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Abstract: Manipulating the photoprotective mechanism has been demonstrated to be an effective
way to enhance the photosynthetic productivity of crop plants. NPQ(T) is a chlorophyll fluorescence
parameter for rapid estimation and imaging of non-photochemical quenching (NPQ) of excitons in the
photoprotective mechanism. However, the variation and genetic basis of NPQ(T) are rarely reported
in the Oryza sativa L. In this study, we collected 173 rice cultivars and investigated the NPQ(T) value.
We found that the NPQ(T) has a wide variation, although it had not been under-selected in the
different subspecies. A genome-wide association study (GWAS) utilizing 1,566,981 high-quality SNPs
identified three significant associated signals on chromosomes 02, 05, and 07. Furthermore, one likely
candidate gene Os02g0184100, underlying the associated signal on chromosome 02, was uncovered
by identifying the expression pattern in flag leaves and testing the correlation between functional
polymorphisms and phenotypic variation. The significant SNPs and candidate genes identified in
this study provide us a comprehensive understanding of the genetic architecture of NPQ(T) and
could be used for genetic improvement of rice photoprotection.

Keywords: rice; chlorophyll fluorescence; NPQ/NPQ(T); genome-wide association study; photosynthesis

1. Introduction

Rice (Oryza sativa L.) is the staple food for more than half of the world’s population.
With the increase in the global population and the decrease in arable land, increasing grain
yield is still the primary goal of rice breeders today [1]. The grain yield of rice is mainly
determined by biomass accumulation and harvest index. During the green revolution in
the early 1960s, the yield of rice increased spectacularly by the introduction of dwarfing
traits into the plants, which improved the lodging resistance and harvest index [2–5]. In
the past decades, the yield has been further increased by ideotype and heterosis breeding.

Besides the above approach, coordinated regulation of photosynthesis, converting
light energy to chemical energy, is another important way to increase yield and tolerance
to environmental stress in rice [6]. There are many factors that affect the photosynthesis
of crops, such as the morphology and structure of the leaves, the absorption and trans-
mission of light energy, and the photosynthetic carbon cycle [7]. Chlorophyll content and
parameters derived from gas exchange measurements and chlorophyll fluorescence have
been widely used to reflect photosynthetic capacity [8–10]. Plants have evolved regulatory
non-photochemical quenching (NPQ) mechanisms to eliminate damage from excessive
light by dissipating the excessive excitation energy as heat in PSII antenna complex [11–13].
Moreover, NPQ has been one of the common parameters of chlorophyll fluorescence and is
currently the most advanced non-invasive measurement of plant photosynthetic energy use
efficiency [14]. As the measurement of NPQ is complicated, NPQ(T) is a new chlorophyll
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fluorescence parameter for the rapid estimation and imaging of NPQ, and can be obtained
without dark adaptation in a shorter measurement time [15]. This promotes NPQ(T) as
more convenient for field measurement.

With the feasibility of genotyping numerous lines using high-throughput sequencing,
linkage mapping and genome-wide association studies (GWAS) have been a powerful
approach to identify natural variation underlying complex traits in crops, mainly including
morphological characteristics, yield, and grain quality [16–18]. Moreover, several studies
had been performed to identify the genetic basis of NPQ by linkage mapping and GWAS
in plants, such as Arabidopsis [19,20], soybean [21], and rice [22,23]. Additionally, a pro-
posed mechanism underlying the transcriptional regulation of NPQ was established in
rice [24]. The associated loci and genes may help enhance photoprotection and improve
photosynthesis in plants. However, few loci or genes are reported to be involved in the
natural variation of NPQ(T) in rice.

In the present study, we performed GWAS for NPQ(T) using a diverse collection of
173 rice varieties, based on 112,408,956 single-nucleotide polymorphisms (SNPs) derived
from genome resequencing. We further identified one candidate gene and possible causal
polymorphisms for NPQ(T) by integrating gene annotation, expression pattern, and haplo-
type analysis. Our findings provide some insight into the genetic basis of NPQ(T), which
would be useful in improving photosynthesis efficiency in rice.

