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Abstract: Pedotransfer functions (PTFs) are empirical fits to soil property data and have been used as
an alternative tool to in situ measurements for estimating soil hydraulic properties for the last few
decades. PTFs of Saxton and Rawls, 2006 (PTFs’S&R.2006) are some of the most widely used because
of their global aspect. However, empirical functions yield more accurate results when trained locally.
This study proposes a set of agricultural PTFs developed for southern Quebec, Canada for three
horizons (A, B, and C). Four response variables (bulk density (ρb), saturated hydraulic conductivity
(Ksat), volumetric water content at field capacity (θ33), and permanent wilting point (θ1500)) and four
predictors (clay, silt, organic carbon, and coarse fragment percentages) were used in this modeling
process. The new PTFs were trained using the stepwise forward regression (SFR) and canonical
correlation analysis (CCA) algorithms. The CCA- and SFR-PTFs were in most cases more accurate.
Θ1500 and at θ33 estimates were improved with the SFR. The ρb in the A horizon was moderately
estimated by the PTFs’S&R.2006, while the CCA- and SFR-PTFs performed equally well for the B
and C horizons, yet qualified weak. However, for all PTFs for all horizons, Ksat estimates were
unacceptable. Estimation of ρb and Ksat could be improved by considering other morphological
predictors (soil structure, drainage information, etc.).

Keywords: bulk density; saturated hydraulic conductivity; volumetric water content; modeling;
stepwise forward regression; canonical correlation analysis; horizon

1. Introduction

A thorough knowledge of soil physical properties is important for crop production,
water resource management, erosion risk prevention, contaminant discharge, and flooding
interventions. Measurement of soil physical properties such as porosity and saturated
hydraulic conductivity can be expensive and time-consuming. In order to avoid laborious
measurements, Pedotransfer functions (PTFs) are used as predictors to estimate the physical
characteristics of soil by using soil properties that are abundant, easy to measure, and
inexpensive. PTFs are frequently developed to estimate volumetric water content for any
given matric potential, porosity, saturated hydraulic conductivity, or bulk density. PTFs are
also used to estimate plant available water [1,2], to model physical properties of soil during
seasonal evapotranspiration [3], or to characterize the parameters of water retention curve
models [4,5]. The most common predictors of soil physical properties are soil particle size
distribution, organic matter content, coarse fragment content, and sometimes bulk density.
Some authors also used texture class [6], moisture class [7], and soil morphological data
such as soil structure [8] and color [9].

According to Patil and Singh [10], there exist two methods of PTF development:
mechanistic and empirical approaches. Mechanistic approaches translate easily measured soil
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properties such as texture, bulk density, and particle density into an equivalent pore size
distribution model. This model is then related to water content at different soil matric heads.
The physico-empirical model of Arya, et al. [11] is one of the most popular mechanistic
approaches. Empirical approaches, on the other hand, fit a correlation function between the
predictor and response variables. Two empirical approaches are commonly used: statistical
regressions [12–14] and data mining and exploration techniques [15–18]. Data mining and
exploration techniques include, among others, regression trees [19,20], artificial neural
networks [21,22], and group methods of data handling [23,24]. The results of empirical
approach-based PTFs can take the form of a numeric value or a characteristic class. Most
PTFs, however, are developed for a given local or regional pedoclimatic context and are,
therefore, site-specific and not universally transferable [25].

As an alternative solution, global datasets have been used in previous studies instead
of local or regional datasets, in which case the authors included pedoclimatic predictors
such as temperature and moisture [26,27]. For example, the PTFs developed by Saxton and
Rawls [28] (referred to here as PTFs’S&R.2006) include soil water characteristic equations
formed from the US Department of Agriculture soil database using the available soil texture
and organic matter variables. In fact, this is an update of the PTFs developed by Saxton
et al. [29], including more variables and a wider range of application. They have been
combined with previously reported relationships for stresses and conductivities and the
effects of density, gravel, and salinity to form a comprehensive system for predicting soil
water characteristics for agricultural water management and hydrologic analyses. Hence,
they are popular and commonly used in soil microclimate modeling [30,31]. PTFs’S&R.2006
are very useful. However, since PTFs are empirical-based algorithms, improved modeling
of pedoclimatic predictors could be achieved by using locally trained PTFs [32].

In southern Quebec, PTFs have already been developed to predict organic carbon
accumulation in the forest zone [33]. However, no PTFs are currently designed for the
agricultural area of southern Quebec. The aim of our study was to develop a new set
of PTFs (bulk density, saturated hydraulic conductivity, and volumetric water content
measured at two matric potentials: −33 kPa (field capacity) and −1500 kPa (permanent
wilting point)) that are well adapted to the pedoclimatic conditions of the agricultural
area of southern Quebec. Two statistical methods were tested for deriving PTFs: stepwise
forward regression and canonical correlation analysis. The estimation efficiency of this
new set of PTFs was then compared with the existing PTFs developed by Saxton and
Rawls (2006). Accuracy was assessed using the cross-validation technique from which
the R2, Nash–Sutcliffe efficiency (NSE) index, root-mean-square error (RMSE), and bias
were generated.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Monteregie agricultural area, located southeast of
Montréal, Quebec, Canada. The climate of this region is temperate, with an average air
temperature of−10.2 ◦C in January and 20.4 ◦C in July [34]. In terms of yearly averages, the
duration of the frost-free period is 206.5 days, total rainfall is 931.7 mm, and total snowfall
is 224.5 cm. Monteregie is one of the largest and most productive agricultural areas in
Quebec [35]. Analyses conducted on both ground and surface water using bacteriolog-
ical and physicochemical indices revealed that water quality is poor at many sampling
points [36]. Soil quality was also affected by nutrient leaching, erosion, and overfertiliza-
tion [37]. Greater use of beneficial management practices is, therefore, needed to ensure
soil and water conservation in this region. Development of a set of appropriate PTFs to
estimate secondary soil properties would be helpful for planning beneficial management
practices implementation.

A high degree of pedodiversity and soil texture variability is perceived in the study
area (Figure 1). The soils in this region are gravelly, sandy, loamy, clayey, and organic
soils [38]. Many soil taxonomic orders (as defined by the US system of soil taxonomy)
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are present, including spodosols, inceptisols, and histosols [39]. The soils of the region
tend to have poor natural drainage; however, after artificial drainage, they become mostly
moderately well drained [40]. Several soil surveys of southern Quebec have been updated
since 1975 and are available on the Canadian Soil Information Service website [41].

Figure 1. Map of the Monteregie soil surface textural groups.

2.2. Soil Data

Agriculture and Agri-Food Canada (AAFC) has maintained an analytical soil database
for southern Quebec since 1975. This database contains a set of georeferenced samples
from A, B, and C horizons. Soil physical data (primary and secondary properties) from the
analytical soil database were used to develop and assess the proposed PTFs.

