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Abstract: Heat stress during flowering is a critical limitation for summer maize production. However,
the incidence of heat varies with years and locations, and it poses a great risk to successful maize
reproduction and kernel setting. Therefore, it is essential to provide a sound quantification of heat
occurrence in relation to maize growth and development. Here, we analyzed the characteristics
of heat occurrence based on climate data for over 60 years on Huaibei Plain, China. The effective
accumulated temperature showed a slight interannual variation. The average maximum temperature
(Tmax) during flowering was 32 ◦C–33 ◦C, which was approximately 2 ◦C higher than that over
the whole growing season. The probability (P) for the daily Tmax > 33 ◦C during flowering was
closer to 50% and this maximum temperature ranged between 33 ◦C and 37 ◦C. The five levels
from normal to extreme heat for Tmax were defined. Across the six studied sites, the mild level heat
stress accounted for most of incidents (P, 25–50%), followed by moderate (P, 13–25%) and severe
(P, 0.5–13%), and the minimum for extreme heat stress (P, 0.5%). Four phases bracketing flowering
during maize development were given, i.e., 1 week prior to anthesis, 1 week during anthesis, 1 week
for anthesis-silking, and 1week post silking. There was a greater probability for heat stress incidents
from anthesis to silking compared to the other developmental stages. Additionally, maize grain yield
slightly increased with the increase in Tmax to 33 ◦C, but it declined as Tmax surpassed 33 ◦C. In
conclusion, the pattern and characteristics of heat stress were quantified bracketing maize flowering.
These findings assist to advise summer maize cropping strategies on the semi-arid and semi-humid
Huaibei Plain, China or similar climate and cropping regions.

Keywords: Zea mays L.; bracketing flowering; heat stress incidents; cropping risk

1. Introduction

Maize (Zea mays L.), as a staple food, plays an important role in securing food security
and is also one of the most important cereal crops as a source of feed and industrial raw
material for humans and animals [1–3]. However, maize production is subject to increasing
risk of heat stress because of climate change [4]. The average temperature has risen by
0.46 ◦C from the preindustrial period to the 1971−2000 period [5], and the increasing trend
of temperature may continue during the 21st century [6,7]. In addition to the increased
global surface temperature, the occurrence frequency and intensity of heat stress are also
increasing significantly [8,9]. It is reported that a short duration of heat stress during the
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critical flowering stage can lead to a huge yield loss caused by heat-induced reproductive
failure [10]. Thus, heat stress during flowering has become one of the major meteorological
disasters for maize cropping [6,11].

Heat stress during the flowering interferes in a series of events such as tasseling,
pollen shedding, silking, pollination, pollen germination, pollen tube growth, and fertiliza-
tion [12–14]. It is reported that in the pre-anthesis phase (7 days before pollination) heat
accelerates tasseling and heat during anthesis phase reduces pollen shedding time, impairs
pollen morphology, and induces pollen sterility [15–17]. In addition, high temperature at
the silking phase inhibits anther dehiscence [18,19], pollen germination, and pollen tube
extension [20]. Furthermore, post-silking (15 days) heat hinders fertilization and kernel
development [20,21], which finally leads to a decrease in the seed-setting rate and grain
yield [4,14]. Heat stress during different developmental phases variably affects maize re-
productive growth; therefore, it is critical to quantify the occurrence characteristics of heat
stress during these different phases, i.e., pre-anthesis, anthesis, silking, and post-silking.

Huaibei Plain in North Anhui, located at the south of Huang-Huai-Hai Plain in China,
is one of the major areas under maize production in Anhui Province [22]. A rotation system
with summer maize sown in early June and winter wheat sown in early October was
commonly adopted on the Huaibei Plain over last many decades and is likely to continue
for the next decade [18,23]. As such, maize flowering normally occurs in late July or early
August in this region, which often coincides with heat incidence [24,25]. It is reported that
the frequency of heat stress was approximately once in every 1.7 years on Huaibei Plain [24].
The frequency of moderate and severe heat stress during maize flowering was higher than
15% and 20%, respectively [24]. In addition, the number of days, timing, duration, and
severity of heat events are becoming more frequent under global warming [26]. Therefore,
it is necessary to quantify the characteristics of heat stress with reference to maize flowering,
to provide guidelines for maize-cropping systems.

However, the characteristics of heat stress occurrence on Huaibei Plain or nearby
regions are rarely analyzed. In particular, heat occurrence analysis in relation to the specific
maize flowering stage is not reported. Therefore, the objective of this study is to quantify
the spatiotemporal characteristics of heat stress occurrence with reference to the critical
period bracketing maize flowering based on the historical meteorological data from six
sites on Huaibei Plain, China.