2. Materials and Methods
2.1. Plant Materials

The association panel consisted of a diverse collection of 173 Oryza sativa accessions,
which includes 78 accessions from the Mini Core Collection of Huazhong Agricultural
University and 95 accessions from the 3000 Rice Genomes Project. The details of the
accession, including accession name, country of origin, and subpopulation identity, are
shown in Supplementary Table S1.

2.2. Experimental Design and Measurement of NPQ(T)

About 200 g seeds was sown in the field of Huazhong Agricultural University, Wuhan,
China, on May 18th of 2019. One-month-old seedlings were transplanted into 1 m × 2 m
plots, with one plant per hill at 0.20 × 0.25 m spacing. Fertilizers applied to all plots were
180 kg N ha−1, 60 kg P2O5 ha−1, and 120 kg K2O ha−1. A local plot trial management was
performed, which includes irrigation, fertilization, and disease and pest control. Weather
data (daily maximum/minimum temperature, rainfall, relative humidity, and sunshine
hours) for the whole growing season are shown in Supplementary Figure S1. Five plants
of each accession in the middle of the plot were selected to investigate the NPQ(T) values
during the heading stage. In order to better reflect the average NPQ(T) level of rice flag
leaf and make the leaf cover the whole sensor to obtain more reliable data, NPQ(T) was
measured in the middle part (1/3~2/3) of the flag leaf between 8:30 and 11:30 a.m. on a
sunny day, using a portable chlorophyll fluorometer (MultispeQ v1.0) [25], with agreement
of no open/close (https://www.photosynq.org/protocols/leaf-photosynthesis-multispeq-
v1-0-no-open-close (accessed on 10 August 2022)).

2.3. DNA Extraction, Sequencing and Data Processing

DNA was extracted from fresh leaves of field-grown plants using a modified CTAB
method [26]. Whole-genome DNA sequencing was performed on the Illumina HiSeq-2000
platform by Personalbio (Shanghai, China). Paired-end 150 bp reads were mapped to
the rice cultivar Nipponbare reference genome (https://www.ebi.ac.uk/ena/data/view/
GCA_001433935.1 (accessed on 10 August 2022)) using BWA (V0.7.8) with the default
parameters. After alignment, genomic variants (in GVCF format for each accession) were
identified using the Genome Analysis Toolkit (GATK) software [27], with the Haplotype
Caller module and GVCF model. The raw variants were further filtered with the following
parameters: depth for each individual ≥5, genotype quality for each individual ≥5, minor
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allele frequency (MAF) ≥ 0.01, and miss rate ≤0.2. The identified SNPs were further
annotated using the ANNOVAR software (version 20 May 2013) [28].

2.4. Population Genetics Analysis

All 1,566,981 identified SNPs were used to build a phylogenetic tree and perform
principal coordinate analysis (PCA). The individual-based neighbor-joining (NJ) tree was
constructed using the TreeBest software (v1.9.2), based on the p-distance and with 1000
bootstrap replicates [29]. PCA was conducted using the GCTA software [30]. First, the
genetic relationship matrix (GRM) was obtained using the parameter ‘–make-grm’. Then,
the top two principal components were estimated using the parameter ‘–pca3’. To estimate
LD in our rice population, the squared correlation coefficient (r2) between pairwise SNPs
was computed using PopLD decay [31], with parameters in the program set as ‘-MaxDist
1000 kb-MAF 0.05-Miss 0.1’. The r2 value was calculated for pairwise markers in a 1000 kb
window and averaged across the whole genome. Haplotype blocks were detected using
the plink software package [32], with the following parameters: ‘–blocks no-pheno-req–
blocks-max-kb 1000–blocks-min-maf 0.05–blocks-strong-lowci 0.70–blocks-strong-highci
0.98–blocks-recomb-highci 0.90–blocks-inform-frac 0.95’.