Primary soil properties are the first and second components of particle size distribution,
such as clay, silt, organic carbon (OC), and coarse fragment (CF) percentages. These
properties, which define soil pore space, have an impact on soil water-holding properties,
hydraulic conductivity, and soil bulk density. That is why they were chosen as PTF
predictors. To avoid multicollinearity problems, sand percentage was not considered. This
choice implies the exclusion of organic soils, since they have no mineral content. Soil
texture (clay and silt) was determined by the hydrometer method [42], CF (>2 mm) content
was determined by sieving [42], and OC content was determined by the Walkley–Black
method [43].
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Selected secondary soil properties—bulk density (ρb), saturated hydraulic conductivity
(Ksat), and volumetric water content (θ) measured at two matric potentials, −33 kPa (field
capacity (θ33)) and −1500 kPa (permanent wilting point (θ1500))—were considered as
response variables in the PTFs. The procedures used to measure θ, ρb, and Ksat were
described by Topp et al. [44], Culley [45], and Reynolds [46], respectively. The number of
samples available for θ33, θ1500, ρb, and Ksat was 328, 327, 352, and 310, respectively. These
numbers exclude soils that were entirely defined by primary properties and organic soils.

2.3. Statistical Methods

For a given soil profile, the distribution of soil properties changes with depth. For
instance, OC tends to decrease with increasing depth [47]. In this paper, most of the studied
soils are tilled, which can also influence physical properties (ρb, θ, and Ksat) of the A
horizon [48]. Consequently, a PTF solely based on A horizon properties is not suitable to
estimate soil physical properties at other depths. The dataset used for PTF development in
this paper was stratified according to soil horizons (A, B, and C).

Before developing new PTFs, a preliminary study of predictors and response variables
is essential [49]. This preliminary study was conducted on each soil dataset corresponding
to a soil horizon. The first step was outlier detection. Values larger than three standard
deviations from the mean value were regarded outliers and removed from the dataset. Two
development approaches were tested: one based on stepwise forward regression (SFR)
and the other based on canonical correlation analysis (CCA). The CCA method requires
that each soil sample contains all four predictors (clay, silt, OC, and CF) along with the
four response variables (θ1500, θ33, ρb, and Ksat). To be consistent in both CCA and SFR
development methods, only the soil samples having these four predictors and four response
variables were kept. In statistical regressions, predictors and response variables must be
normally distributed. In order to respect the normality hypothesis, some variables were
transformed using the Box–Cox algorithm. The Box–Cox applies a power transformation
λ, which maximizes a log-likelihood function (Equation (1)). When the value of λ is 1, a
logarithm transformation is applied (Equation (2)).

xλ − 1
λ

, λ 6= 0. (1)

ln(x), λ = 1. (2)

A correlation study was performed on both predictors and response variables. A
strong correlation between predictors indicates that the information is redundant. Adding
highly correlated predictors to a PTF will not improve its prediction potential. By contrast,
a strong correlation between a predictor and a response variable indicates that selection of
the predictor will improve the PTF. Correlation between response variables indicates the
linearity of these secondary soil properties.

2.3.1. Stepwise Forward Regression (SFR)

SFR is a commonly used method in statistical regression to identify the most significant
predictors when estimating a response variable. The selection of predictors is based on
entrance and exit thresholds, which are set according to the p-value of regression coefficients.
The p-value is computed to decide whether a given input variable should be considered
as a predictor or not. This p-value must be lower than the entrance significance threshold;
otherwise, the predictor is rejected. Each time a new predictor is accepted in the regression,
the p-values of all previously accepted predictors are recomputed; predictors are retained
only if their new values are lower than the exit threshold. Significance levels are fixed at 5%
for entrance and exit from the regression model. The method is applied to each response
variable using the training dataset.
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2.3.2. Canonical Correlation Analysis (CCA)

The objective of a CCA is to transform predictor (x) and response (y) variables us-
ing linear combinations in two sets of canonical variables, Uj and Vj respectively. The
parameters are calculated such that the correlation between canonical variables Uj and Vj is
maximal. However, the internal correlation of the different components of each canonical
variable is minimal. Canonical variables are generated using canonical coefficients (aij and
bij) and mean-centered variables (see Equations (3) and (4)).

Uj =
N

∑
i,j=1

(xi − xi)aij, (3)

Vj =
N

∑
i,j=1

(yi − yi)bij, (4)

where xi is an observed value of a predictor, xi is the average value of the predictor, yi is an
observed value of a response variable, and yi is the average value of the response variable.

One of the attractive features of CCA is that canonical variables enable grouping
redundant properties into a single component. Each canonical variable related to predictors
(Uj) contains the maximum amount of information available having an optimal correlation
with the canonical variable related to the response variables (Vj) [50]. However, in the
context of the PTF development, the goal is not to generate canonical response variables
Vj, but rather to predict response variables. Nevertheless, if there are interconnections
between secondary and primary soil properties, it can be useful to perform a CCA with
predictor and response variables and a multiple regression using Uj as predictors of the
response variables. In doing so, a maximum of information derived from the predictors
is translated into Uj canonical variables, which are then optimized according to the Vj
canonical variables computed from the response variables. It has been demonstrated that
performing a regression on a system of canonical variables gives satisfactory results when
used in an estimation process in the presence of collinearity [51].

The CCA-PTF development method is depicted in Figure 2. The first step of this
method is to conduct a CCA with predictors xi (clay, silt, OC, and CF) and response
variables yi (θ1500, θ33, ρb, and Ksat) according to a training dataset for a given soil horizon.
The next step is to keep the Uj canonical variables and their canonical coefficients aij.
Vj canonical variables and their canonical coefficients bij are not used. As mentioned
before, each Uj has a maximum correlation with its corresponding Vj calculated from the
response variables, yi. A multiple regression is then performed for each of the response
variables and Uj variables from the training dataset. Only Uj variables with a significant
regression coefficient are retained in the regression (the coefficient must differ from 0 with
a significance p-value of 5%). Regressions are then recomputed for all other response
variables from the training dataset. The next step is to produce a set of canonical variables
using predictors xi from a validation dataset, as well as the previously generated mean
predictors and canonical coefficients aij. Regression parameters and previously determined
intercepts (from the training dataset) are then used with the new canonical variables to
estimate the response variable yi. Finally, accuracy of the results is assessed by comparing
the estimated response variables and response variables from the validation dataset.
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Figure 2. Development procedures of PTFs using CCA method.

