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Abstract: Exact yield estimation of fruits on plants guaranteed fine and timely decisions on harvesting
and marketing practices. Automatic yield estimation based on unmanned agriculture offers a viable
solution for large orchards. Recent years have witnessed notable progress in computer vision with
deep learning for yield estimation. Yet, the current practice of vision-based yield estimation with
successive frames may engender fairly great error because of the double counting of repeat fruits in
different images. The goal of this study is to provide a wise framework for fruit yield estimation in
sequence images. Specifically, the anchor-free detection architecture (CenterNet) is utilized to detect
fruits in sequence images from videos collected in the apple orchard and orange orchard. In order
to avoid double counts of a single fruit between different images in an image sequence, the patch
matching model is designed with the Kuhn–Munkres algorithm to optimize the paring process of
repeat fruits in a one-to-one assignment manner for the sound performance of fruit yield estimation.
Experimental results show that the CenterNet model can successfully detect fruits, including apples
and oranges, in sequence images and achieved a mean Average Precision (mAP) of 0.939 under an
IoU of 0.5. The designed patch matching model obtained an F1-Score of 0.816 and 0.864 for both
apples and oranges with good accuracy, precision, and recall, which outperforms the performance of
the reference method. The proposed pipeline for the fruit yield estimation in the test image sequences
agreed well with the ground truth, resulting in a squared correlation coefficient of R2

apple = 0.9737
and R2

orange = 0.9562, with a low Root Mean Square Error (RMSE) for these two varieties of fruit.

Keywords: fruit yield estimation; image patch matching; double counting; deep learning

1. Introduction

Smart farming is becoming increasingly pervasive in modern agriculture, from crop
planting with commonly automatic equipment in the fields to the current trend of intelligent
monitoring for fruit tree growing in the orchard, providing effective management tools
to support precise cultivating [1]. Fruit yield is a significant indicator for the cultivation
management of fruit trees [2], allowing planters to arrange fruit harvest, storage and sales
more appropriately [3,4]. The conventional approach for estimating yield primarily relies
on humans, which is sampling a fixed percentage (e.g., 5% or 10%) of trees randomly
and fruit counting before extrapolating the total yield of the entire orchard [5]. However,
this sampling and extrapolation practice for long hours is not only labor intensive and
time consuming, but also prone to the error caused by brain fatigue or other interference.
Therefore, an automatic fruit yield estimation would be a highly desirable solution, better
than the one involving humans, as a machine saves labor and never tires.

The application of autonomous systems in orchard plantations has significantly grown
in the past several years and the adoption of vision-based methods is increasing in yield
estimation tasks because of the lower costs and greater efficiency [6–8]. Much previous
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research paid more attention to the traditional approaches of image processing depending
on the hand-crafted features in fruit yield estimation, such as textural features [9,10], color
features [11,12], shape features [13,14], etc. [15]. Few critical reviews concerning fruit tasks
in orchards are reported by Gongal et al. [16] and Koirala et al. [17], pointing out that
machine learning yields better results than traditional image processing techniques.

Recent years have witnessed tremendous progress of Deep Learning in fruit yield
estimation. Sa et al. [18] were the first to attempt Deep Learning-based fruit detection for
yield prediction. Chen et al. [19] reported a specific estimation approach that extracted the
candidate blob by the Fully Convolutional Network and predict the number of fruits in
each blob region using a regression model related to the CNN. Bargoti and Underwood [20]
reported a transfer learning architecture with Faster-RCNN to estimate the fruit yield, while
Chen et al. [21] similarly applied ResNet-50 as the backbone of the Faster R-CNN to perform
strawberry detection for yield estimation in the orchard. Through integrated segmentation
and count regression techniques into a framework, Häni et al. [22] developed an end-to-end
system that combined U-Net with Faster RCNN to estimate the fruits number from the
apple clusters in orchards and achieved the accuracy of 0.978. Kestur et al. [23] designed
a MangoNet specifically used for the yield prediction of mango, which can well detect
mangos in views of partial occlusion or overlap. Behera et al. [24] introduced a modified
intersection of union (MIoU) into the Faster R-CNN algorithm to provide extra attention
on overlapped regions during the fruit detection in yield estimation. Zhou et al. [25]
developed an Android APP for kiwifruit yield prediction by using a lightweight SSD
model. Anderson et al. [26] compared several orchards in fruits counts and indicated that
the DCNNs-based methods gave a better result than transitional methods. In addition, few
other specific deep learning-based methods were designed to simplify the model building
for better estimation performance [27–29].