2. Materials and Methods
2.1. Study Area and Data Sources

Six sites, i.e., Shouxian (116.78◦ E, 32.55◦ N, south on the map), Bengbu (117.38◦

E, 32.92◦ N, east on the map), Fuyang (115.82◦ E, 32.90◦ N, west on the map), Suzhou
(116.98◦ E, 33.63◦ N, northeast on the map), Bozhou (115.78◦ E, 33.85◦ N, northwest on
the map), and Dangshan (116.35◦ E, 34.42◦ N, north on the map) were chosen on Huaibei
Plain, Anhui Province, China (Figure 1). Daily maximum temperature (Tmax), minimum
temperature (Tmin), and mean temperature (Tmean) data around maize growing season and
flowering stage were obtained from the China Meteorological Data Service Centre (CMDC,
http://data.cma.cn/, accessed on 7 January 2016). Maize grain yield data are only available
from 1998 to 2017 at the four sites, i.e., Fuyang, Bozhou, Suzhou, and Bengbu, since in
earlier years no such detailed online records were available in the local agricultural bureau.

Maize-cropping characteristics are based on typical local farming practices, i.e., sowing
around mid–early June, anthesis to silking around late July to early August, and harvested
by the end of September or early October [23,27]. Critical developmental stages bracketing
flowering usually occurred from 15 July to 15 August (32 days) in this region or nearby.

http://data.cma.cn/
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Figure 1. The locations of Shouxian (south, 116.78◦ E, 32.55◦ N), Bengbu (east, 117.38◦ E, 32.92◦ N),
Fuyang (west, 115.82◦ E, 32.90◦ N), Suzhou (northeast, 116.98◦ E, 33.63◦ N), Bozhou (northwest,
115.78◦ E, 33.85◦ N), and Dangshan (north, 116.35◦ E, 34.42◦ N) on Huaibei Plain, North Anhui
Province, China.

2.2. Data Analysis during Maize Growing Season and Flowering Stage over 61 Years (1957–2017)

The effective accumulated temperature referred to the sum of daily temperatures with
a base temperature of 8 ◦C was quantified during the summer maize growing season across
the six sites. The characteristics of average annual maximum temperature (Tmax), minimum
temperature (Tmin), and mean temperature (Tmean), and its coefficient of variation (CV)
value were analyzed for both the entire maize growing season and for the flowering stage
for the six sites.

A threshold temperature of 33 ◦C is reported to induce heat stress during maize
flowering [28,29] and is selected for this study. First, the number of days with daily Tmax
lower than, greater than, or equal to 33 ◦C were counted over the 32-day period around
flowering, and the probability of the number of days for Tmax < or ≥ 33 ◦C were determined.
Furthermore, from 33 ◦C to 40 ◦C, the occurrence of days with Tmax higher than specific
thresholds were calculated (hereafter, heat days, HD).

According to classification standards issued by the China Meteorological Adminis-
tration (CMA, http://www.cma.gov.cn/en2014/, accessed on 20 March 2012), the heat
stress warnings fall into three levels, i.e., (i) yellow warning signal, when Tmax ≥ 35 ◦C
for two consecutive days; (ii) orange warning signal, when Tmax ≥ 37 ◦C for one day; (iii)
red warning signal, when Tmax ≥ 40 ◦C for one day. Then the occurrence probability of
heat stress duration days (DDs, form ≥1 d to ≥7 consecutive days) and heat stress warning
were calculated. The five levels for daily maximum temperature i.e., I (normal), II (mild),
III (moderate), IV (severe) and V (extreme) were classified based on Tmax, duration days

http://www.cma.gov.cn/en2014/
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(DDs), occurrence probability (OP, %), and warning color (WC) (Table 1). Moreover, the
32-day period (from 15 July to 15 August) around flowering was divided into four phases:
pre-anthesis (A, from 15 to 24 July), anthesis (B, from 25 to 31 July), silking (C, from 1 to 7
August), and post-silking (D, from 8 to 15 August). The probability of heat stress occurrence
was analyzed in each phase with different temperature thresholds. Finally, the daily Tmax
average in each phase were extracted to investigate the distribution of the heat events over
years. A heat map was generated to represent the detailed characteristics of the heat events
over time across various sites.

Table 1. Classification and criteria for heat stress on Huaibei Plain, China.

