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Abstract: Alfalfa (Medicago sativa L.) is used as a high-nutrient feed for animals. Weeds are a
significant challenge that affects alfalfa production. Although weeds are unevenly distributed,
herbicides are broadcast-applied in alfalfa fields. In this research, object detection convolutional
neural networks, including Faster R-CNN, VarifocalNet (VFNet), and You Only Look Once Version 3
(YOLOv3), were used to indiscriminately detect all weed species (1-class) and discriminately detect
between broadleaves and grasses (2-class). YOLOv3 outperformed other object detection networks in
detecting grass weeds. The performances of using image classification networks (GoogLeNet and
VGGNet) and object detection networks (Faster R-CNN and YOLOv3) for detecting broadleaves and
grasses were compared. GoogLeNet and VGGNet (F1 scores ≥ 0.98) outperformed Faster R-CNN
and YOLOv3 (F1 scores ≤ 0.92). Classifying and training various broadleaf and grass weeds did not
improve the performance of the neural networks for weed detection. VGGNet was the most effective
neural network (F1 scores ≥ 0.99) tested to detect broadleaf and grass weeds growing in alfalfa.
Future research will integrate the VGGNet into the machine vision subsystem of smart sprayers for
site-specific herbicide applications.

Keywords: alfalfa; deep convolutional neural networks; object detection; image classification;
precision herbicide application

1. Introduction

Alfalfa (Medicago sativa L.), a perennial crop, is the preferred feed for livestock such as
dairy cows [1]. Alfalfa is rich in protein, vitamins, minerals, and fiber [2], making the crop
high nutritional forage [3]. Weeds are a significant challenge in alfalfa production. They
compete with alfalfa for nutrients, space, sunlight, and water, reducing forage quality and
yield. In addition, some weed species, such as perilla mint (Perilla frutescens L.), contain
substances that are toxic to livestock [4]. A variety of postemergence (POST) herbicides are
broadcast-applied for weed control in alfalfa, although weeds are almost always unevenly
distributed in fields. For example, clethodim and 2,4-DB control a wide range of grasses
and broadleaves in conventional alfalfa, respectively [5,6], while glyphosate provides
nonselective control of weeds in glyphosate-tolerant alfalfa [7]. A machine vision-based
smart sprayer may precisely apply herbicides to the broadleaf and grass weeds in alfalfa,
thus reducing herbicide input. Compared to a broadcast herbicide application, targeted
and precise spraying at specific sites may reduce herbicide inputs by 90% [8].

Site-specific weed management, particularly precision herbicide application, can
considerably reduce herbicide input and weed control costs [9–12]. The major obstacle to
perform autonomous precision herbicide application is the accurate and reliable detection
of weeds in real-time. Traditional machine vision techniques are based on plant leaf color,
spectral information, feature fusion [10,13], morphological features [14–16], and spatial
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information [17]. However, these approaches cannot reliably detect weeds intermingled
with crops, especially in a complex environment with high crop and weed densities [18–21].

In recent years, machine learning techniques have advanced rapidly [22]. Deep con-
volutional neural networks (DCNNs) have succeeded in various applications [23,24]. For
example, recent studies have shown that deep learning can be used to diagnose coronavirus
disease [25], help predict seizure recurrence [26], perform high-accuracy three-dimensional
optical measurement [27], predict the activity of potential drug molecules [28], analyze
particle accelerator data [29,30], defect detection of industry wood veneer [31], achieve
efficient classification of green plum detects [32], and reconstruct brain circuits [33]. In
addition, DCNNs have demonstrated an exceptional capability for object detection [34,35]
and classification in digital images [36,37].