Although previous works continuously improved the performance of fruits estimation
in single-frame images, it lacks temporal awareness of fruit correlation between neighbor-
ing images in the image sequence, which may cause double counting during fruit yield
estimation. Estimating fruit yield in sequence images is still challenging, as not only do the
fruit number need to be counted in the sequence image, but also duplicate fruits also need
to be eliminated in different images [30]. Hence, it is necessary to design a wise method to
cull the same fruit observed more than once in successive frames.

Automated yield estimation in successive frames relies on efficient fruit detection and
identical fruit matching. The excellent deep learning-based detection methods require a
trade-off between processing time and detection rate. The faster the inference time, the
lower the detection rate, creating a balance between the desired cycle-time and required
detection rate. The concept of the anchor is shared by both two-stage detectors and
one-stage detectors, which works by enumerating box templates of diverse scales and
aspect ratios concerning the dataset in process, and anchors should adapt to the attributes
of the dataset. However, designing anchor sets and dispatching objects to particular
anchors calls for vast experience. Different IoU thresholds might give rise to significant
performance variations when IoU is generally the major criterion during assigning objects to
certain anchors. Motivated by these observations, many approaches without anchors have
attracted much attention recently [31–35], where the anchor mechanism is dropped and the
key points are used for objects representation. The CenterNet network [35] is currently one
of the best-performing and most efficient methods without the anchor. Instead of detecting
two bounding box corners as keypoints, such as CornerNet, or detecting the top-, left-,
bottom-, right-most, and center points, such as ExtremeNet, both of which require some
extra time for a combinatorial grouping after keypoint detection, the CenterNet network
simply extracts a single center point of each object, and grouping or post-processing is not
required. Furthermore, a center point can be seen as a single shape-agnostic anchor, which
can better realize the balance between speed and precision. The CenterNet network has
been adopted in many studies [36,37] in recent years to solve the problem of crop detection.
By introducing MobileNetV3 and the transposed convolutional layer, Xia et al. [38] built
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a lightweight model based on the CenterNet framework for apple detection. The model
increased the robustness for apple detection under the condition of limited hardware
resources while maintaining a similar detection accuracy with a lower storage footprint.

The Deep CNN-based approach of metric learning has been employed to numerous
image matching issues with great success [39,40]. The metric network allows the feature
descriptors with pairs of images to be considered jointly and establishes correct correspon-
dences between image patches [41]. Various models have been developed recently for patch
similarity learning and assessing from image patches. Zagoruyko and Komodakis [42] eval-
uated several deep networks for metric learning on the tasks of image patch matching and
found that the networks can gain a satisfying result via learning metrics without explicit
descriptor computing. Through designing two identical CNNs to learn the descriptor and
metric simultaneously, Han et al. [43] proposed a MatchNet model and achieved image
pairs identification between positive patches and negative patches. To compare image
patches, Zagoruyko and Komodakis [44] proposed a DeepCompare model by training the
joint features of image pairs and assessing the patches by the similarity function. Though
the existing approaches offer flexibility, as it starts by processing the two image patches
jointly, this scheme just solved the maximum assignment problem instead of the optimal
assignments, which may result in underestimation as image patches cannot be matched
one-to-one, so it could not be the best solution for fruit yield estimation.

In this research, a wisely visual-based method is proposed to estimate the yield
for different kinds of fruit in image sequences. A framework that combines anchor-free
detection and optimal patch matching technique is designed to overcome double counting
during the fruit number prediction. The main contributions of this work are, thus: (i) A
specific framework based on CenterNet model and fruit matching model was proposed
for fruit yield estimation in the image sequences; (ii) A novel fruit matching model was
developed with the Kuhn–Munkres algorithm for a higher performance of identical fruit
matching; (iii) The proposed pipeline was evaluated and gave an encouraging result for
the yield estimation of different varieties of fruit (apple and orange), which will pave the
way for practical application.

The rest of this article is structured as follows. Section 2 described the material
and methods with data collection and the description of the proposed method. The
experiments and results for fruit detection, repeated fruit correlation, as well as the task of
yield estimation, are detailed in Section 3, followed by the further discussion and analysis
of the model performance in Section 4. Finally, in Section 5, the conclusions and future
works are summarized.