2.5. Genome-Wide Association Analyses

Genome-wide association study (GWAS) was performed using a mixed linear model
(MLM) in the EMMAX (beta version) package [33]. The matrix of pairwise genetic distances,
calculated by EMMAX, was used as the variance–covariance matrix of random effects.
Significant p-value thresholds (p = 10−6) were set to control the genome-wide type 1 error
rate, which was calculated by 1/n (total SNPs). PVE of 100 kb was filtered out before and
after the peak signal. The Manhattan and quantile–quantile (Q-Q) plots of GWAS results
were generated in R software.

2.6. Analysis of Candidate Genes

To identify the putative candidate gene underlying the associated peak on chromosome
02, a candidate region surrounding the peak signal was selected using an r2 > 0.8. The
rice gene annotation and expression profile (https://ricexpro.dna.affrc.go.jp/ (accessed on
10 August 2022)) were used to uncover the candidate genes. The association between the
candidate gene haplotype and NPQ(T) were analyzed by the Kruskal–Wallis test, run in
the R software.

3. Result
3.1. Genome Resequencing of 92 Rice Varieties

To characterize genomic variation in the rice accession collection, whole-genome
resequencing data were generated for the 173 rice cultivars, which were collected from
three rice subpopulation around the world (indica: 101, japonica: 58, intermediate: 14)
(Supplementary Table S1). A total of 466.7 Gb high-quality sequence data (64.4 billion
paired-end reads) were obtained, ranging from 0.88 to 16.52 Gb, with an average of 5.17 Gb
for each line (Supplementary Table S1). The sequence reads for each line were aligned to
the v4.1 draft reference genome of ‘Nipponbare’ (https://www.ebi.ac.uk/ena/browser/
view/GCA_001433935.1 (accessed on 10 August 2022)). The coverage depth in each line
ranged from 4.6- to 42.18-fold, with a mean of 13.59-fold (Supplementary Table S1). A total
of 1,566,981 SNPs were identified based on alignment to the reference genome. (Figure 1;
Supplementary Table S2). The Ts/Tv ratio (transitions/transversions) ranged from 2.00 to
2.29, with a mean of 2.23. The SNPs were distributed on all 12 chromosomes of rice with a
density of 4.17/kb, ranging from 3.24/kb on chromosome 04 to 4.96/kb on chromosome 03
(Figure 1; Supplementary Table S2).

https://ricexpro.dna.affrc.go.jp/
https://www.ebi.ac.uk/ena/browser/view/GCA_001433935.1
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Figure 1. Display of single-nucleotide polymorphism (SNPs) identified in the population. The rings
from outside to inside indicate the individual chromosomes, SNP distribution, and genomic GC
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To gain insights into the potential effects of SNPs, all 1,566,981 detected SNPs were
functionally annotated (Supplementary Table S3). Of these, most SNPs (52.04%) were
located in intergenic regions, 16.49% were located within the 1 kb upstream/downstream
regions of genes, 912 (0.06%) were located within ncRNA regions, and 492,298 (31.42%)
were located within genic regions. Of those in genic regions, 270,249 (17.25%) were located
in introns, which is more than in exons (133,368, 8.51%). Notably, 66,335 (4.23%) SNPs were
nonsynonymous substitutions, 436 (0.03%) altered splicing, 845 (0.05%) induced gain of
stop codon, and 170 (0.01%) induced loss of stop codon (Supplementary Table S3). These
SNPs may have significant effects on gene function and could be used to identify the likely
candidate genes hereafter.

3.2. Population Structure, Linkage Disequilibrium, and Phenotypic Variation

To understand the overall genetic relationship in this population, we explored the
phylogenetic relationship and performed PCA of 173 accessions using randomly selected
SNP markers. The neighbor-joining tree revealed that most of the accessions, belonging to
the two subspecies of indica and japonica rice, were clustered with each other (Figure 2a).
Additionally, 14 intermediate accessions, which may be from historical hybrids between
indica and japonica rice, were randomly mixed with the two groups of divergent subspecies
(Figure 2a). This result was also supported by the PCA, in which the PC1 explained
32.25% and PC2 explained 10.19% of the genetic variation within these 173 rice lines
(Figure 2b). Based on the r2 value, which declined to half of the maximum value, the
linkage disequilibrium (LD) decay for 173 rice varieties was estimated at 52.5 kb (Figure 2c),
indicating that the rice lines exhibited a moderate LD [16].
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Figure 2. Features of the rice population of 173 rice varieties. (a) Neighbor-joining phylogenetic tree
of the 173 accessions inferred from 112,408,956 SNPs. (b) PCA plots of the first two components of
173 accessions. (c) Genome-wide average linkage disequilibrium (LD) decay of 173 rice varieties.
(d) Frequency distribution histogram of the NPQ(T) in flag leaf of three rice groups. (e) Comparison
of the NPQ(T) among the three rice groups.