Researchers have explored the feasibility of using DCNNs for weed detection in various
cropping systems, such as bermudagrass and vegetable fields [11,38–42]. Sharpe et al. [42]
showed that YOLOv3 could be used as an object detector to discriminate broadleaves,
grasses, and sedges in the row middles of plastic-mulched vegetable crops. Yu et al. [11,21]
reported the feasibility of using DCNNs for the detection of multiple broadleaf and
grass weeds in actively growing or dormant bermudagrass (Cynodon dactylon (L.). Pers.).
Hennessy et al. [43] reported the feasibility of using YOLO3-tiny to detect hairy fes-
cue (Festuca filiformis Pourr.) and sheep sorrel (Rumex acetosella L.) in wild blueberry
(Vaccinium spp. L.). Hussain et al. [44] investigated the feasibility of using DCNNs for
detecting common lambsquarters (Chenopodium album L.) in potato (Solanum tuberosum L.).
However, the feasibility and effectiveness of utilizing DCNNs for weed detection in alfalfa
has never been investigated.

Alfalfa hay is typically harvested multiple times per growing season, unlike previously
mentioned crops. Alfalfa can re-grow following harvest and can rapidly regenerate new
stems and leaves. Weed detection in various heights of alfalfa stands might be a significant
challenge. The objective of the research was to evaluate the use of DCNNs for detecting
weeds growing in alfalfa.

2. Materials and Methods
2.1. Overview

The five DCNNs, GoogLeNet [45], VGGNet [46], Faster R-CNN [47], VarifocalNet
(VFNet) [48], and YOLOv3 [49], were evaluated for detection of weeds growing in alfalfa.
These neural networks were pre-trained with 256 × 256 pixels images and employed
the ADADELTA deep learning optimizer for backpropagation [50]. This method is used
to overcome the fundamental problem of deep learning—the activation function signal
error in the progress of cumulative backpropagation increases or decreases rapidly [51,52].
GoogLeNet and VGGNet are convolutional neural networks for image classification [45,46].
The image classification networks mainly achieve the purpose of classifying or predicting
object categories by accurately detecting the objects in images. GoogLeNet consists of
22 convolutional layers and is designed on small convolutions in order to reduce the
neuron numbers and parameters [45]. VGGNet used in this research is composed of
19 weight layers. VGGNet is designed to implement smaller convolutional kernels to limit
neuron numbers and parameters [46]. Faster R-CNN, VarifocalNet (VFNet), and YOLOv3
are convolutional neural networks for object detection [47–49]. In addition to the purpose
of classification, the object detection networks can also accurately detect the location of the
target in images and mark the corresponding label. In terms of structure, Faster R-CNN
has integrated feature extraction, proposal extraction, bounding box regression (rect refine),
and classification into one network, which significantly improves the overall performance,
especially in terms of detection speed [47]. VFNet is proposed to learn the intersection
over union (IoU)-aware classification score (IACS), which can simultaneously represent
the confidence of the object’s existence and the positioning accuracy to achieve a more
accurate detection in the dense object detector [48]. At the same time, a new function
called Varifocal loss was designed to train dense object detectors to predict IACS, and a
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new efficient star-shaped bounding box feature representation was designed to estimate
IACS and improve rough bounding boxes. YOLOv3 is a fully convolutional network that
uses many residual layer jump connections [49]. In order to reduce the negative effect
of gradient caused by pooling, the author directly abandoned POOLing and used conv’s
stride to achieve downsampling. YOLOv3 uses upsample and fusion methods similar
to Feature Pyramid Network (FPN) to detect multiple-scale feature maps to enhance the
algorithm’s accuracy for small target detection. Different from Faster R-CNN, YOLOv3
only operates on a single best priority. All image classification neural networks were
pre-trained using the ImageNet database [53], with specific spatial tensor image sizes of
224 × 224 pixels [45,46,54,55].

2.2. Image Acquisition

Images of various weed species growing in alfalfa were acquired multiple times during
September and October 2020 using a digital camera (Panasonic® DMC-ZS110, Xiamen,
Fujian, China) at a resolution of 4160 × 3120 pixels. The images taken in alfalfa fields in
Bengbu, Anhui, China (117◦89′ N, 117◦88′ E), were used for the training, validation, and
testing datasets. Additional images were taken in separate alfalfa fields in Bengbu, Anhui,
China, and Yangzhou University Pratacultural Science Experiment Station in Yangzhou,
Jiangsu, China (32◦20′ N, 119◦23′ E). The images containing alfalfa (measured 8 to 52 cm in
height) and various broadleaf and grass weed species were captured from approximately
1.5 m from the ground level, yielding 0.05 cm pixel−1. The images were acquired under
various outdoor lighting conditions, including clear/bright, cloudy, or partly cloudy skies.