2.3.3. Accuracy Assessment

To evaluate the estimation quality of the developed PTFs, the determination coefficient
(R2), root-mean-square error (RMSE), bias, and Nash–Sutcliffe efficiency (NSE) index [52]
were calculated for each secondary soil property during the accuracy assessment procedure.
The RMSE (Equation (5)) quantifies the contribution of systematic and random errors
expressed in measurement units, and the bias (Equation (6)) quantifies the systematic
error (over- or underestimation), also expressed in measurement units [53]. The NSE
(Equation (7)) is used to characterize the goodness of fit of a model. NSE values can
range from −∞ to 1. An NSE value equal to 1 indicates perfect modeling, while a value
below 0 means that the average of measured values is a better predictor than the model
predictions. When the NSE value is equal to 0, the performance of both predictors is similar.
A classification of the NSE applied to the PTFs is detailed in Table 1.

Table 1. Classification of the Nash–Sutcliffe efficiency (NSE) index.

NSE Value Qualification

≤0 Unacceptable
0 to 0.4 Weak (unsatisfactory)

0.4 to 0.6 Moderate (satisfactory)
0.6 to 0.8 Good (satisfactory)
0.8 to 1 Optimal (satisfactory)

A cross-validation procedure was conducted on the developed PTFs. Each horizon
dataset was randomly split into two datasets: one for training and one for validation [54].
A ratio of 1: 4 was used to randomly split each horizon dataset into a training dataset (75%)
and a validation dataset (25%). Minimum and maximum values for each response variable
were assigned to the training dataset to prevent extrapolation. This procedure was repeated
10,000 times from the original horizon dataset. At each loop, a PTF was calculated from the
training dataset and then applied on the validation dataset. Each metric (R2, RMSE, bias,
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and NSE) was calculated from the estimated and the measured soil physical property of the
validation dataset. At the end of the final iteration, the average and confidence intervals of
each metric were calculated (probability = 95%). The existing PTFs were also evaluated at
each horizon using the corresponding dataset. The same metrics were calculated but in a
context of independent validation.

RMSE =

√√√√ 1
N

N

∑
i=1

(Ei −Mi)
2, (5)

Bias =
1
N

N

∑
i=1

(Ei −Mi), (6)

NSE = 1− ∑N
i=1(Ei −Mi)

2

∑(Mi −M)
, (7)

where E is the estimated value, M is the measured value, and N is the number of samples.

3. Results
3.1. Data Exploration

Means and coefficients of variation (CV) were calculated for each soil parameter and
horizon dataset (Table 2). The mean percentage of OC, θ1500, and Ksat decreased with soil
depth (from the A to the C horizon), while ρb increased from the A to the C horizon. OC
is the result of plant decomposition and manure application, which take place within the
top 20 cm soil layer. Soil compaction increases with depth ρb and reduces the porosity,
thus determining the available space for water. It should be noted that CVs were generally
lower than 1, except for CF and Ksat, which often show very high spatial variability at the
field scale [55].

Table 2. Statistics of soil properties; CV, coefficient of variation.

Soil Properties A Horizon B Horizon C Horizon

Mean CV Mean CV Mean CV

Primary

Silt (%) 35.14 0.42 33.86 0.52 35.10 0.45
Clay (%) 21.82 0.62 22.23 0.89 18.89 0.94
OC (%) 2.21 0.49 0.46 1.02 0.16 0.81
CF (%) 3.62 1.81 7.85 1.63 7.79 1.63

Secondary

θ33 (%) 31.66 0.20 28.36 0.37 29.25 0.41
θ1500 (%) 15.48 0.38 14.18 0.62 13.30 0.69

ρb (g·cm−3) 1.33 0.12 1.50 0.14 1.60 0.15
Ksat (cm·h−1) 22.30 1.23 14.95 1.59 5.56 2.51
Sample size 88 121 95

Statistical analysis of soil parameters was conducted on normally distributed data.
The data transformations applied to each variable (when required) are shown in Table 3.
Distributions, scatter plots, and Pearson’s correlation coefficients of both primary and
secondary soil properties are illustrated in a matrix form for each soil horizon in Figure 3.
The cross-correlation coefficients obtained between predictors were below 0.5, absolute
value, at all soil horizons. However, these correlation coefficients were often significant,
which means that certain predictors were collinear (i.e., silt, clay, etc.).
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Table 3. Normal distribution transformations of soil properties.

Soil Properties A Horizon B Horizon C Horizon

Primary

Silt – – –
Clay Box–Cox, λ = 0.4072 Box–Cox, λ = 0.1248 Box–Cox, λ = 0.1659
OC Box–Cox, λ = 0.2750 Box–Cox, λ = −0.0874 Box–Cox, λ = 0.1664
CF ln(x + 1) ln(x + 1) ln(x + 1)

Secondary

θ33 – – –
θ1500 – Box–Cox, λ = 0.2258 Box–Cox, λ = 0.2206
ρb – Box–Cox, λ = 2.4488 Box–Cox, λ = 2.2516

Ksat ln(x + 1) ln(x + 1) ln(x + 1)

Figure 3. Cross-correlation and distribution matrix of primary and secondary soil properties. 1 Trans-
formed data; * significant correlation (p = 0.05).

Most of the highest correlation coefficients, in absolute values, were obtained between
predictors and response variables. θ33 was positively correlated with silt (0.60, 0.49, and
0.50) and clay (0.52, 0.80, and 0.80), at the A, B, and C horizons, respectively. θ1500 was also
positively correlated with silt (0.60, 0.46, and 0.51) and clay (0.76, 0.86, and 0.89), at the A,
B, and C horizons, respectively. Clay content has an impact on water retention properties,
as water content tends to be greater in soils that have a high clay percentage. A negative
correlation was observed between ρb and OC percentage (−0.56, −0.52, and −0.55) at
the A, B, and C horizons, respectively. In the C horizon, clay percentage was negatively
correlated to ρb (−0.52). Ksat had weak correlation coefficients with all predictors for the
A horizon. However, negative correlations of −0.44 and −0.56 with silt percentage were
observed at the B and C horizons, respectively. The effect of CF on Ksat can be either
negative or positive, depending on CF location. When CFs are on the soil surface, they
increase infiltration by preventing the soil from sealing, but they reduce infiltration when
contained within the soil layer [56–58]. The relationship between OC and Ksat can also vary.
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Some authors argue that OC increases Ksat by improving soil structure [59], while others
conclude that it decreases Ksat because OC retains water, its aggregates increase tortuosity,
and the quality/kind of organic matter may affect hydraulic properties [23].

3.2. Stepwise Forward Regression-Based Pedotransfer Functions

Table 4 shows the regression coefficients obtained using the SFR method. Standardized
coefficients show the weight accorded to predictors in the developed PTF (coefficients
without unit effect measurement).