Level Classification Maximum
Temperature (Tmax)

Duration Days
(DDs)

Occurrence
Probability (OP, %)

Warning Colour
(WC)

I Normal Tmax < 33 ◦C DDs ≥ 1 P > 50 Green
II Mild 33 ◦C ≤ Tmax < 35 ◦C DDs ≥ 1 25 < P ≤ 50 Reseda
III Moderate 35 ◦C ≤ Tmax < 37 ◦C DDs ≥ 2 13 < P ≤ 25 Yellow
IV Severe 37 ◦C ≤ Tmax < 40 ◦C DDs ≥ 1 0.5 < P ≤ 13 Orange
V Extreme Tmax ≥ 40 ◦C DDs ≥ 1 P ≤ 0.5 Red

2.3. Inverse Distance Weighting Method Quantifies the Spatial Distribution of Heat Stress
Occurrence Probability

The inverse distance weighting (IDW) [30] method is one of the most widely used
deterministic methods in spatial interpolation, which is characterized by high speed, conve-
nient computation, and interpretation. IDW sums the values of nearby points multiplied by
a weighting factor that is a decreasing function of distance. For this operation, ArcGIS 10.2
software (Environmental Systems Research Institute (ESRI) Inc., Redlands, CA, USA) was
used to quantify spatial distribution of heat stress occurrence probability on Huaibei Plain.

2.4. Relationship between Maize Grain Yield and Average Daily Tmax around Maize Flowering
in 1998–2017

Climate change has had bidirectional effects on maize production over the past 20
years on Huang-Huai-Hai Plain (including Huaibei Plain) [31]. The optimal temperature
for maize plants in daytime ranges from 22 to 32 ◦C [32], while the temperature above
33 ◦C does harm to maize production during flowering [28,29]. The relationship of maize
grain yield and the average daily Tmax in each phase, i.e., pre-anthesis from 15 to 24 July,
anthesis from 25 to 31 July, silking from 1 to 7 August, and post-silking from 8 to 15 August,
was conducted using the recent 20 years of data (from 1998 to 2017, except for 2003, as the
record is missing because of extreme meteorological disasters at four sites, i.e., Bengbu,
Fuyang, Suzhou, and Bozhou. Then, the data were analyzed with the relationship between
maize grain yield and Tmax < 33 ◦C and Tmax ≥ 33 ◦C embedded in Microsoft Office Excel
(Microsoft Excel 2016, Microsoft, Redmond, WA, USA) software.

3. Results
3.1. Interannual Variation of Effective Accumulated Temperature during Maize Growing Season

The interannual variation of effective accumulated temperature during the summer
maize growing season over years across the six sites ranged from 1800 ◦Cd to 2200 ◦Cd
(Figure 2), with the highest of 2215.8 ◦Cd at Bengbu, and the lowest of 1800.8 ◦Cd at
Dangshan. In addition, CV values, as an index reflecting the fluctuation degree of effective
accumulated temperature between years, were relatively small for the six sites and ranged
from 3.85% in Shouxian to 4.16% in Suzhou, indicating that the interannual variation of
effective accumulated temperature during maize growing season was relatively stable.
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Figure 2. Interannual variation of effective accumulated temperature from 10 June to 30 September
corresponding to the summer maize growing season in the past 61 years (1957–2017) for six sites, i.e.,
Shouxian, Bengbu, Fuyang, Suzhou, Bozhou, and Dangshan, on Huaibei Plain, China.

3.2. The Characteristics of Tmax, Tmin, Tmean and CV Value during Maize Growing Season and
Flowering Stage

The characteristics of Tmax, Tmin, Tmean are shown during maize growing season
and the flowering stage by working out the average of data of 61 years of the study sites
(Table 2). Approximately Tmax of 33 ◦C was calculated for the entire growing season,
and Tmax around the flowering stage ranged from 32 ◦C to 33 ◦C. The Tmin and Tmean
also showed similar characteristics for these periods, that is, the average temperature at
flowering stage was approximately 2 ◦C higher than that of the entire growing season. The
CV for different developmental phases and sites varied between 2.6% and 4.5% (Table 2).
The results showed that average temperature during the flowering stage was relatively
higher than that of the growing season, and the stable interannual temperature variation
may be the reason for the minor fluctuation of effective accumulated temperature during
the maize growing season.
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Table 2. Quantitative of characteristics of Tmax (◦C), Tmin (◦C) and Tmean (◦C) and its CV (%) value
during the maize growing season and flowering stage over 61 years in six sites, i.e., Shouxian, Bengbu,
Fuyang, Suzhou, Bozhou, and Dangshan.