2.3. Training and Testing

The training or testing dataset contained a variety of broadleaf and grass weed
species occurring in the mixture. The dominant broadleaf weed species were Carolina
geranium (Geranium carolinianum L.), catchweed bedstraw (Galium apaine L.), mugwort
(Artemisia Vulgaris L.), and speedwell (Veronica spp. L.), whereas the dominant grass weeds
were barnyardgrass (Echinochloa crus-galli (L.) Beauv), crabgrass (Digitaria spp.), and gooseg-
rass (Eleusine indica (L.) Gaertn).

Four sets of labels were produced for object detection of convolutional neural networks,
one per network. Images were resized to 1280 × 720 pixels (720 p) using Irfanview
(Version 4.50, Irfan Skijan, Bosnia). The resolution was chosen to integrate the neural
networks into developed precision sprayer technology using 720p video as input images.
The object weeds were labeled with labelimg (https://github.com/tzutalin/labelImg,
accessed on 9 January 2021). The following neural networks were trained to detect weeds:

The neural networks trained to exclusively detect broadleaf weeds were termed
1 class (B). A total of 573 images containing broadleaves were included in the training
datasets. All broadleaf weeds were labeled under a single category.

The neural networks trained to exclusively detect grass weeds were termed 1 class (G).
A total of 926 images containing grasses were used for the training dataset. All grass weeds
were labeled under a single category.

The neural networks trained to indiscriminately detect both broadleaf and grass weeds
were termed 1 class (B + G) (broadleaves + grasses). All broadleaf and grass weeds were
labeled under a single category. A total of 873 images were used for the training dataset.
All weeds were labeled under a single category.

The neural networks were trained to detect and discriminate between broadleaf and
grass weeds were termed 2 classes (B + G) (broadleaves + grasses). A total of 935 images
containing 291 broadleaves and 6495 grasses were used for the training dataset. The
images collected in Bengbu, Anhui Province, were selected as the training dataset. The
predominant weed species was grasses with few broadleaf weeds. Weed species were
labeled under separate categories based on the herbicide weed control spectrum described
above. All annotations were entirely composed of a single bounding box.

https://github.com/tzutalin/labelImg
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The images used for image classification were divided into equal sub-images with
256 × 256 pixels through cropping and then classified according to their species. The
weed species were roughly divided into broadleaf (positive) and grass (negative) weeds.
The training dataset contained 1700 positive and 1700 negative images. The validation
dataset contained 340 positive and 340 negative images. The testing dataset contained
170 positive and 170 negative images. The multiple-species neural networks were trained
using a dataset containing 4000 positive images (1000 images for each broadleaf weeds)
and 9000 negative images (images without targeted broadleaf weeds). The validation
dataset contained 200 positive and 200 negative images, and the testing dataset contained
100 positive and 100 negative images for each weed species.

Image classification architectures, including GoogLeNet and VGGNet, were trained
for weed detection. Data were imported into the NVIDIA Deep Learning GPU Training
System (DIGITS) (Version 6.0.0, NVIDIA, Santa Clara, CA, USA). The training and testing
were performed on a GeForce RTX 2080Ti with 64 GB of memory using the Convolutional
Architecture for Fast Feature Embedding (CAFFE) [56]. The hyper-parameters used for
training the neural networks are presented in Table 1.

Table 1. Hyper-parameters used for training the neural networks.

GoogLeNet and VGGNet Faster R-CNN and VFNet YOLOV3

Training epochs 30 100 273
Solver type SGD SGD SGD
Batch size 2 - a 64
Batch accumulation 5 - -
Learning rate policy Step Down Step Down Step Down
Base learning rate 0.01 0.001 0.001
Gamma 0.1 2.0 2.0
Step Size 33% - -

Abbreviation: SGD, Stochastic Gradient Descent. a The hyphen “-” indicates that there is no fixed value for
this item.