Table 4. Standardized (St. *) and non-standardized (Non st. **) regression coefficients obtained by
stepwise forward regression.

Response
Variables θ33 (%) θ1500 (%) ρb (g cm−3) Ksat (cm h−1)

Horizon
Coefficients Coefficients Coefficients Coefficients

St. * Non st. ** St. * Non st. ** St. * Non st. ** St.* Non st. **

A

Intercept – 18.3997 – – – 1.5525 – 1.7828
Silt 2.7664 0.1903 1.8400 0.1397 – – – –

Clay 1 1.3949 0.6302 3.1261 1.5100 −0.0431 −0.0195 – –
OC 1 3.1786 4.1219 1.6514 2.2206 −0.1250 −0.1623 0.3497 0.4543
CF 1 – – – – – – 0.4054 0.3674
R2 0.59 0.69 0.50 0.2694

RMSE 4.34 3.3012 0.14 42.87

B

Intercept – 10.6471 – 0.7646 – 0.6123 – 3.4065
Silt 1.6178 0.0943 0.1440 0.0084 0.1157 0.0067 −0.58 −0.0340

Clay 1 7.2655 5.4649 0.9087 0.6835 −0.1494 −0.1123 – –
OC 1 1.2338 1.1441 – −0.2076 −0.1925 0.6102 0.5658
CF 1 −2.3443 −1.6381 – – – 0.3696 0.2583
R2 0.70 0.73 0.49 0.28

RMSE 6.03 4.73 0.18 29.035

C

Intercept – 21.2177 – 0.6406 – −0.0217 – 3.7264
Silt 2.8625 0.1815 0.1788 0.0113 0.1198 0.0076 −0.5898 −0.0374

Clay 1 6.3755 4.0055 1.0586 0.6651 −0.1188 −0.0747 −0.2486 −0.1562
OC 1 2.3907 4.1961 – – −0.2278 −0.3998 0.2729 0.4790
CF 1 −3.5305 −2.6145 – – 0.1444 0.1069 – –
R2 0.68 0.74 0.52 0.23

RMSE 7.39 4.78 0.21 25.92

For the estimation of θ33, the A horizon PTF used the following predictors: OC, silt,
and clay percentages, listed by decreasing weight. The PTFs developed for the B and C
horizons had the highest weight of clay, followed by CF percentage, and small weights of
silt and OC. The standardized regression coefficients of OC were stronger for the A horizon,
which is explained by the abundance of OC on the soil surface.

In the case of the estimation of θ1500, clay and silt, followed by OC, were retained as
predictors for the A horizon. Coefficient values were positive, indicating that increases in
these properties correspond to increases in θ1500. At the B and C horizons, clay percentage
coefficients were broadly higher, followed by silt percentage. As shown in Figure 3, the
correlation between θ1500 and clay was the highest at each soil horizon. Increasing clay
content increases the soil water-holding capacity.

In the case of the estimation of ρb, a negative weight was given to OC and clay content
for all horizons. As mentioned above, a negative correlation was observed between ρb and
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these predictors. At the B horizon a moderate positive weight was also given to silt content.
At the C horizon, moderate positive weights were given to CF and silt percentages.

The predictors selected for the estimation of Ksat were different for each horizon (Table 4).
At the A horizon, only CF and OC were selected with a positive weight. OC was also given
a positive weight at the B horizon, followed by silt with a negative weight, and CF with a
positive weight. At the C horizon, silt was selected with a negative weight, followed by CF
(positive weight) and OC (negative weight).

3.3. Canonical Correlation Analysis-Based Pedotransfer Functions

Correlations between canonical variables U and V are presented in Table 5. As ex-
pected, the correlation decreased from the first to the fourth canonical variable. The weights
accorded by the PTF to a predictor were determined using a combination of the weight
of the predictors related to the canonical variables (Table 6) and the weight given to the
canonical variables obtained by regression (Table 7) between response variables. Because of
the scale effect, it is recommended to use correlation coefficients to describe the contribution
of a predictor to a canonical variable, instead of interpreting canonical coefficients aij [60].
Canonical coefficients are only used to calculate canonical variables.

Table 5. Correlation coefficients between canonical variables U and V calculated for each soil horizon.

A Horizon B Horizon C Horizon

U1,V1 0.89 0.89 0.90
U2,V2 0.52 0.69 0.66
U3,V3 0.43 0.28 0.40
U4,V4 0.26 0.07 0.01

Table 6. Canonical coefficients aij and correlation coefficients generated for each canonical variable.

Property U1 U2 U3 U4
aij R aij R aij R aij R

Horizon A

Silt 0.0217 0.61 0.0118 0.29 0.0382 0.52 −0.0620 −0.52
Clay 1 0.2133 0.74 0.3311 0.59 −0.1730 −0.10 0.2647 0.31
OC 1 0.7723 0.74 −1.0277 −0.60 −0.3633 −0.29 −0.0224 −0.04
CF 1 −0.0673 −0.20 0.2768 0.14 −0.6684 −0.80 −0.5843 −0.54
θ33 – 0.75 – −0.06 – 0.10 – −0.12

θ1500
1 – 0.79 – 0.23 – 0.03 – −0.01

ρb
1 – −0.63 – 0.27 – 0.14 – −0.09

Ksat
1 – 0.13 – −0.07 – −0.42 – 0.00

Horizon B

Silt −0.0101 −0.58 −0.0329 −0.45 −0.0066 −0.07 −0.0551 −0.68
Clay 1 −0.6223 −0.97 0.1766 0.10 −0.4248 −0.16 0.4601 0.14
OC 1 −0.0625 −0.24 0.7298 0.83 0.4645 0.18 −0.4714 −0.47
CF 1 0.1170 0.47 0.1326 0.38 −0.7419 −0.77 −0.1152 −0.22
θ33 – −0.84 – −0.01 – 0.07 – −0.02

θ1500
1 – −0.81 – 0.03 – −0.09 – 0.0185

ρb
1 – 0.32 – −0.59 – −0.10 – −0.01

Ksat
1 – 0.30 – 0.60 – −0.05 – −0.02

Horizon C

Silt 0.0103 0.58 0.0458 0.65 −0.0372 −0.31 −0.0428 −0.37
Clay 1 0.4811 0.97 0.0788 0.04 0.5646 0.20 0.4199 0.10

OC 1 0.3016 0.54 −1.3032 −0.62 −0.4637 0.05 −1.4239 −0.57
CF 1 −0.1148 −0.43 0.2432 0.20 0.6708 0.72 −0.3155 −0.51
θ33 – 0.81 – 0.00 – −0.15 – 0.00

θ1500
1 – 0.88 – 0.07 – 0.08 – 0.00

ρb
1 – −0.50 – 0.53 – 0.07 – 0.00

Ksat
1 – −0.39 – −0.46 – 0.19 – 0.00
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Table 7. Regression coefficients between canonical variables and response variables; p ≤ 0.05.