Period Sites Tmax, ◦C (CV, %) Tmin, ◦C (CV, %) Tmean, ◦C (CV, %)

Growing season Shouxian 29.97 (3.23) 22.01 (2.88) 25.61 (2.65)
Bengbu 30.48 (3.23) 22.30 (3.08) 25.98 (2.78)
Fuyang 30.46 (3.06) 21.79 (2.78) 25.66 (2.61)
Suzhou 30.41 (2.81) 21.73 (3.81) 25.62 (2.86)
Bozhou 30.51 (2.82) 21.42 (3.83) 25.52 (2.84)

Dangshan 30.09 (2.65) 20.99 (3.27) 25.04 (2.64)

Flowering stage Shouxian 32.31 (4.44) 24.73 (3.15) 28.15 (3.59)
Bengbu 32.94 (4.52) 25.08 (3.24) 28.59 (3.78)
Fuyang 32.67 (4.23) 24.52 (3.20) 28.16 (3.61)
Suzhou 32.48 (3.99) 24.47 (3.72) 28.02 (3.59)
Bozhou 32.44 (3.89) 24.17 (3.75) 27.87 (3.62)

Dangshan 31.96 (3.64) 23.86 (3.68) 27.42 (3.51)

3.3. The Spatial Distribution of Probability for Days in 32-Day Period with Tmax ≥ 33 ◦C

Figure 3 shows the spatial distribution of probability with Tmax ≥ 33 ◦C over 61 years
on Huaibei Plain. The probability for Tmax ≥ 33 ◦C was estimated as 44.6% for Shouxian,
52.2% for Bengbu, 49.6% for Fuyang, 45.1% for Suzhou, 45% for Bozhou, and 38.3% for
Dangshan (Figure 3). This suggested that Tmax ≥ 33 ◦C occurred for nearly half of the time
during the flowering phase of the crop (32-day period). Consequently, it causes a high risk
for a maize crop, exposing it to heat stress events in this region.
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in six sites, i.e., Shouxian, Bengbu, Fuyang, Suzhou, Bozhou, and Dangshan, on Huaibei Plain, China.

3.4. The Occurrence Frequency of HDs

Within the 32 days bracketing flowering, the occurrence of days with Tmax between 33
and 40 ◦C are shown in Figure 4. As Tmax increased, the days corresponding to Tmax gradu-
ally decreased across all the sites. When the temperature threshold reached 39–40 ◦C, the
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number of days were close to zero. The fitted Tmax–day curve showed that the HDs decline
slowly, followed by dropping quickly, and lastly plateaued as the temperature increased.
Most of the HDs occurred between 33–37 ◦C (Figure 4), but there were considerable spatial
variations across the sites.
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Figure 4. The occurrence frequency and curve fitting of days with Tmax greater than the specified
temperature thresholds during the flowering stage for six sites, i.e., Shouxian (square), Bengbu
(circle), Fuyang (triangle), Suzhou (rhombus), Bozhou (pentacle), and Dangshan (asterisk), on
Huaibei Plain, China.

3.5. The Occurrence Probability and Classification of Heat Events

The continuous sustained high temperature, particularly during the maize flowering
stage, significantly damages the crop yield. Thus, we quantified the occurrence probability
of DDs at different temperature thresholds. There was a 50% chance for Tmax ≥ 33 ◦C
occurring for at least one day during flowering. With higher thresholds and longer DDs,
the probability of heat stress decreased, but the probability of heat stress from ≥33 ◦C to
≥35 ◦C was still very high (Table 3). In addition, the occurrence probability of moderate
(yellow warning) and severe (orange warming) heat stress was 25% and 10%, respectively.
For the extreme heat of the red warning, the probability was estimated to be less than 0.5%,
suggesting that heat events of ≥40 ◦C have rarely occurred in the region (Table 3).

Heat events around maize flowering were classified into four phases (A, B, C, and
D) based on Tmax and OP over the years across the six studied sites, as described in the
previous section in detail. At Tmax ≥ 33 ◦C, the OP of heat stress in four phases was about
30% (28.5% in D phase in Dangshan) to 60% (60.9% in B phase in Bengbu), which gradually
decreased as the temperature threshold increased. The OP was always highest during
phase B between Tmax ≥ 33 ◦C to 36 ◦C and lowest during phase D compared with all
other phases (Table 3). The OP of heat stress in each phase was highest for Bengbu and
the lowest for Dangshan. The results showed that heat stress was more likely to occur at
anthesis–silking compared to the other phases during flowering. However, HDs with Tmax
≥ 37 ◦C have been more likely to occur in phase A (Table 4).
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Table 3. The occurrence probability (%) of duration days (DDs) from 1 day to over 7 consecutive days and heat stress warnings during the flowering stage in six
selected sites, i.e., Shouxian, Bengbu, Fuyang, Suzhou, Bozhou, and Dangshan, on Huaibei Plain, China.

