is defined as
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the improvement of behavior over time. Different learning paradigms have been developed,
and all these learning paradigms are based on three strategies. These are:

• Supervised learning;
• Unsupervised learning; and
• Reinforcement learning [14].

Based on these strategies, there are rules of learning development. Some of these rules
are online and others are offline learning.

Scientific research on the modeling of the performance or design parameters of agri-
cultural machinery using artificial neural network are very limited. Anantachar et al.,
developed feed-forward artificial neural network (ANN) models for the prediction of per-
formance parameters (seed rate, seed spacing and percent seed damage) of an inclined disc
seed-metering device. Forward speed, peripheral speed of the metering mechanism and
area of the cells on the seed disc were input parameters for artificial neural network (ANN)
method. The results show that the ANN model predicted the performance parameters of
the seed-metering mechanism better than statistical methods. It was observed that the opti-
mum forward speed of the seeder and optimum area of cells on the seed-metering disc had
good correlation with seed size. Optimum forward speed of seeder and optimum size (area)
of slots on the seed-metering plate were estimated using developed regression equations.
The size range of the peanut seeds used was between 95.42 and 123.01 mm2, and the opti-
mum peripheral speed of seed-metering system was 0.237 m/s for these seeds. The authors
recommended that the results need to be verified by conducting field experiments [15].

Zhao et al., predicted the performance of a precision seeder using artificial neural
network and grey model. Seed motion in soil was simulated using rectangular vibrating
tray applying discrete element method. According to results of the research, the proposed
method had good precision and stability to promote a uniform seed distribution [16].

The performance of a seeder and seeding quality depend on seeder design, seed
quality, climate conditions, soil conditions, proper adjustment of the seeder for used seeds
and skill of the operator. Storage, cleaning, sorting, separation and seeding equipment in
various types are designed by considering the physical characteristics of the seeds. These
characteristics should be considered not only in the design of these equipment but also in
the determination of the operating parameters.

In this research, using some of these properties, e.g., surface area, thousand seed
weight, seed density and sphericity, soft computing-based models such as artificial neural
network have been developed to estimate the optimum vacuum pressure. The Levenberg–
Marquardt (LM) learning algorithm was chosen as the learning algorithm of the model. The
LM is the most preferred algorithm in the medicine classification, manufacturing industry
and engineering [17,18]. The most important reason for the preference for the LM algorithm
is its speed and stability in artificial neural network training.

The LM algorithm formula derived from steepest descent and Newton algorithms
is given in Equation (1). The Newton algorithm supports the speed, while the Steepest
descent algorithm supports the LM algorithm [19].

∆w =
(

JT J + µI
)−1

JTe (1)

where w is the weight vector, J is the Jacobian matrix, µ is the combination coefficient,
I is the unit matrix, and e is the cumulative error vector. If this parameter is too large,
the method behaves like the Newton method; if it is too small, it behaves as the steepest
descent method.

2. Materials and Methods

A Sönmezler model PMD (Sönmezler, Adana, Turkey) precision seeder, equipped
with the air-suction type metering device, was used in all experiments. The laboratory
tests were performed to determine the seed-metering uniformity of the metering device
under different vacuum pressure regulations with the different seeds: soybean, maize,
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cucumber, melon, watermelon, sugarbeet and onion. All seeds were uncoated (bare) seed.
The seed-metering device was adjusted to longitudinal seed spacings as close as possible to
the seed spacing recommended by the seed producer. These seeds represent several shapes,
varying from spherical to flat and elongated. Length, width, and thickness of the seeds are
presented in Table 1.

Table 1. Dimensions of seeds.

Seed Length, mm Width, mm Thickness, mm

Soybean 7.93 ± 0.12 6.75 ± 0.07 5.78 ± 0.07
Maize 10.65 ± 0.21 7.98 ± 0.12 4.53 ± 0.06

Cucumber 10.21 ± 0.18 3.98 ± 0.08 1.63 ± 0.02
Melon 11.58 ± 0.17 4.51 ± 0.07 2.08 ± 0.03

Watermelon 8.9 ± 0.14 6.33 ± 0.08 2.05 ± 0.03
Sugarbeet 4.55 ± 0.06 3.58 ± 0.07 2.56 ± 0.05

Onion 2.25 ± 0.03 1.51 ± 0.04 1.33 ± 0.03

The metering device of the seeder used the vertical seed disc (plate) for singulating
the seed from the seed hopper (Figure 1). Air suction (vacuum) caused the seed to stick
to the holes of seed disc. The stuck seed rotated with the vertical seed disc, and it was
released from the disc by airflow cut-off at the bottom of the seed disc. The absence of
vacuum (air suction) allowed the seed to be dropped into soil. The diameters of the seed
discs were 0.23 m. The holes on seed disc were drilled along a circle of 0.2 m diameter. The
diameter of holes on the seed disc were 1.5 mm for sugarbeet and onion; 2.5 mm for melon,
watermelon and cucumber; and 3.5 mm for maize and soybean. The peripheral speed of
the metering disc was 0.25 m s−1.