Response Variables

Horizon A θ33 θ1500
1 ρb

1 Ksat
1

Intercept 32.4341 15.7784 1.2982 2.4895
U1 5.1244 4.6768 −0.1266 –
U2 – 1.3632 0.0546 –
U3 – – – −0.5768
U4 – – – –
R2 0.57 0.69 0.48 0.19

RMSE 4.47 3.28 0.14 43.40

Horizon B θ33 θ1500
1 ρb

1 Ksat
1

Intercept 28.7736 3.3318 0.7082 1.8381
U1 −9.4011 −0.9740 0.1305 0.4429
U2 – – −0.2357 0.8850
U3 – – – –
U4 – – – –
R2 0.70 0.71 0.47 0.23

RMSE 6.08 4.93 0.18 29.55

Horizon C θ33 θ1500
1 ρb

1 Ksat
1

Intercept 29.5832 3.1433 0.8339 1.1059
U1 10.6868 1.1536 −0.2313 −0.4499
U2 – – 0.2428 −0.5372
U3 – – – 0.2169
U4 – – – –
R2 0.66 0.73 0.50 0.27

RMSE 7.66 4.89 0.21 25.41

3.3.1. Contribution of Predictors to Canonical Variables

At the A horizon, the predictors making the highest contribution to U1 were OC and
clay percentages, followed by silt with a moderate correlation coefficient (Table 6). The
main contributions to U1 at the B and C horizons came from the clay percentage followed
by the silt percentage and OC. The OC contribution to the B and C horizons was weak
compared to its contribution to the A horizon. The dominant contributions to U2 at the
A horizon (highest negative correlation) came from OC and clay content, with a similar
contribution but with positive value (Table 6). OC was also the predictor with the highest
correlation at the B horizon, but with a slightly lower and positive value. Silt percentage
made a moderate negative contribution. At the C horizon, the contributor with the highest
correlation was silt, followed by OC, with a similar absolute contribution. Thus, U2 is
essentially explained by the OC contribution, although, depending on the horizon, clay
and silt contribute to that canonical variable. For all soil horizons, the predictor with the
highest correlation with U3 was CF (Table 6). It should be noted that a negative correlation
was observed with both the A and B horizons. It was not possible, regarding U4, to identify
one or two predictors that were applicable to all three horizons. In terms of predictive
power, the first canonical variable U1, showed the highest correlation with most response
variables, in all horizons. The strength of correlation then decreased from U2 to U4 with
most response variables.

3.3.2. Regressions Using Canonical Variables as Predictors

For the estimation of θ33, U1 was the only canonical variable selected for all horizons,
with correlation coefficients varying between 0.75 and 0.84 (Table 6). U1 was essentially
defined by clay and silt percentages in these horizons, but OC also made a strong contribu-
tion in the A horizon. The weights given to the predictors were similar to those obtained
with the SFR approach. The results of the regression used to estimate θ1500 were similar to
those estimating θ33, in terms of predictor weight (Table 6) and regression coefficients of
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the canonical variables (Table 7). A strong correlation between θ1500 and θ33 was previously
observed (Figure 3). U1 was strongly correlated with θ1500 (Table 6), which explains why
it was once again retained in the regression (Table 7). Clay also had a large impact on
these functions. U2 was selected for the A horizon, which was mostly correlated with clay
and OC contents. Again, the resulting PTF was similar to the one developed with the
SFR approach.

For each horizon, U1 and U2 were selected to estimate ρb (Table 7). As previously
mentioned, U1 was explained by clay, silt, and OC percentages, while U2 was mostly
explained by OC, followed by silt percentage for B and C horizons. OC was more important
in the A horizon and decreased with increasing soil depth. Multiplication of the correlation
coefficient (Table 6) by the regression coefficients (Table 7) gives the effect of a predictor
on a response variable. Negative weights were given to clay and OC percentages. Silt had
a negative effect at the A horizon and a positive effect at the B and C horizons. Organic
matter has a lower ρb than mineral material; thus, the overall ρb is reduced when the
organic matter percentage in mineral soil increases. This could explain the negative effect
of OC in both CCA- and SFR-derived PTFs for ρb prediction. The negative contribution of
clay in PTFs predicting ρb was also observed by Jones [61].

In the case of Ksat estimation, the correlation with canonical variables was different for
each horizon. For the A horizon, Ksat was slightly correlated to U3 (negatively; Table 6).
The regression between Ksat and its canonical variables gave a negative weight to U3
(Table 7). CF was the main predictor for U3 (negative weight), followed by silt (positive
weight) and OC (negative weight). The resulting combination of correlation and weight
showed the positive effects of OC and CF, and the negative effect of silt on Ksat. These
results are consistent with the previously conducted cross-correlation analysis (Figure 3).
For the B horizon, the regression selected U2 and U1 with positive weights (Table 7). U2
was correlated with Ksat, followed by U1 (moderately). As a result, OC was the most
contributing predictor (positive effect), followed by silt and clay (negative), and CF (small
positive). These results are consistent with those of the cross-correlation analysis (Figure 3),
where Ksat was positively correlated with OC and CF, and negatively correlated with silt
and clay percentages. For the C horizon, U3 was selected as a predictor with positive
weight, while U2 and U1 were selected with negative weights. The correlation between U1
and Ksat was similar to that obtained with U2 in absolute terms. However, the correlation
obtained with U3 was weak (Table 6). The negative coefficients for U1 and U2 indicate that
clay and silt made a negative contribution to this PTF, while the effect was negative for OC.
The positive correlation coefficient for U3 was explained by a positive effect of CF.

Neither the SFR nor the CCA method selected identical predictors at each horizon.
However, it is well known that higher clay-to-silt percentages increase soil water retention
and that higher CF reduces this property [62]. In this study, increased OC content led
to increased Ksat. However, it has been demonstrated that the effect of clay is positive
when its proportion is less than 30%, but varied and more complex when the proportion is
higher [63].

3.4. Validation and Comparison with the Saxton and Rawls’s PTFs

Table 8 presents accuracy assessment results of the PTFs (R2, RMSE, NSE index, and
bias) for both developed methods (SFR and CCA) and for Saxton and Rawls’s PTFs (2006),
which are further referred to as PTFs’S&R.2006.
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Table 8. Accuracy evaluation of existing and developed PTFs. Values in bold are the best perfor-
mances. The values in square brackets are the maximum and minimum values calculated from
the simulations.