Object detection uses input images and label files containing the targeted object in
each image. The neural networks selected were Faster-R CNN, VFNet, and YOLOv3.
Faster-R CNN and VFNet were trained and tested using mmDetection neural network
framework [57] and pretrained using Pattern Analysis, Statistical Modeling, and Computa-
tional Learning Visual Object Classes (PASCAL VOC) dataset. YOLOv3 was trained and
tested using the Darknet neural network framework [58] and pretrained using the PASCAL
VOC dataset. The hyper-parameters used for training the neural networks are presented
in Table 1. The training and validation relied on the union intersection between ground
truth labels and predicted bounding boxes. Therefore, based on the two standards related
to the network application of precise spraying, the validation results were evaluated using
IoU > 0 to visually identify the actual vegetation in the image.

The validation and testing results of the neural networks were arranged in a confusion
matrix with four possible conditions: true positive (tp), false positive (fp), false negative
(fn), and true negative (tn). A tp is when the neural network correctly identifies the target.
A fp is when the neural network falsely identifies a target. A fn is when the neural network
fails to identify a target. Although true negative (tn) does complete the confusion matrix,
this category is not a key priority for current applications. Precision, recall, and F1 score
were computed based on the results of confusion matrices.

Precision measures the accuracy of the neural network at positive detection and was
calculated with Equation (1) [59–61]:

Precision =
tp

tp + f p
(1)
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Recall measures the effectiveness of the neural network in identifying the target and
was determined using the Equation (2) [59–61]:

Recall =
tp

tp + f n
(2)

F1 score is the harmonic mean of precision and recall. The F1 score is used for compre-
hensive evaluation of precision and recall and was calculated using Equation (3) [60]:

F1 score =
2 ∗ precision ∗ recall

precision + recall
(3)

3. Results
3.1. Object Detection

All object detection neural networks, including the 1-class (B), 1-class (G), 1-class
(B + G), and 2-class (B + G), showed unacceptable performance of weed detection, as
evidenced by low precision, recall, and F1 score values (Table 2). To detect broadleaf weeds
growing in alfalfa, the F1 scores of 1-class (B) never exceeded 0.27, 0.69, and 0.17 for Faster
R-CNN, YOLOv3, and VFNet, respectively. The effect diagram was shown in Figure 1.
The low precision and recall values of 1-class (B) are likely due to the fact that broadleaf
weeds and alfalfa are dicotyledons and share similar plant morphological characteristics,
increasing the difficulty of feature extraction and resulting in poor performance of weed
detection. For detection of grass weeds growing in alfalfa, the 1-class (G) trained with
YOLOv3 outperformed Faster R-CNN and VFNet, but the F1 score never exceeded 0.91.

Table 2. Object detection neural network validation results for detection of weeds growing in alfalfa a.

Model Class Precision Recall F1 Score

Faster R-CNN 1-class (B) 0.21 0.38 0.27
1-class (G) 0.55 0.82 0.66

1-class (B + G) 0.47 0.72 0.57
2-class 0.53 0.66 0.59

VFNet 1-class (B) 0.47 0.11 0.17
1-class (G) 0.68 0.53 0.59

1-class (B + G) 0.71 0.54 0.62
2-class 0.67 0.56 0.61

YOLO v3 1-class (B) 0.91 0.55 0.69
1-class (G) 0.96 0.87 0.91

1-class (B + G) 0.92 0.60 0.73
2-class 0.62 0.84 0.71

a 1-class (B) refers to the training dataset only containing broadleaf weeds and the neural network trained to
exclusively detect broadleaf weeds; 1-class (G) refers to the training dataset only containing grass weeds and the
neural network trained to exclusively detect grass weeds; 1-class (B + G) refers to the training dataset contained
both broadleaf and grass weeds and the neural network trained to indiscriminately detect both broadleaf and
grass weeds; 2-class refers to the training dataset contained broadleaf and grass weeds and the neural network
trained to discriminate between broadleaf and grass weeds.