Figure 1. The air-suction-type seed-metering devices: 1, vacuum plate; 2, seed; 3, seed box; 4, air
suction canal; 5, air cut.

The optimum value of vacuum pressure for each seed was determined primarily by
experiments in the laboratory. Then, it was estimated by using an artificial neural network
method using the physical properties of the seeds (surface area, thousand kernel weight,
kernel density and sphericity). Finally, optimum vacuum values obtained by both methods
were compared.

Seed distribution uniformity of the metering device of precision seeder was deter-
mined using a grease belt test stand in laboratory. The dimensions of the belt of test stand
were 0.15 m × 7.5 m. The precision seeder was mounted on a seeder test stand. An
adjustable speed drive mechanism was utilized to operate the seed-metering device of the
seeder. An adequate amount of grease was applied to the top surface of the belt to capture
the seed as it was dropped from the seeder to avoid rolling or bouncing of the seed on
the belt surface. The seeder was tested with a forward speed of 1.5 m s−1. The vacuum
pressure of the seed-metering unit was adjusted for the values between 2 and 5 kPa for
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soybean and maize, 2 and 3.5 kPa for melon, watermelon and cucumber and 1 and 2.5 kPa
for sugarbeet and onion seeds.

Longitudinal spacings between successive seeds were measured along the 6 m length
of the greased belt. The number of holes on seed disc and transmission ratio of the seed-
metering device were adjusted to ensure a theoretical seed spacing of 110 mm for soybean,
225 mm for maize, 580 mm for melon, watermelon and cucumber, 160 mm for sugarbeet
and 80 mm for onion.

Researchers (or engineers) use a wide variety of measurement procedures to qualify
the sowing performance (seed distribution uniformity) of seeders in relation to seed or plant
spacing [12,20,21]. Some researchers use performance measures involving successive seed
spacings on grease belt test stand or by electronic measurement systems including optic sen-
sors or image processing procedures [22–24]. Other researchers use performance measures
involving successive plant spacings in the field. A few researchers have used performance
measures involving distance between successive seeds sown into furrow [9,21,25].

Kachman and Smith calculated multiple index (MULTI), miss index (MISS), quality
of feed index (QFI) and preciseness (PREC) from seed spacings for analyzing the sowing
uniformity of precision seeders [26]. MISS is the ratio of seed spacings higher than 1.5 times
the adjusted seed spacing and indicates the percentage of missed seed standings or skips.
MULTI is the ratio of seed spacings that are less than or equal to half of the adjusted
seed spacing and indicates the percentage of multiple seed drops. QFI is the ratio of
spacings between 0.5 and 1.5 times the adjusted seed spacing. QFI is 100% minus miss and
multiple indices and indicates the percentages of single seed drops or locations. PREC is
the coefficient of variation of the spacings that are classified as singles after neglecting the
spacings consisting of misses and multiples.

The physical properties of the seeds were measured using the following methods:
A vernier caliper with a sensitivity of 0.01 mm was used to measure the thickness,

width and length of the seeds. The sphericities (φ) of the seeds were calculated with
Equation (2) [27]:

φ =
(L × W × T)

1
3

L
× 100 (2)

where L is the length of the seeds, W is the width of the seeds, and T is the thickness of the
seeds in mm.

The liquid displacement method was used to measure the kernel density of seeds.
Since toluene (C7H8) is not absorbed by the seeds, it was used rather than water [27]. A
digital camera and Adobe Photoshop software were used to measure the surface area of
seeds [8,28].

Feed-forward artificial neural networks were used to estimate the optimal vacuum
pressure according to the physical properties of seeds. The suitability of the artificial
neural network was compared and evaluated using the coefficient of determination (R
squared) of regression curves. Coefficient of determination is the proportion of variance
in the dependent variable (experimental vacuum pressure) that is predictable from the
independent variable (predicted vacuum pressure). The higher values of the coefficient of
determination, the better the goodness of the fit, and its highest value is 1.

In the present work, a neural network with the architecture of a back propagation
(backprop, BP) learning algorithm based on the Levenberg–Marquardt algorithm (LM)
was developed to predict the optimum vacuum pressure of an air-suction-type precision
metering device using the MATLAB Neural Network Toolbox. The backpropagation
algorithm requires the definition of a network structure consisting of one or more layers,
where one layer is completely dependent on the next layer. A standard network structure
consists of an input layer, a hidden layer, and an output layer. The program used the
physical properties of seeds such as thousand kernel weight, surface area, sphericity and
kernel density for inputs. Vacuum pressure value was obtained as the output. Hidden
layer neurons are directly connected to the input layer before it and the output layer after
it. Four neurons (thousand kernel weight, surface area, sphericity and kernel density)
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were considered in the input layer and one neuron in the output layer to represent the
input parameters and the response, respectively. The appropriate number of neurons in
the hidden layers was chosen by trial-and-error method [29]. Five hidden layers were
considered for the better approximation of the output parameters. While 70% of the
samples were used for trainings, 15% were used for validation and 15% for testing. The
representation of the ANN is shown in Figure 2.