Property/
Horizon

Saxton & Rawls *
PTFs Stepwise Forward Regression Regression with CCA

R2 NSE RMSE Bias R2 NSE RMSE Bias R2 NSE RMSE Bias

θ33 (%)

A 0.45 −0.26 7.6 −3.4
0.54

[0.540,
0.544]

0.47
[0.466,
0.470]

4.3
[4.29,
4.31]

0.4
[0.41,
0.45]

0.53
[0.525,
0.529]

0.47
[0.467,
0.471]

4.4
[4.36,
4.38]

0.4
[0.34,
0.38]

B 0.74 0.54 7.5 −3.5
0.68

[0.675,
0.678]

0.63
[0.626,
0.629]

5.9
[5.91,
5.93]

0.8
[0.79,
0.83]

0.68
[0.679,
0.682]

0.63
[0.630,
0.633]

5.9
[5.86,
5.88]

0.8
[0.78,
0.82]

C 0.66 0.34 10.7 −7.2
0.69

[0.691,
0.693]

0.65
[0.652,
0.655]

7.4
[7.34,
7.37]

0.5
[0.42,
0.48]

0.70
[0.697,
0.699]

0.66
[0.660,
0.663]

7.3
[7.28,
7.31]

0.5
[0.51,
0.56]

θ1500 (%)

A 0.56 0.32 4.8 −0.2
0.68

[0.677,
0.680]

0.67
[0.671,
0.675]

3.2
[3.19,
3.21]

0.2
[0.24,
0.26]

0.66
[0.659,
0.662]

0.61
[0.609,
0.613]

3.3
[3.32,
3.34]

0.3
[0.25,
0.28]

B 0.72 0.55 6.0 −0.2
0.81

[0.810,
0.812]

0.76
[0.755,
0.757]

4.1
[4.05,
4.07]

−1.3
[−1.31,
−1.28]

0.81
[0.810,
0.812]

0.75
[0.744,
0.747]

4.1
[4.05,
4.07]

−1.3
[−1.31,
−1.28]

C 0.71 0.58 6.0 −2.2
0.79

[0.793,
0.797]

0.77
[0.763,
0.767]

4.4
[4.35,
4.38]

−0.4
[−0.44,
−0.41]

0.74
[0.740,
0.744]

0.70
[0.693,
0.698]

5.0
[4.94,
4.97]

−0.5
[−0.52,
−0.48]

ρb (g·cm−3)

A 0.48 0.46 0.15 0.00
0.28

[0.276,
0.281]

0.16
[0.151,
0.160]

0.15
[0.146,
0.147]

0.00
[0.002,
0.003]

0.27
[0.268,
0.273]

0.13
[0.128,
0.136]

0.15
[0.147,
0.148]

0.01
[0.014,
0.015]

B 0.47 0.29 0.21 −0.04 0.33
[0.333,0.336]

0.27
[0.272,
0.276]

0.18
[0.181,
0.181]

0.01
[0.004,
0.005]

0.32
[0.315,
0.319]

0.26
[0.256,
0.260]

0.18
[0.183,
0.184]

0.01
[0.005,
0.006]

C 0.40 0.12 0.28 −0.08
0.53

[0.525,
0.529]

0.48
[0.476,
0.480]

0.18
[0.179,
0.179]

0.00
[−0.001,

0.000]

0.52
[0.517,
0.521]

0.47
[0.470,
0.474]

0.18
[0.180,
0.181]

0.00
[−0.001,

0.000]

Ksat (cm·h−1)

A 0.00 −0.28 50.0 −23.5
0.15

[0.146,
0.150]

−0.10
[−0.100,
−0.099]

30.7
[30.6,
30.8]

−12.5
[−12.6,
−12.4]

0.13
[0.129,
0.133]

−0.10
[−0.107,
−0.101]

31.2
[31.0,
31.3]

−12.7
[−12.8,
−12.6]

B 0.05 −0.14 34.3 −13.8
0.42

[0.418,
0.423]

0.29
[0.287,
0.292]

22.9
[22.8,
23.1]

−6.7
[−6.8,−6.6]

0.37
[0.365,
0.370]

0.23
[0.232,
0.238]

23.5
[23.4,
23.6]

−6.7
[−6.8,
−6.6]

C 0.11 −15.51 25.5 −3.3
0.38

[0.381,
0.386]

−0.08
[−0.113,
−0.046]

12.3
[12.2,
12.4]

−2.6
[−2.7,
−2.6]

0.38
[0.377,
0.383]

−0.15
[−0.185,−0.106]

12.5
[12.4,
12.6]

−2.6
[−2.7,
−2.6]

Accuracy assessment plots of the PTFs developed to estimate θ33 are presented in
Figure 4a. PTFs’S&R.2006 for A and C horizons had a lower R2 than both the SFR- and the
CCA-derived PTFs. However, they also had the best R2 for the B horizon. Nevertheless,
PTFs’S&R.2006 were more erroneous in terms of RMSE and bias. Estimation quality for
θ33 was very similar with both the SFR and the CCA methods (R2 values ranging from
0.53 to 0.70). In terms of NSE, the performance of PTFs’S&R.2006 was unsatisfactory
with a negative value for the A horizon, satisfactory for the B horizon (moderately), and
unsatisfactory for the C horizon (weak). The SFR- and the CCA-derived PTFs performed
equally well with a moderate NSE for the A horizon and a good NSE for the B and
C horizons.
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Figure 4. Accuracy assessment of Saxton and Rawls’s PTFs (I) and PTFs developed using SFR
(II) and CCA (III): (a) field capacity (θ33); (b) permanent wilting point (θ1500); (c) bulk density (ρb);
(d) saturated hydraulic conductivity (Ksat).

Accuracy assessment plots of the PTFs developed to estimate θ1500 are illustrated in
Figure 4b. The same pattern as that observed with PTFs’S&R.2006 used to predict θ33
was found with θ1500. In comparison with θ33, the performance of θ1500 PTFs was slightly
higher. The R2 values were good, especially for the B and C horizons. In terms of NSE, the
performance of PTFs’S&R.2006 was unsatisfactory for the A horizon (weak) and satisfactory
for the B and C horizons (moderate). The SFR-derived PTFs outperformed the CCA-derived
PTFs; however, for both methods, the NSE was qualified as good for all horizons.

Accuracy assessment plots of the PTFs developed to estimate ρb are illustrated in
Figure 4c. PTFs’S&R.2006 gave the best ρb prediction for the A horizon, with the highest
R2 and lowest RMSE (0.48 and 0.15 g·cm−3). For this horizon, the SFR- and CCA-derived
PTFs led to the same R2 and RMSE values (0.28 and 0.15 g·cm−3, respectively). Both
methods also generated the same R2 and RMSE values at the B and C horizons. In terms
of NSE, the performance of PTFs’S&R.2006 was satisfactory (moderate) for the A horizon
and unsatisfactory (weak) for the B and C horizons. The SFR- and the CCA-derived PTFs
performed equally well with a weak NSE for the A and B horizons and a moderate NSE for
the C horizon.