Furthermore, we investigated the phenotypic variation of the NPQ(T) of 173 rice
varieties in 2019. The distribution and descriptive statistical analysis in different subpopu-
lations and the entire population are presented in Figure 2d,e and Table 1. The NPQ(T) has
a large variation of 10-fold between lines with the lowest (0.31) and highest (3.1) values in
the whole population. Comparisons among the three groups revealed that there were no
significant differences among the indica, japonica, and intermediate rice.

Table 1. Phenotypic variation of NPQ values in different groups.

Subpopulation No. of
Line Mean SD Median Max. Min.

Indica 90 1.16 0.56 0.97 3.05 0.47
Intermediate 14 1.12 0.55 1.05 3.1 0.31

Japonica 69 1.21 0.6 0.96 2.56 0.49
All 173 1.18 0.56 1.02 3.1 0.31

3.3. Genome-Wide Association Analysis (GWAS) for NPQ(T)

To detect the genetic basis of the NPQ(T), GWAS was performed using the EMMAX
method, based on all 1,566,981 SNPs. Three signals, distributed on chromosomes 02, 05,
and 07, were detected to be associated with the NPQ(T) by the significance threshold
of −log10(P) = 6 (Figure 3a). The Q-Q plots (quantile–quantile plots) indicate that the
model fits the data fairly well (Figure 3b). We calculated the PVE of 100 kb before and
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after the peak signal; afterwards, we focused on the associated signal on chromosome 02
(Supplementary Table S5). Here, we estimated a candidate region of 194.9 kb from 4498 kb
to 4698 kb by using r2 > 0.8 (Figure 3c).
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line represents the significance threshold (−log10(P) = 6). (b) Q−Q plot for NPQ(T) (c). Local
Manhattan plot (top) and LD heatmap (bottom) surrounding the peak on chromosome 02.

3.4. Candidate Genes Underlying the Associated Signal on Chromosome 02

A total of 28 genes were found in the above-mentioned candidate region of 194.9 kb on
chromosome 02, of which 16 genes have known annotations in the rice database (Supple-
mentary Table S4). The associations between the functional variations of these target genes
and NPQ(T) variation were investigated in the association panel. Of these, it was found that
only SNPs in Os02g0184100 were significantly associated with NPQ(T) variation. Six SNPs
located in the promoter region of Os02g0184100 formed three haplotypes (Figure 4a). The
NPQ(T) value of inbred lines carrying haplotype 1 (1.25 ± 0.60) was significantly higher
than lines carrying haplotype 2 ((0.95 ± 0.35) (p = 0.046) (Figure 4b)). Five nonsynonymous
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SNPs located in the exons of Os02g0184100 formed three major haplotypes (Figure 4c). The
NPQ(T) value of inbred lines carrying haplotype 1 (0.97± 0.37) was significantly lower than
lines carrying haplotype 2 ((1.37 ± 0.63) (p = 0.00095) (Figure 4c)). Furthermore, we investi-
gated the expression pattern of Os02g0184100 in RiceXPro (https://ricexpro.dna.affrc.go.jp
(accessed on 10 August 2022)). It was found that Os02g0184100 was highly expressed in
the flag leaves at 83 DAT (Figure 4d), which is close to the stage when we investigated the
NPQ(T) in our study. Notably, the expression of Os02g0184100 has a circadian variation in
the flag leaves, with a high expression level at noon (Figure 4e). These results demonstrated
that Os02g0184100 is the most likely candidate gene for the association locus.
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flag leaves of rice at different growth stages. (e) Diurnal expression pattern of Os02g0184100 in the
flag leaves.