2. Materials and Methods
2.1. Data Acquirement

In this study, the video type data were collected from different scenarios for apple
and orange. The apple orchard is located in XingCheng, China, and the orange orchard
is located in NanNing, China. The videos were captured by the primary camera of the
iPhone 8 smartphone in 1080 × 1920 pixel resolution while holding the smartphone and
moving along the row of fruit trees. All experimental videos were gathered on several
sunny days and shot from morning to dusk each day, which ensures the captured videos
contain various light intensities.

Employing keyframes from the video streams is beneficial since the number of frames
needed to be processed is reduced, while it still sufficient feature correspondence between
frames to provide multiple views for observed fruits [45]. Thus, the keyframes were
extracted from the videos, then 120 apple image sequences and 120 orange image sequences
were obtained for this research. The image sequences of each kind of fruit are divided
into two parts equally for model training and test. Figure 1 shows the examples of the
fruit image sequences. The data annotation in terms of fruits locations and duplicate fruits
in successive images was carried out for the experiments. Firstly, the fruit annotation in
bounding box format is performed with a self-developed coordinates label tool, as shown
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in Figure 2a. Four coordinates (min-x, min-y, max-x, and max-y) of fruits in each image
can be marked and recorded by the label tool. Secondly, the relations of duplicate fruits in
successive images were annotated with a self-developed pair tool, as shown in Figure 2b.
The serial number of the same fruits in adjacent images would be marked and recorded
by the pair tool. During the data annotation, two data engineers were asked to calculate
the ground truth of fruits in sequence images using the pair tool. One of them firstly
calculated the ground truth of fruits by subtracting the duplicated fruits from the total
fruits in sequence images, and then the other checked the number again to ensure the
correctness of the ground truth.
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2.2. Methodology
2.2.1. Method Overview

Fruit yield estimation in image sequences consists of fruit detection, duplicate fruit
matching, and correction of fruit number. Figure 3 illustrates the workflow of the proposed
method. For an input images sequence, the CNN-based detection model CenterNet is
employed to detect the fruit regions in each image and the detector outputs a set of detected
bounding boxes. To avoid double counting for a single fruit, the fruit matching model is
utilized to recognize and mark the detected fruits that have the same identities between
successive images, then the fruit number counted in images is corrected according to
the number of duplicated fruits. The sum of fruits count in the image sequences can be
calculated by:

count(S) =
n

∑
i=1

count(si)−
n−1

∑
i=1

count(si ∩ si+1) (1)

where S represents an image sequence, n denotes the number of images in S, si indicates an
image from the image sequence (si ∈ S), count (·) represents the fruit count of images, and
count (si ∩ si+1) indicates the count of duplicate fruit from si and si+1.
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2.2.2. Fruit Detection Model

Fruit detection is one of the most perceptual steps towards fruit yield estimation. In
the aspect of fruit detection using the CNN-based model, CenterNet [35] is a preeminent
anchor-free detection model, which is considering object detection as the problem of key-
points prediction and bounding boxes regression [46]. This concept takes advantage of the
speed-accuracy trade-off, since it does not require non-maximum suppression (NMS) to
eliminate the multiple prior anchors. Therefore, the CenterNet is adopted in this work as
the fruit detector for better detection in the complex orchard condition. Figure 4 shows the
network architecture of the CenterNet detector.

Specifically, CenterNet takes an encoder-decoder convolutional neural network as the
backbone to generate feature maps from extracted features of images for fruit recognition
and location regression. The final feature maps include three branches: keypoint heatmap
branch, local offset branch, and object size branch. In the keypoint heatmap branch, each
object is represented as the Gaussian kernel generated by the object properties in terms of
locations, shapes, and sizes. The equation of the Gaussian kernel is depicted as:

Yxy = exp (−
(x− p̃x)

2 +
(
y− p̃y

)2

2σ2
p

) (2)

where Y is the Gaussian kernel,
(

p̃x , p̃y
)

is the coordinate of the kernel center, and σp is
the standard deviation from the shape and size of the fruit.
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Meanwhile, the local offset branch and the object size branch are responsible for the
local offsets of center points and the bounding box sizes of objects, respectively. Based on the
above process, the location of the center points and the sizes of fruits can be calculated. The
example of prediction outputs from three branches of the CenterNet detector is illustrated
in Figure 5.
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2.2.3. Fruit Matching Model