Accuracy assessment plots of the PTFs generated to estimate Ksat are illustrated in
Figure 4d. At the A horizon, the SFR method performed better than the CCA method. In
comparison to PTFs’S&R.2006 and the CCA-derived PTF, the SFR-derived PTF had a higher
R2 and a lower RMSE. However, its estimation quality remained weak (R2 of 0.15 and
RMSE of 30.7 cm·h−1). The estimation quality of PTFs’S&R.2006 was poor for the B horizon.
For this horizon, both CCA- and SFR-derived PTFs were slightly more accurate (R2 of
0.42 and RMSE of 22.9 cm·h−1 for SFR-PTFs). At the C horizon, results were similar to those
of the B horizon, but with lower RMSE (12.3 cm·h−1). In terms of NSE, PTFs’S&R.2006
were unsatisfactory for all horizons (negative values). The same conclusion was noted for
both SFR- and CCA-derived PTFs, but with weak positive values for the B horizon. The
performance remained unsatisfactory. The SFR-derived PTFs slightly outperformed the
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CCA-derived PTFs; however, for both methods, the NSE was qualified as unacceptable for
the A and C horizons and weak for the B horizon.

4. Discussion

The above results demonstrate the potential of the primary soil properties (clay, silt,
OC, and CF percentages) to estimate the secondary soil properties (θ1500, θ33, ρb, and Ksat)
for different horizons (A, B, and C) with varying accuracy rates. The hypothesis tested
in this study was the ability of locally trained PTFs, using SFR and CCA algorithms, to
produce more accurate estimates than the PTFs’S&R.2006 that were trained with global soil
data. As expected, our results highlighted that, in most cases, locally trained PTFs achieved
the best accuracy in estimating secondary soil properties.

In the case of θ33, PTFs’S&R.2006 results were systematically underestimated. This
underestimation increased in the deeper horizons (soil depth), which is unsurprising, since
the PTFs’S&R.2006 were developed using A horizon soil samples. Both the SFR- and
CCA-derived PTFs had moderate performances for the A horizon and good performances
for the B and C horizons. Pollacco [64] evaluated the performance of eight different PTFs
to predict θ33. The RMSE values for these PTFs ranged from 5.7% to 11.1%, whereas they
ranged from 4.3% to 7.4% for the PTFs developed in the present study, which is considered
acceptable. These results are comparable to the θ33 accuracy assessment results found in
the literature [2,28,65].

In the case of θ1500, the PTFs’S&R.2006 were again less accurate with a lower R2 and
higher RMSE and bias than the SFR- and CCA-derived PTFs for the A horizon. Methods
developed using SFR and CCA showed similar performance. The SFR method produced
slightly higher R2 and lower RMSE and bias at the A and C horizons. The performance
of the two methods was identical at the B horizon. In fact, the clay percentage was
strongly correlated with θ1500 (Figure 3). The reason is that the SFR method selected clay
as a predictor, while the CCA method selected the canonical variable to which clay was
the major contributor. Both SFR- and CCA-derived PTFs were satisfactory (good) for
all horizons. Again, RMSE values obtained in this study (ranging from 3.2% to 5.0%)
outperformed the RMSE values obtained by Pollacco [64] (ranging from 4.7% to 7.5%).
These results are acceptable and similar to the θ1500 results found in the literature [2,28,65].

In the case of ρb estimation, PTFs’S&R.2006 were well adapted to the A horizon. This
is likely because the PTFs’S&R.2006 use volumetric water content at saturation (obtained
by a PTF) to generate normal density, which is then used with CF to predict ρb, and
they were originally calibrated using the A horizon data. At the B horizon, in terms
of estimation errors, our PTFs were less erroneous than the PTFs’S&R.2006. The latter
produced the highest R2 (0.47) at the B horizon, but it also showed an important RMSE
value (0.21 g·cm−3). Both the SFR- and CCA-derived PTFs outperformed PTFs’S&R.2006
at the C horizon in terms of R2 and RMSE (0.53 vs. 0.40 and 0.18 vs. 0.28 g·cm−3). A
comparison with PTFs available in the literature [2,66,67] suggests that RMSE should range
between 0.13 and 0.23 g·cm−3, which was the case.

In the case of Ksat, the estimation quality was poor for all horizons. The SFR method
slightly outperformed the CAA method at the B horizon, and both methods performed
poorly for the A and C horizons yet showed higher accuracy than PTFs’S&R.2006 estimates.
In fact, the soil of the A horizon is frequently disturbed by tillage, plant root penetration,
and field alterations that modify soil structure. This variation in soil structure could explain
the high variability observed in saturated soil hydraulic conductivity (Table 2), which
is not explained by soil texture and OC alone. In addition, Ksat and CF showed great
variability; consequently, averages were less representative for these properties than for
other soil properties. Jorda et al. [26] found that the most influential predictor for Ksat
was land use. They noted a difference between samples in conventional agricultural sites
and non-tilled sites. These results demonstrate the importance of soil structure to Ksat
estimations. The lack of selected predictors that relate to soil structure might explain the
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difficulty to estimate Ksat. Prediction of this physical property could, however, be improved
by adding morphological predictors such as soil structure and drainage information.

Overall, the SFR-derived PTFs were equal to or more accurate than the CCA-derived
PTFs and were more accurate than the PTFs’S&R.2006. In fact, the major difference be-
tween CCA and SFR methods is that CCA always uses all available predictors to develop
its canonical variables, whereas the SFR method uses a selection strategy to determine
explanatory predictors. The use of all predictors may introduce noise, which explains the
observed difference in performance between the two developed PTFs. Even in the few
cases where the CCA-derived PTFs outperformed the SFR-derived PTFs (θ33 for horizon C,
for example (Table 8)), we still recommend using the SFR-derived PTF because of the small
significant difference in results and its easier execution.