The 1-class (G) and 1-class (B + G) neural networks generally outperformed the
1-class (B) and 2-class (B + G) neural networks in detecting the target weeds (Table 2).
Among the evaluated neural networks, the 1-class (B) neural network exhibited the worst
weed detection, and the F1 scores of Faster R-CNN, VFNet, or YOLOv3 did not exceed
0.69. The 1-class (G) trained with YOLOv3 exhibited the highest F1 score (0.91). To detect
broadleaf and grass weeds growing in alfalfa, the 1-class (B + G) trained with YOLOv3
showed the highest F1 score (0.73). To detect and discriminate broadleaf and grass weeds
growing in alfalfa, the 2-class neural network trained with YOLOv3 showed the highest
F1 score (0.71). The major weed species in the training images were grasses, with few
broadleaves. This may have resulted in insufficient training samples of broadleaves,
leading to the low precision and recall values of 1-class (B). An additional study is needed
to train 1-class (B) using the training images containing more broadleaf weeds.
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Figure 1. The detection of weeds growing in alfalfa using object detection neural networks. (A) 
Weed detection based on Faster R-CNN. (B) Weed detection based on VFNet. (C) Weed detection 
based on YOLOv3. (a) The training dataset only contained broadleaf weeds to detect broadleaf 
weeds growing in alfalfa. (b) The training dataset only contained grass weeds to detect grasses 
growing in alfalfa. (c) The training dataset contained both broadleaf and grass weeds to indiscrimi-
nately detect both broadleaf and grass weeds growing in alfalfa. (d) The training dataset contained 
broadleaf and grass weeds to detect and discriminate between broadleaf and grass weeds growing 
in alfalfa. 
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weed detection, and the F1 scores of Faster R-CNN, VFNet, or YOLOv3 did not exceed 
0.69. The 1-class (G) trained with YOLOv3 exhibited the highest F1 score (0.91). To detect 
broadleaf and grass weeds growing in alfalfa, the 1-class (B + G) trained with YOLOv3 
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growing in alfalfa, the 2-class neural network trained with YOLOv3 showed the highest 
F1 score (0.71). The major weed species in the training images were grasses, with few 
broadleaves. This may have resulted in insufficient training samples of broadleaves, lead-
ing to the low precision and recall values of 1-class (B). An additional study is needed to 
train 1-class (B) using the training images containing more broadleaf weeds. 

3.2. Image Classification vs. Object Detection 
The GoogLeNet and VGGNet outperformed Faster R-CNN and YOLOv3 in valida-

tion and testing results to detect broadleaf and grass weeds growing in alfalfa (Table 3). 
To detect broadleaf or grass weeds, the F1 scores of GoogLeNet and VGGNet networks 
were ≥0.98. In contrast, for detecting the same target weeds, the F1 scores of Faster R-CNN 
and YOLOv3 never exceeded 0.92. The excellent performances of image classification neu-
ral networks for weed detection can likely be attributed to the following reasons: (1) the 
cropped images may enlarge the features of the positive area to a certain extent, while the 
negative area may accordingly be reduced; (2) because of the selected images were 
cropped, the number of training images increased; (3) the pixels to be analyzed in the 
cropped images were relatively few. These facts may have increased the percentage of 

Figure 1. The detection of weeds growing in alfalfa using object detection neural networks. (A) Weed
detection based on Faster R-CNN. (B) Weed detection based on VFNet. (C) Weed detection based on
YOLOv3. (a) The training dataset only contained broadleaf weeds to detect broadleaf weeds growing
in alfalfa. (b) The training dataset only contained grass weeds to detect grasses growing in alfalfa.
(c) The training dataset contained both broadleaf and grass weeds to indiscriminately detect both
broadleaf and grass weeds growing in alfalfa. (d) The training dataset contained broadleaf and grass
weeds to detect and discriminate between broadleaf and grass weeds growing in alfalfa.