The same fruit between adjacent images may have a big different appearance affected
by the branches’ obstacle and shadow. It is hard to establish matches of some fruits
even by human eyes. In order to avoid double counting of fruits in yield estimation, an
effective method is needed to identify the same fruits patches observed repeatedly across
the sequential images. The objective of image patch matching is to learn the same or similar
features from two images, enabling matches to be as close as possible while the unmatched
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ones are far apart in the measuring space [47]. The DeepCompare network adopts a
double-channel network to learn the discriminative metric for similarity measurement
from raw image patches, providing good flexibility, since it starts with jointly processing
for each two image patches [48]. Nevertheless, it is prone to allocate one fruit with many
different ones as duplicate fruit because of the maximum assignment strategy adopted
in the model, resulting in image patches being invalid to match one-to-one. To solve this
issue, an advanced fruit matching model is designed in this work to complete the optimal
assignment for a better pairing of fruit patches.

The fruit matching model consists of matching layer and decision layer, as shown in
Figure 6. The matching layer is responsible for generating a similarity matrix, while the
decision layer assesses feature similarity of patches to predict the duplicate fruits. The
input of the model is multiple image patches from fruit regions detected in images by the
CenterNet. The matching layer consists of a series of convolutional, fully connected linear
and softmax function to identify probe images and possible similar candidates. Figure 7
depicts the network structure of the matching layer.
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Each pair of input patches would be resized to 94 × 94 pixels and concatenated before
input to the matching layer. Specifically, let ri and ri+1 denote the fruit patches detected in
image si and si+1, respectively. The matching result can be predicted by:

Pmn =

{
con f

(
rm

i , rn
i+1
)
> 0 matched

0 not matched
(3)

where Pmn presents the matrix of maximum matching between ri and ri+1, where m and n
are numbers of fruit regions of images si and si+1, and the conf (ri

m,rn
i+1) is the similarity

score between the m th patch in ri and the n th patch in ri+1, which is in (0, 1).
The cross-entropy loss is used as the loss function for the training of the matching

layer, which can be defined as:

Loss =
1
n ∑

i
−[yi · log(pi) + (1− yi)· log(1− pi)] (4)

where n is the number of samples, yi is the label of sample i, yi ∈ {0, 1}, and pi is the
confidence of positive, pi ∈ [0, 1).

The Kuhn–Munkres filter, invented by Kuhn [49] and improved by Munkres [50],
is a combinatorial optimization algorithm that solves the optimal assignment problem.
An example of Kuhn–Munkres optimization is shown in Figure 8. In this research, the
Kuhn–Munkres algorithm is employed in the decision layer to correlate the same fruit
in adjacent images by turning a maximum matching from the similarity matrix into an
optimal matching result for a corrected count of duplicate fruits.
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Specifically, for an initial similarity metric of patches generated from images si and si+1,
setting ri

m and rn
i+1 as elements of graph vector X and graph vector Y in the similarity metrix,

respectively, then the weight of the connection between elements can be denoted as weight
(ri

m,rn
i+1), and the corresponding connected edge can be denoted as edge (ri

m,rn
i+1) [51].

In the process of optimal matching using the Kuhn–Munkres algorithm, similarity scores
of patches from the similarity matrix are considered as the weights of the edges between
elements of vector X and vector Y for bipartite graph matching [52]. By updating the
top marks of the elements, the number of viable edges between elements is continuously
gained, and all these top marks would be assured to be viable top marks until the optimal
matching is completed. The score of the weight might act on the priority of the match.



Agronomy 2022, 12, 440 9 of 17

Finally, the number of matched pairs obtained from the optimal assignment process is the
corrected count of duplicate fruits between images.

3. Experiments and Results
3.1. Experimental Environment

To train models and evaluate the performance of the proposed method for fruit yield
estimation, all experiments are implemented on a workstation platform containing an
NVIDIA (R) TITAN Xp GPU with 16 GB of graphics memory, an Intel(R) Core i7 7700 CPU
processor, and 32 GB of DDR4 RAM, running on the Ubuntu Linux 16.04 operating system.
Compute unified device architecture (CUDA) toolkit 10.0 and CUDA deep neural network
(cuDNN) v7.5 are both applied to faster graphic calculation and less memory access latency.
Python is employed as the programing language to implement model building, training,
and testing under PyTorch 1.0 deep learning framework.