Tmax
Shouxian Bengbu Fuyang

≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d ≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d ≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d

≥33 ◦C 44.6 41.3 37.6 32.4 29.5 25.9 24.7 52.2 48.9 45.1 40.2 35.9 31.8 30.0 49.6 45.7 42.7 39.2 34.5 31.7 27.0
≥34 ◦C 31.9 29.0 25.5 22.1 18.8 15.0 13.1 39.7 36.3 33.0 28.0 24.5 20.4 18.9 37.0 33.8 30.9 26.4 23.2 18.8 16.3
≥35 ◦C 20.0 17.4 15.3 13.0 11.0 8.1 6.9 28.4 25.7 22.7 18.5 14.9 11.8 11.2 25.3 22.7 19.9 15.8 12.7 9.6 8.7
≥36 ◦C 9.4 7.2 5.9 4.3 3.8 3.1 3.1 17.9 16.0 13.7 10.6 8.1 7.6 6.4 14.0 11.7 9.5 7.1 6.3 5.0 3.4
≥37 ◦C 4.2 3.1 2.5 1.9 1.9 1.6 1.0 10.1 8.9 7.2 5.6 5.2 4.5 2.9 6.9 5.6 4.5 3.2 3.0 2.3 1.9
≥38 ◦C 0.9 0.5 0.5 0.3 0.3 0.3 0.0 4.3 3.3 2.2 1.9 1.5 1.2 0.9 2.7 1.7 1.3 1.3 0.9 0.4 0.4
≥39 ◦C 0.3 0.2 0.2 0.2 0.0 0.0 0.0 1.4 1.1 1.0 0.7 0.3 0.0 0.0 0.8 0.4 0.3 0.3 0.3 0.0 0.0
≥40 ◦C 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.3 0.3 0.3 0.3 0.0 0.0 0.3 0.2 0.2 0.2 0.0 0.0 0.0

Tmax
Suzhou Bozhou Dangshan

≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d ≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d ≥1 d ≥2 d ≥3 d ≥4 d ≥5 d ≥6 d ≥7 d

≥33 ◦C 45.1 41.5 37.8 34.0 29.7 25.8 24.0 45.0 41.0 36.8 32.1 27.8 23.9 21.8 38.3 34.4 29.7 24.5 20.8 18.8 16.0
≥34 ◦C 32.6 29.8 26.8 22.4 17.1 15.0 12.9 32.8 30.0 25.9 21.6 17.9 15.9 13.7 25.4 22.2 17.6 14.5 10.9 8.6 7.3
≥35 ◦C 22.2 19.7 16.0 12.9 9.4 8.7 7.1 21.1 18.5 15.0 12.3 9.3 8.0 6.8 15.9 13.1 10.8 8.6 5.5 4.8 3.8
≥36 ◦C 12.7 10.0 8.4 7.1 5.5 4.7 4.4 12.4 9.8 7.6 6.4 5.3 4.8 3.3 7.9 5.6 4.0 2.6 2.2 1.4 1.1
≥37 ◦C 5.7 4.5 3.3 2.9 2.3 2.0 1.1 5.9 4.5 3.5 2.6 2.2 1.4 0.8 2.8 1.9 1.2 0.9 0.5 0.0 0.0
≥38 ◦C 2.6 2.3 1.7 1.3 1.1 0.3 0.0 2.2 1.6 1.0 0.7 0.5 0.0 0.0 0.9 0.5 0.5 0.2 0.0 0.0 0.0
≥39 ◦C 0.7 0.5 0.2 0.2 0.0 0.0 0.0 1.0 0.9 0.6 0.4 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0
≥40 ◦C 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

Table 4. The occurrence probability (%) of heat stress in four phases, i.e., pre-anthesis (A, 15–24 July), anthesis (B, 25–31 July), silking (C, 1–7 August), and post-silking
(D, 8–15 August), around maize flowering in six selected sites, i.e., Shouxian, Bengbu, Fuyang, Suzhou, Bozhou, and Dangshan, on Huaibei Plain, China.