4. Discussion

Photoprotection is a well-defined plant process which helps to prevent the deleterious
effects of high and excess light on plant cells, especially within the chloroplast. Molecular
components of chloroplast photoprotection are closely aligned with those of photosynthesis
and they influence the productivity together [34]. Chlorophyll fluorescence analysis is
one of the most powerful and widely used techniques to study the effect of stresses on
the photosynthetic process. Previous studies have demonstrated that NPQ/NPQ(T) is
an important photoprotective strategy for plants to adapt to the highly excessive natural
illumination during the growing season as well as the dynamic light microenvironments
inside the canopy [15,35]. The molecular mechanism underlying NPQ/NPQ(T) has been
extensively investigated in Arabidopsis [11,19,36]. However, the NPQ(T) has yet to be
studied comprehensively in the natural rice population. In this study, we investigated the
NPQ(T) variation in a population consisting of diverse 173 rice accessions. The NPQ(T)
displayed a 10-fold difference in our collected panel (Table 1), suggesting that NPQ(T)
had an extensive phenotypic variation in the rice cultivars. No significant difference was

https://ricexpro.dna.affrc.go.jp
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observed between indica and japonica subspecies (Figure 2e). This result reveals that the
NPQ(T) was not selected during the domestication of rice.

In the present study, we obtained a total of 466.7 Gb high-quality sequence data and
identified 1,566,981 SNPs based on alignment to the reference genome (Figure 1). The high
marker density enabled us to perform a more exhaustive GWAS for the NPQ(T), which
facilitated the identification of a more complete set of likely candidate genes responsible
for NPQ(T). Three loci were identified to be associated with NPQ(T), distributed on chro-
mosomes 02, 05, and 07 (Figure 2). Compared with the traditional QTL mapping approach,
our GWAS provided much higher resolution, facilitating candidate gene identification.

We focused on the loci on chromosome 02 and detected a total of 28 genes for NPQ(T).
Close to the GWAS peak signals, we found some candidate genes that might be involved in
processes of electron transport, buildup of proton gradient, PSII light-harvesting antenna
structure, and light-harvesting complex II (LHCII) re-arrangements that trigger and regulate
the NPQ/NPQ(T) scenario (Supplementary Table S4) [36]. The association between haplo-
type and phenotype has been proved to be a useful way to identity the candidate genes
underlying the associated signals in plants [37,38]. In our study, the most likely candidate
genes were uncovered by testing the correlation between functional polymorphisms and
phenotypic variation and expression pattern in the flag leaves. We found that the NPQ(T)
was correlated with the haplotype of Os02g0184100 (Figure 4). Furthermore, by querying
the gene expression, we found that Os02g0184100 had a high expression level and a certain
circadian rhythm in flag leaves. Os02g0184100 encodes the phosphopantothenoylcysteine
decarboxylase subunit VHS3. The phosphopantothenoylcysteine decarboxylase partici-
pates in the synthesis of CoA [39]. Acetyl-CoA is an important intermediate metabolite of
energy metabolism, such as the Calvin cycle of photosynthesis [40]. Phosphopantothenoyl-
cysteine has been reported to have salt resistance and antioxidant effects in apple [41].
NPQ is also proved to be an antioxidant photoprotective process [34], so we suggested
that Os02g0184100 may affect the photoprotection process of photosynthesis. This is con-
sistent with the fact that the Os02g0184100 expression in the daytime is higher than that
in the nighttime. These results suggest that Os02g0184100 might be the likely candidate
gene associated with NPQ(T). NPQ/NPQ(T) is a consequence of complicated biological
processes and its mechanism remains unclear; more detailed experimental analyses are
needed to confirm the function of candidate genes in photoprotection [42,43]. However,
the significant loci and likely candidate genes uncovered in the current study now provide
us a comprehensive understanding of the genetic architecture of NPQ(T), and this in turn
provides stronger evidence for the genetic improvement of rice photoprotection.
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GWAS. Table S5: PVE of SNP site (100 kb before and after the signals).
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