5. Conclusions

In this study, four secondary soil properties—bulk density (ρb), saturated hydraulic
conductivity (Ksat), and volumetric water content (θ) measured at two matric potentials,
−33 kPa (field capacity (θ33)) and −1500 kPa (permanent wilting point (θ1500))—were
estimated for A, B, and C horizons for agricultural areas of southern Quebec, Canada.
Estimates were performed using existing functions from Saxton and Rawls’s PTFs (2006)
and new PTFs trained using the stepwise forward regression (SFR) and canonical correlation
analysis (CCA) algorithms. Primary soil properties (clay, silt, organic carbon, and coarse
fragment percentages) were used as inputs for estimating the secondary soil properties.
All PTFs (equations are available in Appendix A) were assessed using the cross-validation
technique from which the R2, Nash–Sutcliffe efficiency (NSE), root-mean-square error
(RMSE), and bias were generated. Except for ρb for A and B horizons that showed higher
accuracy in terms of NSE and R2 and equal accuracy in terms of RMSE and bias, all the
other physical secondary soil properties estimated using either SFR- or CCA-derived PTFs
were more accurate, particularly for θ33 and θ1500. According to the NSE index, θ1500
showed the best performance (qualified as good), followed by θ33 (qualified as moderate
to good) for the different horizons. The NSE index for ρb was qualified as low, while the
NSE index for Ksat was qualified as unacceptable to low for the best performances for the
different horizons. It is, thus, recommended to retrain the last two soil properties using
other morphological predictors such as soil structure and drainage information before
considering their use. Overall, the SFR method showed equal to or better performance than
the CCA method.
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Appendix A. Canonical Correlation Analysis and Stepwise Forward Regression PTFs
Developed for A, B, and C Horizons

Table A1. PTFs developed for the A horizon.

Stepwise Forward Regression Method R2 NSE RMSE Bias

θ33 = 1.8373 + 0.1903 · Si + 1.5476 ·C0.4072 + 15.0148 ·OC0.2750 0.54 0.47 4.3 0.4
θ1500 = 0.1266 · Si + 3.4684 ·C0.4072 + 7.8006 ·OC0.2750 − 10.0548 0.68 0.67 3.2 0.1

ρb = −0.0478 ·C0.4072 − 0.5903 ·OC0.2750 + 2.1906 0.28 0.16 0.15 0.00
Ksat = e0.1309+1.6519·OC0.2750+0.3674·ln(CF+1) − 1 0.15 −0.10 30.7 −12.5

Canonical Correlation Analysis Method

θ33 = 32.3500 + 5.3145 ·U1 0.53 0.47 4.4 0.4
θ1500 = 15.7784 + 4.6768 ·U1 + 1.3632 ·U2 0.66 0.61 3.33 0.3
ρb = 1.2982− 0.1266 ·U1 + 0.0546 ·U2 0.27 0.13 0.15 0.01

Ksat = e2.4895−0.5768·U3 − 1 0.13 −0.10 31.2 −12.7

U1 = 0.0217 · Si + 0.5238 ·
(

C0.4072 − 1
)
+ 2.8083 ·

(
OC0.2750 − 1

)
− 0.0.0673 · ln(CF + 1)− 2.6251

U2 = 0.0118 · Si + 0.8132 ·
(

C0.4072 − 1
)
− 3.7373 ·

(
OC0.2750 − 1

)
+ 0.2768 · ln(CF + 1)− 1.6776

U3 = 0.0382 · Si− 0.4248 ·
(

C0.4072 − 1
)
− 1.3209 ·

(
OC0.2750 − 1

)
− 0.6684 · ln(CF + 1) + 0.5212

Table A2. PTFs developed for the B Horizon.

Stepwise Forward Regression Method R2 NSE RMSE Bias

θ33 = 0.0943 · Si + 43.8066 ·C0.1248 − 13.0937 ·OC−0.0874 + 1.6381 ·
ln(CF + 1)− 20.0657

0.68 0.63 5.9 0.8

θ1500 = e
ln (−0.0643+0.0019·Si+1.2369·C0.1248)

0.2258 0.81 0.76 4.1 1.3

ρb = e
ln (−0.6911+0.0165·Si−2.2053·C0.1248+5.3959·OC−0.0874)

2.4488 0.33 0.27 0.18 0.01

Ksat = e9.8823−0.0340·Si−6.4758·OC−0.0874+0.2583·ln(CF+1) − 1 0.42 0.29 22.9 6.7

Canonical Correlation Analysis Method

θ33 = 28.7736− 9.4011 ·U1 0.68 0.63 5.9 0.8

θ1500 = e
ln (1.7521−0.2199·U1)

0.2258 0.81 0.75 4.1 −1.3

ρb = e
ln (2.7343+0.3196·U1−0.5772·U2)

2.4488 0.32 0.26 0.18 0.01

Ksat = e(1.8381+0.4429·U1+0.8850·U2) − 1 0.37 0.23 23.5 −6.7

U1 = −0.0101 · Si− 4.9887 ·
(

C0.1248 − 1
)
+ 0.7156 ·

(
OC−0.0874 − 1

)
+ 0.1170 · ln(CF + 1) + 2.2069

U2 = −0.0329 · Si + 1.4155 ·
(

C0.1248 − 1
)
− 8.3523 ·

(
OC−0.0874 − 1

)
+ 0.1326 · ln(CF + 1) + 1.2917

Table A3. PTFs developed for the C Horizon.

Stepwise Forward Regression Method R2 NSE RMSE Bias

θ33 = 0.1815 · Si + 24.1479 ·C0.1659 + 25.2204 ·OC0.1664 − 2.6145 ·
ln(CF + 1)− 28.1507

0.69 0.65 7.4 0.5

θ1500 = e
ln (0.0025·Si+0.8846·C0.1659+0.2567)

0.2206 0.79 0.77 4.4 0.4

ρb = e
ln (0.0171·Si−1.0133·C0.1659−5.4107·OC0.1664+0.2408·ln (CF+1)+7.3751)

2.2516 0.53 0.48 0.18 0.00

Ksat = e−0.0374·Si−0.9415·C0.1659+2.8791·OC0.1664+1.7888 − 1 0.42 −0.08 12.3 −2.6

Canonical Correlation Analysis Method

θ33 = 29.5832 + 10.6868 ·U1 0.70 0.66 7.3 0.5

θ1500 = e
ln (1.6935+0.2545·U1)

0.2206 0.74 0.70 5.0 −0.5

ρb = e
ln (2.8777−0.5208·U1+0.5467·U2)

2.2516 0.52 0.47 0.18 0.00

Ksat = e(1.1059−0.4499·U1−0.5372·U2+0.2169·U3) − 1 0.38 −0.15 12.5 −2.6

U1 = 0.0103 · Si + 2.9005 ·
(

C0.1659 − 1
)
+ 1.8130 ·

(
OC0.1664 − 1

)
− 0.1148 · ln(CF + 1)− 1.2149

U2 = 0.0458 · Si + 0.4749 ·
(

C0.1659 − 1
)
− 7.8326 ·

(
OC0.1664 − 1

)
+ 0.2432 · ln(CF + 1)− 4.4052

U3 = −0.0372 · Si + 3.4037 ·
(

C0.1659 − 1
)
− 2.7869 ·

(
OC0.1664 − 1

)
+ 0.6708 · ln(CF + 1)− 2.1718
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