Tmax
Shouxian Bengbu Fuyang Suzhou Bozhou Dangshan

A B C D A B C D A B C D A B C D A B C D A B C D

≥33 ◦C 43.6 54.1 46.8 35.7 52.1 60.9 54.3 42.6 49.5 59.5 48.7 41.8 45.1 53.2 45.2 38.1 46.6 51.1 44.7 37.9 39.8 45.4 40.3 28.5
≥34 ◦C 33.1 38.9 34.2 21.9 40.5 47.3 42.2 29.3 39.5 42.2 39.1 27.0 35.6 39.3 33.3 22.1 36.4 38.9 32.6 23.0 28.7 31.4 26.0 15.2
≥35 ◦C 21.5 24.6 21.3 12.5 30.5 35.4 29.5 18.6 27.9 30.4 27.2 15.6 24.3 27.6 24.6 12.5 24.3 26.7 22.0 11.3 18.7 21.5 17.3 5.7
≥36 ◦C 10.5 12.2 8.2 6.4 21.8 22.2 18.0 9.0 18.2 16.6 15.2 6.4 15.2 16.2 13.3 5.9 15.2 16.4 12.6 4.9 10.5 10.1 6.8 2.9
≥37 ◦C 4.6 5.4 3.5 3.1 13.1 11.9 10.3 4.5 9.5 7.5 6.6 3.3 7.4 7.5 4.2 3.3 8.4 6.6 5.4 2.5 4.3 2.1 2.8 1.4
≥38 ◦C 1.0 1.6 0.5 0.6 5.6 4.4 4.4 2.5 3.3 2.8 2.1 1.8 4.3 3.3 1.2 1.2 3.8 1.6 2.1 0.8 1.3 0.7 0.9 0.4
≥39 ◦C 0.2 1.2 0.0 0.0 2.0 1.2 1.6 1.2 1.1 0.7 0.5 0.4 1.5 0.7 0.5 0.0 1.6 0.7 0.9 0.4 0.5 0.0 0.2 0.0
≥40 ◦C 0.0 0.2 0.0 0.0 0.5 0.7 0.7 0.4 0.2 0.2 0.2 0.0 0.5 0.2 0.0 0.0 0.8 0.7 0.0 0.0 0.3 0.0 0.0 0.0
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3.6. The Occurrence, Intensity, and Distribution of Heat Events over Four Phases, i.e.,
Pre-Anthesis (A), Anthesis (B), Silking (C), and Post-Silking (D)

The heat map shows the occurrence, intensity, and distribution of heat events at
pre-anthesis (A), anthesis (B), silking (C), and post-silking (D) over the years across the
studied sites (Figure 5). The mild heat events occurred frequently across the four phases
during the last 61 years, while extreme heat events rarely occurred across the six locations.
Furthermore, the studied 61-year period was divided into three successive periods: first 20
years (1957–1976), second 20 years (1977–1996), and last 21 years (1997–2017). During the
first 20 years, mild and moderate heat stress occurred frequently during the four phases,
with a low frequency of occurrence of severe and extreme heat stress (Figure 5I), but, in the
second period, the normal situation (no heat stress), and mild and moderate heat stress
occurred occasionally (Figure 5II). In the last 21-year period, the mild to moderate heat
stress occurred often, and moderate to severe heat stress occurred at times, especially
between 2010 and 2017, particularly during anthesis (Figure 5III). It should be noted that
extreme heat stress could possibly occur at any of the four phases in different years and
sites. This suggested that climate change could lead to more uncertain extreme heat events.
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Figure 5. The occurrence, intensity, and distribution of heat events in three successive phases of the
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first 20 years (I, 1957–1976), second 20 years (II, 1977–1996), and last 21 years (III, 1997–2017) in four
phases (A, pre-anthesis; B, anthesis; C, silking; and D, post-silking) at six sites, i.e., Shouxian, Bengbu,
Fuyang, Suzhou, Bozhou, and Dangshan, on Huaibei Plain, China. Note: green color indicates no
heat stress; reseda color indicates mild heat stress; yellow color indicates moderate heat stress; orange
color indicates severe heat stress; and red color indicates extreme heat stress.