3.2. Image Classification vs. Object Detection

The GoogLeNet and VGGNet outperformed Faster R-CNN and YOLOv3 in validation
and testing results to detect broadleaf and grass weeds growing in alfalfa (Table 3). To
detect broadleaf or grass weeds, the F1 scores of GoogLeNet and VGGNet networks
were ≥0.98. In contrast, for detecting the same target weeds, the F1 scores of Faster R-CNN
and YOLOv3 never exceeded 0.92. The excellent performances of image classification
neural networks for weed detection can likely be attributed to the following reasons: (1) the
cropped images may enlarge the features of the positive area to a certain extent, while
the negative area may accordingly be reduced; (2) because of the selected images were
cropped, the number of training images increased; (3) the pixels to be analyzed in the
cropped images were relatively few. These facts may have increased the percentage of
images with positive pattern recognition, which was amplified by the convolutional filters,
improving the performance of weed detection.

In the validation results, the precision values of broadleaf and grass weeds trained
by the YOLOv3 reached 1.00 and 0.99, while the recall was ≤0.52. In the testing results,
the precision and recall values of the grass weeds were 0.89 and 0.95. The precision of the
broadleaves was 0.97, while the recall was 0.67. The low recall was due to the fact that
some samples were not correctly detected, and the threshold for predicting true positive
samples of the two-classifier was decreased.



Agronomy 2022, 12, 1459 8 of 13

Table 3. The validation and testing results using image classification and object detection neural
networks for the detection of weeds growing in alfalfa b.

Validation Results Testing Results

Model Weed Species Network Type a Precision Recall F1 Score Precision Recall F1 Score

GoogLeNet Broadleaves IC 0.99 0.98 0.99 0.98 0.97 0.98
Grasses IC 0.99 0.98 0.98 0.98 0.98 0.98

VGGNet Broadleaves IC 0.99 0.99 0.99 1.00 0.98 0.99
Grasses IC 0.99 0.99 0.99 0.98 1.00 0.99

Faster R-CNN Broadleaves OD 0.22 0.32 0.26 0.23 0.46 0.31
Grass OD 0.68 0.40 0.50 0.87 0.52 0.65

YOLOv3 Broadleaves OD 1.00 0.46 0.63 0.97 0.67 0.79
Grasses OD 0.99 0.52 0.68 0.89 0.95 0.92

a Abbreviations: IC, image classification; OD, object detection. b The models were trained with the training
dataset containing various broadleaf and grass weeds. The image classification of the training dataset contained
3000 positive and 3000 negative images. The validation dataset contained 600 positive and 600 negative images.
The testing dataset contained 300 positive and 300 negative images. The object detection neural networks for
detecting grass weeds contained 926 images, while the object detection neural networks for detecting broadleaf
weeds contained 532 images. The validation dataset contained 93 images, while the testing dataset contained
100 images.

3.3. Broadleaf and Grass Weeds Detection Using Various Convolutional Neural Networks

VGGNet outperformed GoogLeNet, Faster R-CNN, and YOLOv3 to detect broadleaves,
including Carolina geranium, catchweed bedstraw, mugwort, and speedwell growing in
alfalfa (Table 4). For detection of speedwell, the precision, recall, and F1 score values
of VGGNet reached 1.00. For the image classification neural networks, the F1 scores of
GoogLeNet for detecting speedwell were ≥0.87, while the F1 scores of GoogLeNet for
detecting these four species of broadleaves never exceeded 0.89. Meanwhile, the F1 scores
of VGGNet for detection of speedwell reached 1.00, while the F1 scores of VGGNet for
detection of these broadleaf weed species were≥0.92. These findings suggest that these two
image classification neural networks effectively detected speedwell. For the object detection
neural networks, YOLOv3 outperformed Faster R-CNN. For detection of mugwort, the F1
scores of Faster R-CNN never exceeded 0.57, while the F1 scores of YOLOv3 reached 0.84.
To detect four broadleaf weed species, the F1 score of YOLOv3 ranged from 0.15 to 0.84.
In addition, the F1 score of Faster R-CNN never exceeds 0.57. These two object detection
neural networks showed an unacceptable performance for detecting these four species of
broadleaf weeds.