3.2. Performance of Fruit Detection

For generation and evaluation of the fruit detection model, 1199 apple images (con-
tain 10,177 fruits) and 2849 orange images (contain 34,470 fruits) were randomly selected
from the image sequences to be used for the experiment of the fruit detection. Further-
more, an additional ACFR-Apple dataset from the publicly available dataset ACFR FRUIT
DATASET [53], which contains 1120 RGB images of apples with corresponding annotations
(contain 5765 fruits), was used for a fair comparison. The detailed partition of fruit images
for the fruit detection model is shown in Table 1. By setting the training hyperparameters,
the model can be trained and used for fruit detection. The initial key parameters of the
detection model are listed in Table 2.

Table 1. The detailed partition of fruit images for the fruit detection model.

Dataset Class Training Test Total

Ours
Apple 1078 121 1199

Orange 2563 286 2849
ACFR-Apple dataset Apple 1008 112 1120

Table 2. Initial key parameters of the detection model.

Items Value

Input Size 512 × 512
Training Epochs 1000

Batch Size 16
Optimizer Adam

Momentum 0.9
Initial Learning Rate 10−4

Weight Decay 0.0001
Max Detection 100

In the experiment, the detection model treated each image as an individual input,
then outputs the bounding boxes corresponding to the detected fruits. The detection
evaluation is performed on the test dataset of this study, which contains 121 apple images
and 286 orange images, and the ACFR-Apple dataset, which contains 112 apple images.
The average precision (AP) of each kind of fruit and the mean average precision (mAP) of
two kinds of fruits are selected as the evaluation metrics, which are generally adopted in
object detection tasks [54–56]. The AP and mAP can be defined as:

AP =
∫ 1

0
P(R)dR (5)

mAP =
1
2

(
APapple + APorange

)
(6)
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where P denotes the precision, while R denotes the recall.
The values of the AP and mAP are calculated when the Intersection Over Union

(IOU) is set to 0.5, 0.6, and 0.7, respectively. Furthermore, the precision-recall curve (PRC)
tested in each dataset is utilized as well for comprehensive observation of the detection
performance. Figure 9 illustrates the trained detection model worked on test images. As
shown in Figure 9, most fruits can be detected from the background by the CenterNet
model and shown the robustness for detecting both apples and oranges under various
conditions in the orchard. Hence, the effectiveness of the CenterNet model is validated.
After fruit detection, the yellow rectangles in images were regarded as true detected fruits
to be used for counting the fruit number during the yield estimation.
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The quantitative results of the model evaluation for fruit detection are listed in Table 3
and the precision-recall curve (PRC) is shown in Figure 10. It can be seen from the detection
result in the dataset of this study that the detector proves sound performance in each
category. The AP of apples and oranges are both reached more than 0.90, while the mAP of
these two classes achieved 0.939 under an IoU of 0.5, which is a better result than that on
IoU of 0.6 and 0.7. The detection result in the ACFR-Apple dataset has shown that the AP
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value is 0.924 under IoU of 0.5, and this result is also better than that on IoU of 0.6 and 0.7
in the ACFR-Apple dataset. The experimental results revealed that the CenterNet model
can support a solid basis for fruit detection.

Table 3. The quantitative results of the model evaluation for fruit detection.

Dataset Class IoU AP mAP

Ours

Apple 0.7 0.713
0.790Orange 0.7 0.866

Apple 0.6 0.862
0.898Orange 0.6 0.933

Apple 0.5 0.927
0.939Orange 0.5 0.951

ACFR-Apple
dataset

Apple
0.7 0.744

-0.6 0.866
0.5 0.924
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3.3. Performance of Fruit Matching

The fruit matching model proposed in this study determines the correlation of fruit
image patches by analyzing the similarity of their features. In the experiment, 3066 pairs of
apple image patches and 6028 pairs of orange images patches were cropped according to
the coordinate annotation from the training data of the fruit image sequences for matching
model training. Each image pair consists of two patches of fruit images that have the same
identity. Figure 11 shows the training samples of fruit image pairs.
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Figure 11. Samples of fruit pairs for the training of the fruit matching model. (a) Training samples of
apple image pairs. (b) Training samples of orange image pairs.