3.7. Relationship between Maize Grain Yield and Average Daily Tmax around Maize Flowering

The relationship between maize grain yield and average daily Tmax around flowering
for the last 20 years was calculated (Figure 6). The average maize grain yield ranged be-
tween 4–6 t ha−1 at different average daily Tmax. Specifically, grain yield slightly increased
as the Tmax increased up to 33 ◦C (R2 from 0.0006 to 0.4528), while it declined as the Tmax
surpassed 33 ◦C (R2 from 0.001 to 0.3957), except for in Fuyang and Suzhou at the silking
phase, indicating that with the bidirectional impact of increasing temperature on maize
production over the past 20 years on Huaibei Plain, the trends below and above 33 ◦C are
not significant. Therefore, Tmax around 33 ◦C may be a temperature threshold for maize
production. Maize grain yield negatively responds to the increase in Tmax during flowering,
and the higher the Tmax threshold was, the more significantly did the grain yield decline.
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25 to 31 July, upper-middle subfigure layer), silking (from 1 to 7 August, lower-middle subfigure
layer), and post-silking (from 8 to 15 August, bottom subfigure layer) at four sites, i.e., Bengbu
(a,e,i,m), Fuyang (b,f,j,n), Suzhou (c,g,k,o), and Bozhou (d,h,l,p), on Huaibei Plain, China. Note:
green and red lines represent fitting of the relationship between maize grain yield and average daily
Tmax < and ≥ 33 ◦C, respectively. Green and light green dots represent maize grain yield under
average daily Tmax < and ≥ 33 ◦C, respectively.

4. Discussion
4.1. The Characteristics of Heat Risk Occurrence over Years in Huaibei Plain, China

With a warming climate, heat events occur more frequently, especially during maize
flowering [26], and the average maximum temperature (Tmaxx) during the flowering stage
was consistently higher than that of the entire growing season. The comprehensive oc-
currence frequency of heat stress of summer maize on Huaibei Plain was relatively high,
and the occurrence frequency of extreme heat stress was about 8% [24]. In this study, the
probability of heat stress is estimated to be close to 50%, and the occurrence frequency of
mild, moderate, severe, and extreme heat events was about 50%, 25% to 50%, 0.5% to 13%,
and less than 0.5%, respectively, indicating that heat stress occurred once every 2 years,
with a frequent occurrence of Tmax ≥ 33 ◦C and Tmax ≥ 35 ◦C and occasional occurrence
of Tmax ≥ 37 ◦C. This difference in the occurrence frequency and probability of heat stress
is due to varying temperature threshold classification criteria. In further study, remote
sensing data can be used as the data source, which can better reflect the heat stress of the
study area compared with the calculation of spatial distribution of high temperature based
on meteorological point data [33].

Globally, the occurrence intensity and frequency of heat stress events are increasing
significantly [9,34], but there was little information on how the number of heat days (HDs)
varies with temperature. In this study, the number of HDs showed a slow decline, followed
by a quick drop, and lastly it plateaued with increases in temperature, and the most HDs
occurred between 33 ◦C and 37 ◦C. In addition, heat stress during the maize flowering
stage has been estimated using different methods and indicators such as extreme degree
days, daily relative humidity, and seasonal rainfall [8,24,25]. The grades of heat stress
were divided into slight, moderate, and server levels in terms of the occurrence time and
duration of heat stress [24,34]. The heat stress classification criteria proposed in this paper
comprehensively considered the Tmax, DDs, OP, and WC, and it is more suitable for the
quantification of heat stress characteristics. Furthermore, our study suggested the high
probability of heat stress occurrence during anthesis to silking compared to other stages,
indicating heat stress has a potential adverse effect on maize anther dehiscence and pollen
vigor. The findings showed the onset and duration of heat stress, as well as the level and
frequency of its occurrence, which can provide critical information to local farmers to
accurately manage their crops for heat risk occurrence.

4.2. Effect of Heat Risk on Rainfed Maize Cropping in Huaibei Plain, China

The effect of heat stress on maize flowering varies with thresholds. In particular,
prolonged exposure to temperatures above 32 ◦C can reduce pollen viability and germina-
tion rate to levels down to zero in many genotypes [15]. It is reported that temperatures
above 35 ◦C can greatly reduce ovule fertilization in maize and Tmax above 36 ◦C greatly
reduced pollen viability [35] because of tapetum layer disintegration [36]. Furthermore,
no pollen grain germination was recorded at Tmax above 38 ◦C [32], as this temperature
inhibits anther dehiscence [18] by reducing anther apical pore width [19]. Maize cropping
is extremely sensitive to heat stress during flowering. However, the probability of Tmax
above 33 ◦C, 35 ◦C, and 37 ◦C are about 50%, 20%, and 6% in study area, respectively, so
that reproductive processes such as anther dehiscence, pollen number, viability, and germi-
nation rate could be affected [4]. In addition, this study shows that heat stress occurred
for several consecutive days on Huaibei Plain, such as the probability of seven hot days
at above 35 ◦C was between 3.8% (Dangshan) and 11.2% (Bengbu). This continuous heat
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stress can further elevate the maize canopy temperature to accelerate tasseling and anthesis,
and results in a prolonged anthesis–silking interval (ASI) [14,37,38], which caused great
risk to maize production during flowering.