Figure 2. ANN representation used in vacuum pressure estimation.

Each experiment was replicated six times in a laboratory. ANOVA (analysis of variance)
was performed to analyze the data sets. Duncan’s multiple-range tests were used to identify
significantly different means within dependent variables.

3. Results and Discussion

MULTI, MISS, QFI and PREC calculated from seed spacing values of all seeds are
given in Tables 2 and 3. The seed distribution uniformity values of the seed-metering
device (MULTI, MISS, QFI and PREC) were affected by vacuum pressure. Parameters of
QFI and PREC were evaluated to determine the optimal vacuum pressure for each seed.
When the QFI is maximum and the PREC is minimum, the vacuum pressure is optimum
for each seed. The best seed spacing uniformity with the highest QFI and the lowest PREC
was achieved at the vacuum pressure of 1.5 kPa for onion; 2.0 kPa for sugarbeet; 2.5 kPa
for cucumber, melon and watermelon; 3.0 kPa for soybean; and 4.0 kPa for maize seeds
(Tables 2 and 3).

The most uniform seed distribution uniformity was obtained with soybean seeds at
any vacuum pressure level. The uniform and spherical shape of soybean obtained uniform
meters of seeds with the air-suction seed-metering system. Increasing the vacuum pressure
reduced the MISS and increased MULTI for all seeds. Multiple seeds were more common
than misses for cucumber, melon, watermelon, onion and sugarbeet seeds. Few gaps
or multiple seed drops happen at any vacuum pressure values for soybean and maize
seeds. Our results support reports from Karayel et al., who found that the seed distribution
uniformity of precision seeders differed most at lower or higher vacuum pressure values
and faster forward speeds of seeders [8]. Because of the higher PREC and lower QFI values,
the performance of the seeder (seed distribution uniformity) was poorer at the lower and
higher vacuum pressures than at the optimum vacuum pressure.
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Table 2. Soybean, maize, and cucumber seeds metering uniformity of air-suction seed-metering
device of precision seeder.

Vacuum Pressure, kPa PREC, % MULTI, % MISS, % QFI, %

Soybean

2.0 7.2 0.0 b 8.0 a 92.0 b
3.0 6.1 0.1 b 4.0 b 95.9 a
4.0 6.9 3.0 a 4.0 c 93.0 b
5.0 8.1 3.0 a 4.3 c 92.7 b

Maize

2.0 14.5 0.0 c 9.6 a 90.4 c
3.0 10.8 1.1 b 7.3 a 91.6 b
4.0 8.5 1.4 c 3.7 b 94.9 a
5.0 12.5 5.1 a 2.2 b 92.7 b

Cucumber

2.0 22.7 9.8 c 10.3 a 79.9 c
2.5 15.1 7.9 c 4.1 b 88.0 a
3.0 25.8 12.0 b 5.4 b 82.6 b
3.5 30.9 18.1 a 2.2 b 79.7 c

Note: Values followed by the same letter (a, b, c) are not significantly different (p < 0.05).

Table 3. Melon, watermelon, sugarbeet and onion seeds metering uniformity of air-suction seed-
metering device of precision seeder.

Vacuum Pressure, kPa PREC, % MULTI, % MISS, % QFI, %

Melon

2.0 18.1 7.8 b 11.1 a 81.1 b
2.5 14.1 11.5 b 4.3 b 84.2 a
3.0 22.7 17.3 a 3.8 b 78.9 b
3.5 26.2 21.9 a 1.8 c 76.3 b

Watermelon

2.0 27.8 6.9 c 12.9 a 80.2 c
2.5 15.1 9.5 c 1.9 b 88.6 a
3.0 18.9 14.3 b 2.1 b 83.6 b
3.5 28.9 15.1 a 1.9 b 83.0 b

Sugarbeet

1.0 33.5 12.8 b 10.1 a 77.1 c
1.5 31.3 11.9 b 7.4 b 80.7 b
2.0 19.8 11.1 b 3.5 c 85.4 a
2.5 41.9 17.9 a 2.8 c 79.3 c

Onion

1.0 41.3 11.8 c 4.7 a 83.5 b
1.5 23.9 12.9 c 0.4 b 86.7 a
2.0 30.9 24.9 b 0.1 b 75.0 c
2.5 44.2 32.6 a 0.0 b 67.4 d

Note: Values followed by the same letter (a, b, c, d) are not significantly different (p < 0.05).