To detect grass weeds, VGGNet outperformed GoogLeNet, Faster R-CNN, and YOLOv3
(Table 5). The image classification networks, GoogLeNet and VGGNet, showed better weed
detection performances than the object detection networks, Faster R-CNN and YOLOv3,
and showed lower F1 scores when detecting broadleaf weeds than grass weeds. Image
segmentation may be an optional approach for such circumstances [62]. Compared with
Section 3.2, specific detection of weed species did not improve the performance of networks.
For example, the F1 scores of VGGNet for detection of grasses did not exceed 0.76, which
did not meet the standards for precision spraying. However, the F1 scores of VGGNet
trained by 2 classes (broadleaves and grasses) reached 0.99. These findings generally
indicate that dividing weeds into broadleaf and grass weeds for training the networks
improved the performance of weed detection. Combined with the training samples of
Sections 3.2 and 3.3, VGGNet is the most suitable neural network for detecting weeds
growing in alfalfa.
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Table 4. The validation and testing results using image classification and object detection neural
networks to detect broadleaf weeds growing in alfalfa a,b.

Validation Results Testing Results

Model Weed Species Network Type Precision Recall F1 Score Precision Recall F1 Score

GoogLeNet Artemisia vulgaris IC 0.64 0.67 0.65 0.63 0.65 0.64
Galium aparine IC 0.76 0.83 0.79 0.77 0.81 0.79

Geranium carolinianum IC 0.87 0.75 0.81 0.87 0.78 0.82
Veronica IC 0.88 0.88 0.89 0.87 0.88 0.87

VGGNet Artemisia vulgaris IC 0.95 0.90 0.92 0.95 0.89 0.92
Galium aparine IC 0.94 1.00 0.97 0.93 0.98 0.96

Geranium carolinianum IC 0.95 0.96 0.95 0.94 0.96 0.95
Veronica IC 1.00 1.00 1.00 1.00 1.00 1.00

Faster R-CNN Artemisia vulgaris OD 0.49 0.67 0.57 0.48 0.68 0.56
Galium aparine OD 0.24 0.23 0.29 0.27 0.37 0.31

Geranium carolinianum OD 0.38 0.56 0.45 0.37 0.56 0.45
Veronica OD 0.18 0.33 0.23 0.20 0.34 0.25

YOLOv3 Artemisia vulgaris OD 0.90 0.78 0.84 0.88 0.72 0.81
Galium aparine OD 0.88 0.21 0.33 0.80 0.09 0.15

Geranium carolinianum OD 0.81 0.39 0.53 0.81 0.40 0.54
Veronica OD 0.54 0.29 0.36 0.79 0.23 0.35

a Abbreviations: IC, image classification; OD, object detection. b The models were trained with the training
dataset containing various broadleaf weeds. For the image classification networks, the training dataset contained
1000 images, while the validation dataset contained 200 images. The testing dataset contained 100 images. For
the object detection networks, the training dataset contained 450 images, including a total of 647 catchweed
bedstraw, 1219 Carolina geranium, 4352 mugwort, and 499 speedwell. The validation or testing dataset contained
50 images.

Table 5. Grass weed detection validation and testing results using various convolutional neural networks b.

Validation Results Testing Results

Model Weed Species Network Type a Precision Recall F1 Score Precision Recall F1 Score

GoogLeNet Digitaria IC 0.47 0.55 0.50 0.42 0.55 0.48
Echinochloa crus-galli IC 0.62 0.67 0.65 0.62 0.66 0.64

Eleusine indica IC 0.64 0.47 0.54 0.51 0.31 0.39
VGGNet Digitaria IC 0.56 0.79 0.66 0.46 0.71 0.56

Echinochloa crus-galli IC 0.75 0.77 0.76 0.69 0.69 0.69
Eleusine indica IC 0.79 0.42 0.55 0.75 0.32 0.45