Pre-anthesis heat affects the pollination process by advancing tasseling, accelerating
tassel inflorescences, and shifting the duration of pollen shedding [4,14,39], although heat
stress has little effect on silk elongation and silking date [4,21] and grain yield remained stable
with the Tmax increases during this phase. When the heat stress coincides with post-silking,
the pollen tube growth and pollination and fertilization process were disrupted [17,20,21].
Meanwhile, the frequency of heat events will increase the risk of drought in that they
produce positive feedbacks together that intensify their effects [40,41]. Higher temperature
may increase potential evapotranspiration, causing more rapid soil drying and greater
severity of drought by increasing a vapor pressure deficit [42]. Farmers usually take some
additional agronomic measures, i.e., selection of varieties, optimum sowing data, adequate
water, fertilizer management, and application of exogenous substances, to adapt to the
warmer temperature for reducing the effect of climate change during maize flowering.

4.3. Maize Cropping Strategy for Heat Risk

Climate change is likely to increase the number of hot days and the probability of heat
stress around maize flowering on Huaibei Plain [24]. Thus, farmers have to adjust their
cropping strategies in response to climate change, particularly via the selection of heat-
resistant hybrids and management, such as optimizing the sowing date [43,44], applying a
plant growth regulator [45], and improving irrigation systems [46,47]. For example, maize
grain yield can be increased by hybrid choices and optimizing sowing dates and cultivar
selection under warming of 1.5 ◦C and 2 ◦C [11,43]. However, the traditional maize–wheat
rotation system dictates a fixed maize sowing time, which is more likely to suffer from
heat stress prior to and post flowering, thereby reducing maize yield [48]. Thus, early or
late sowing may be possible under warming scenarios [11]. In addition, applying urea
in combination with nitrapyrin and plant growth regulator (gibberellic acid) in the pre-
flowering stage has the potential to mitigate N2O emission, improve N response efficiency,
and increase maize yield under hot climatic conditions [45]. Moreover, improving irrigation
is also an effective means of adaptation for compromising the sensitivity to heat stress by
lowering the maize canopy temperature [49]. These agronomic management strategies can
effectively alleviate or avoid increased heat stress incidents during maize production.

Crop models have been widely used to provide support, management, and decision-
making for maize production [50,51]. For example, the World Food Studies (WOFOST)
model and agricultural production systems simulator (APSIM)-maize model were used
to simulate sowing dates, cultivar shifts, and climate adaptation for maize cropping,
and to predict the potential maize yield based on climate and crop conditions around
flowering [52,53]. Therefore, it is feasible to use crop models to predict the occurrence
characteristics and countermeasures of heat events under climate change. Notably, the
relationship between grain yield and threshold temperature point (33 ◦C) should be taken
into account in model prediction, so as to further analyze the specific climatic suitability and
optimize sowing dates and response strategies for heat stress during the maize flowering
stage. A schematic diagram of heat stress occurrence patterns, characteristics, and coping
strategies of heat risk is provided as Figure 7.
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Figure 7. Schematic diagram of occurrence patterns, characteristics, and coping strategies of heat
stress in relation to maize cropping on Huaibei Plain, China or similar climate and cropping regions.
Note: green, yellow, orange, and red arrow symbols represent mild, moderate, severe, and extreme
heat stress, respectively. The thickness and direction of the arrow symbols indicate the probability
and phases of the occurrence of heat stress.

5. Conclusions

Heat stress during the maize flowering stage is detrimental for successful maize
reproduction and final grain yield formation. In this study, the characteristics of heat
stress occurrence in relation to reproductive development were described. The effective
accumulated temperature was about 2000 ◦Cd with little interannual variation. The average
maximum temperature (Tmax) in the flowering stage was about 33 ◦C, which was higher
than that for the entire growing season. The probability of days with Tmax ≥ 33 ◦C is
estimated to be 50%, and the most HDs occurred between 33 ◦C and 37 ◦C. The five-level
classifications of heat stress were identified based on Tmax, DDs, OP, and WC. In addition,
the heat stress for Tmax ≥ 35 ◦C occurred more frequently while the stress for Tmax ≥ 37 ◦C
occurred occasionally and for Tmax ≥ 40 ◦C occurred rarely across the studied years and
sites. Our study suggested that compared with other phases, heat stress was more likely to
occur from anthesis to silking. In addition, the maize grain yield slightly increased as the
Tmax increased to 33 ◦C, but it declined as the Tmax surpassed 33 ◦C, especially in anthesis.
These findings will help to guide summer maize cropping under climate change.
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