The fruit matching model was trained from scratch in mini-batches of a size of 16
with a constant learning rate of 0.0005 for 300 epochs. The Adam optimizer was applied in
model training. All image pairs would convert to greyscale before feeding into the deep
convolutional neural network.

For evaluating the performance of our fruit matching model, 20 groups of two adjacent
images for apple (contain 828 fruits) and 20 groups of adjacent images for orange (contain
793 fruits) were randomly selected from the test data of the fruit image sequences, and the
classical DeepCompare model was compared with our fruit matching model. The average
values of the accuracy, precision, recall, and F1 score are selected as the evaluation metrics.

Figure 12 presents the examples of visualized results for fruit matching in adjacent
images using the fruit matching model, where the matched fruits are represented by the
bounding box with the same colors, while the single fruits are represented by the white
color bounding box.
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Figure 12. Examples of fruit matching in adjacent fruit images. (a) Result of fruit matching in adjacent
apple images. (b) Result of fruit matching in adjacent orange images.

Table 4 recorded the quantified evaluation results of the fruit matching, while the
performance comparison between the DeepCompre model and ours is shown in Figure 13.
It can be seen in Table 4 and Figure 13 that the fruit matching model obtained an F1-
Score of 0.816 and 0.864 for both apple and orange, with good accuracy, precision, and
recall. Comparison with the DeepCompare model, our fruit matching model exhibits
better performance than the former. The experimental results demonstrate that the Kuhn–
Munkres algorithm in the fruit matching model can significantly improve the recognition
power for duplicate fruits.

Table 4. Quantified evaluation results of the fruit matching model.

Class Method Accuracy Precision Recall F1-Score

Apple DeepCompare 0.937 0.503 0.592 0.544
Ours 0.975 0.793 0.840 0.816

Orange DeepCompare 0.966 0.701 0.776 0.737
Ours 0.985 0.853 0.875 0.864
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3.4. Evaluation of Yield Estimation

In order to observe the performance of the proposed method for the task of fruit
yield estimation. Our pipeline was evaluated on 20 apple image sequences (including
910 fruits) and 20 orange image sequences (including 844 fruits) from the test data of the
fruit image sequences.

The predicted yields utilized by our method are compared against the ground truth of
fruits. Figure 14 shows the linear regression and resulting coefficient of correlation (R2),
and the ground truth for both apple and orange are 0.9737 and 0.9562, respectively. The
results in Figure 14 demonstrated that the regression line fits well over the data, which
means the algorithm predicted yields of the fruits are similar to the ground truth. The root
mean square error (RMSE) of yield estimation for apple and orange are 10.0920 and 4.2544,
respectively, which proves the reliability of the proposed model in yield estimation for
different fruits. The average computational time of test image sequences is 5.33 min per
image sequence.Agronomy 2022, 12, x FOR PEER REVIEW 15 of 19 
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4. Discussion

The information from the fruit yield estimation is valuable for planning fruit cultiva-
tion schedules. Faultless fruit counting in successive images is fundamentally important
during estimating fruit yield. The deep learning-based method can produce impressive
and robust results for fruit yield estimation.

The fine prediction ability of the proposed method for fruit yield estimation benefits
from wisely processing the fruit patches jointly by the specific architecture of our pipeline.
The evaluation provides an encouraging result for yield estimation using our pipeline. As
can be seen from Figure 13, the proposed fruit matching model is significantly better than
the reference model in fruit culling. The main reason for this is that the Kuhn–Munkres
algorithm can pair fruits one-to-one to achieve the optimal matching of the fruits in adjacent
images, helping our model prevent fruits from being double counted, caused by repeat
detection in successive images, which leads to better inference results for fruit pair matching
and de-duplication.

In fruit yield estimation, fruit detection may be affected by different factors, such as
different perspectives, partial occlusion of branches and leaves, and various light conditions.
The deep learning algorithm can realize fruit detection through model training in a way that
features learning of fruits. However, the training samples cannot cover all the interference
cases completely, due to the difficulty of collecting massive amounts of samples in the
agricultural environment. In some cases, the model may misjudge some unlearned features
of fruits, which leads to low detection confidence and, thereby, affects the final yield
estimation. Yet, this effect can be reduced by increasing additional training samples and
model improvement. More videos of fruit trees under different conditions need to be
collected in different orchards to enrich the training samples. Furthermore, the network
can learn more diverse fruit features by introducing the transfer learning technology and
improving the network structure, so as to promote the model to be more robust to figure
out more fruits that are not easily detected.