Faster R-CNN Digitaria OD 0.20 0.31 0.24 0.19 0.31 0.24
Echinochloa crus-galli OD 0.07 0.30 0.12 0.05 0.40 0.09

Eleusine indica OD 0.21 0.35 0.26 0.20 0.31 0.24
YOLOv3 Digitaria OD 0.75 0.43 0.54 0.72 0.53 0.61

Echinochloa crus-galli OD 0.45 0.25 0.32 0.44 0.27 0.33
Eleusine indica OD 0.33 0.14 0.19 0.54 0.15 0.23

a Abbreviations: IC, image classification; OD, object detection. b The training dataset contained various broadleaf
weeds in order to detect various broadleaf weeds growing in alfalfa. The image classification networks of the
training dataset contained 1000 images. The validation dataset contained 200 images. The testing results contained
100 images. The object detection networks of the training data set contained 560 images within which were
1008 crabgrass, 476 barnyard grass, and 497 goosegrass. The validation data set contained 60 images, and the
testing results contained 60 images.

4. Discussion

In other cropping systems, Sharpe et al. [63] reported that the leaf-trained Detect-
Net showed a high F1 score (0.94) for detecting Carolina geranium growing in com-
petition with strawberry (Fragaria × ananassa (Weston) Duchesne ex Rozier (pro sp.)
(chiloensis × virginiana)). Recently, to detect broadleaf weed seedlings growing in wheat
(Triticum aestivum L.), Zhuang et al. [64] reported that object detection neural networks,
including CenterNet, Faster R-CNN, TridentNet, VFNet, and YOLOv3, were ineffective
(F1 scores ≤ 0.68). Overall, the present study’s findings suggest that the evaluated object
detection neural networks may not be appropriate for detecting weeds growing in alfalfa.
Further, other object detection networks such as SSD [65] and DetectNet [61] are designed
to identify multiple classes per image and need to be evaluated for weed detection in
future research.
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The present study results showed that the image classification neural networks out-
performed object detection neural networks, and GoogLeNet and VGGNet can be used to
detect broadleaf and grass weeds growing in alfalfa. Similarly, Zhang et al. [48] reported
that image classification neural networks, AlexNet, DenseNet, and VGGNet, outperformed
the object detection neural networks, CenterNet, Faster R-CNN, TridentNet, VFNet, and
YOLOv3, for the detection of broadleaf seedlings, particularly at high weed density, grow-
ing in wheat.

Image classification neural networks classify images according to the content of the
images. There is usually a set of fixed categories, and the model must predict the most suit-
able category for the image. Object detection is more complicated than image classification
because more operation and processing is involved. The difference between the lowest and
highest F1 scores of VGGNet was 0.08. However, the F1 scores of the object detection neural
networks varied greatly. The difference between the highest and the lowest F1 scores of
YOLOv3 was 0.66. These findings suggest Faster R-CNN and YOLOv3 may not be suitable
for detecting weeds growing in alfalfa. For detection of mugwort, YOLOv3 outperformed
Faster R-CNN, but the F1 scores never exceeded 0.84. Overall, these findings suggest that
VGGNet is the most effective neural network for detecting various broadleaf weeds while
growing in alfalfa among the evaluated neural networks.

5. Conclusions

This research demonstrated that VGGNet performed well at detecting various broadleaf
and grass weeds. To detect weeds growing in alfalfa, the image classification networks,
GoogLeNet and VGGNet, outperformed the object detection networks, Faster R-CNN,
YOLOv3, and VFNet. The VGGNet performed best in the 2 classes (broadleaves and
grasses) neural network (F1 scores ≥ 0.99) and is a suitable neural network for detect-
ing various broadleaf and grass weeds growing in alfalfa. Overall, we conclude that the
evaluated object detection networks, including Faster R-CNN, VarifocalNet (VFNet), and
YOLOv3, may not be appropriate for detecting weeds growing in alfalfa. The use of VG-
GNet as the decision-making system for the machine vision subsystem seems to be a viable
option for the precise spraying of herbicides in alfalfa.
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