Physical properties of the seeds as presented in Table 4 were used as input parameters
in the program trained using artificial neural network. The thousand kernel weight, surface
area, sphericity and kernel density of seeds varied from 4.4 to 322.4 g, 0.05 to 0.638 cm2,
42.8 to 85.75% and 0.43 to 1.29 g cm−3, respectively. The thousand kernel weight, surface
area, sphericity and kernel density were used as data inputs for training the program, and
as a result, optimum vacuum pressure values were predicted (Table 5). The learning rate
was used to change the weights of the ANN. If the learning rate is low, then training is
more reliable, but optimization will take a lot of time because steps towards the minimum
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of the loss function are tiny. If the learning rate is high, then training may not converge or
even diverge. Narrow areas where learning will take place can be skipped. The results are
better by using the learning rate in the range of 0.01 ≤ η ≤ 0.9. A learning rate of 0.3 was
found to be adequate for this network.

Table 4. Means and standard errors of the seed dimensions.

Seed Thousand Kernel
Weight, g

Surface Area,
cm2 Sphericity, % Kernel Density,

g cm−3

Soybean 206.50 ± 1.12 0.450 ± 0.005 85.75 ± 0.47 1.130 ± 0.012
Maize 322.40 ± 2.0 0.638 ± 0.005 81.80 ± 0.54 1.280 ± 0.011

Cucumber 29.20 ± 0.17 0.270 ± 0.003 36.90 ± 0.26 1.080 ± 0.011
Melon 35.80 ± 0.17 0.360 ± 0.003 42.80 ± 0.28 0.430 ± 0.005

Watermelon 45.10 ± 0.27 0.310 ± 0.003 59.80 ± 0.40 1.290 ± 0.011
Sugarbeet 13.70 ± 0.14 0.090 ± 0.001 71.90 ± 0.42 0.920 ± 0.008

Onion 4.40 ± 0.04 0.050 ± 0.001 71.20 ± 0.46 1.050 ± 0.010

Table 5. Experimental and predicted (using artificial neural network) optimum vacuum pressure values.

Seed Experimental Vacuum Pressure, kPa Predicted Vacuum Pressure, kPa

Soybean 3.0 2.997
Maize 4.0 3.997

Cucumber 2.5 2.419
Melon 2.5 2.498

Watermelon 2.5 2.499
Sugarbeet 2.0 1.840

Onion 1.5 1.493

The validation of the predicted vacuum pressures (the performance of ANN) was
evaluated by comparing the predicted and measured (experimental) vacuum pressures
(Figure 3). Both polynomial and linear regression curves showing the accuracy of the
vacuum values obtained by ANN and success rates (coefficient of determination) are
shown in the figures.

The performance of the ANN model (with the configuration of backpropagation)
for the prediction of the optimum vacuum pressure of the seed-metering device of a
precision seeder is quite good within the given range of independent parameters, because the
predicted values of vacuum pressure generally banded around a straight line. As confirmed
by both regression curves, the predictive success is over 99%. The results show that the ANN
model estimate the optimal vacuum pressure of an air-suction-type seed-metering device
better than the mathematical models (statistical regression models) presented in Karayel
et al. [8]. Our results support reports from Anantachar et al., who found the prediction
accuracy of ANN models for the performance of a seed-metering device (percent seed
damage, seed spacing and seed rate) better than that of statistical models developed using
regression analysis [15], because ANN models have the ability to entirely capture the input–
output dataset correlation during training and have a better generalization performance
and flexibility.
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Figure 3. Polynomial and linear regression curves.

4. Conclusions

The level of vacuum pressure is one of the most important factors affecting the seed
singulation uniformity of precision vacuum metering devices and must be adjusted pre-
cisely before starting the seeding operation. The physical properties of the seeds should be
considered in the selection of its appropriate level.

An artificial neural network was developed to estimate the optimum vacuum pressure
of an air-suction seed-metering device of a precision seeder. The program used some physi-
cal properties of seeds (surface area, thousand seed weight, seed density and sphericity)
as inputs. The Levenberg–Marquardt (LM) learning algorithm was chosen as the learning
algorithm of the model. The performance of the neural network model was compared with
laboratory tests.

In laboratory experiments of an air-suction seed-metering device, the optimum value
of vacuum pressure was determined as 3.0 kPa for soybean; 4.0 kPa for maize; 2.5 kPa for
melon and watermelon; 2.0 kPa for sugarbeet; and 1.5 kPa for onion seeds. The artificial
neural network was a sufficiently satisfactory method for predicting the optimum vacuum
pressure of the seed-metering device of seeders, with a prediction success over 0.99.
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