To identify the same fruits patches observed repeatedly across the sequential images,
we proposed a fruit matching model based on the DeepCompare network that accepts
images in the form of grayscale image patches as input to learn the same or similar features
of fruits, such that the original image pairs are converted to greyscale before feeding into
the network to adapt to the input requirements of the network. Thus, we followed the rules
of the model in this study. However, the color information in patch images may contain
abundant available information that can promote the model to extract more learnable
features for patch matching issues. Thus, further relevant attempts will be made in the
subsequent study to optimize the network structure by employing the color information in
patch images for superior performance of the fruit matching model.

This study put forward an effective pipeline to culling double counting in the view of
single-side for fruit yield estimation. Yet, the fruits may not be detected in the case of yield
prediction on the single-side view as the interference of fruit tree morphology, branches
and leaves. Thus, a more feasible way is to obtain fruits information on both sides of the
trees for better fruit counting. Due to the same fruit may have different phenotypes on
different sides, so how to use multiple cameras to collect fruit images on both sides of the
trees and combine the local feature similarity of fruits and the global feature similarity
among fruits to cull the identical fruits from bilateral perspective will be an important issue
to be considered in the follow-up study.

In some poorly managed orchards, trees are planted in arbitrary and unreasonable
positions due to the non-standard planting patterns, resulting in sparse distances between
trees. Hence, the fruits on the plants of other rows might be included on the image
when shooting an image and/or video in orchards, which may alter the correct counting.
However, it is observed that fruits in other tree rows appeared smaller in size on the images
compared to that of the tree row we photographed. Therefore, a feasible way to solve this
problem is that avoid labeling the fruits from other tree rows during the data annotation
and adjust the network parameters to train a robust detector that does not consider fruits
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from other rows as the valid detection targets, so as to acquire the correct counting results.
In addition, as orchards increasingly adopt the dense planting mode, this issue will also be
ameliorated. In dense planting mode, each row of trees can form the tree wall and block
the trees in other rows from the view, which might dramatically reduce the interference of
other trees during fruit counting.

In the experiment of fruit yield estimation, our pipeline was evaluated on 20 apple
image sequences and 20 orange image sequences from the test data of the fruit image
sequences. The average computational time of test image sequences is 5.33 min per image
sequence. Due to the experimental data in this research being collected in the field for
orchard scene use, the final computational time of counting fruit in the field would be
similar to that in the experiment. Although the fruit detection speed is fast enough, the fruit
pairing still does not satisfy the requirement of real-time speed, since it needs all patches to
be compared against each other in a brute-force way, which would be studied further in
future works. The analysis of time efficiency between automatic and manual fruit counting
will also be carried out in the following study.

5. Conclusions

The work of this study presented a novel framework for the fruit estimating yield in
sequence images. The anchor-free detection architecture (CenterNet) was utilized to detect
fruits from each sequence image collected in the apple orchard and orange orchard, then
the rectified count of the fruit yield was estimated after double counting removal by using
the fruit patching model.

In most cases, the detector successfully maintains the identity of the detected fruits,
including apples and oranges. The CenterNet detector achieved a mean Average Precision
(mAP) of 0.939, 0.898, and 0.790 at an Intersection over Union (IOU) of 0.5, 0.6, and 0.7, respec-
tively. The proposed fruit matching model was compared with the classical DeepCompare
model and the evaluation results demonstrated a prominent improvement in culling duplicate
fruits at a fine F1-score of 0.816 and 0.864 for apples and oranges, respectively.

The proposed pipeline was evaluated for the task of fruit yield estimation in sequence
images and the prediction counts of fruits have agreed well with the ground truth, resulting
in the squared correlation coefficient of R2

apple = 0.9737 and R2
orange = 0.9562 with sound

RMSE for two kinds of fruits.
Although the proposed pipeline is developed for apples and oranges in this research,

nothing prevents improving it to promote more potential applications for other crops.
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