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Abstract: Soil eukaryotic microorganisms are important to biodiversity, and returning different kinds
of organic materials to the field could improve the biodiversity of soil eukaryotic microorganisms.
However, no detailed research has been conducted in the northern China semi-arid area in returning
the different organic materials to the field and determining the status of eukaryotic microorganisms.
Therefore, we explored the effects of various organic materials returning to the soil in combination
with inorganic fertilizer on the diversity and community structure of eukaryotic microorganisms
in Shanxi province, China. Soil samples were collected from five different fertilization treatments:
chemical fertilizer (F), chemical fertilizer + cattle manure (FM), chemical fertilizer + straw (FS), chem-
ical fertilizer + pig manure (FC) and control without fertilizers (CK). High-throughput sequencing
was applied to analyze the eukaryotic diversity and community structure. Results showed that the
dominant eukaryotic microorganisms among soil samples were Fungi, Viridiplantae, Metazoa and
Protist. Although α-diversity was not significantly different among the five treatments, principal
coordinate analysis and permutational multivariate analysis of variance illustrated significant differ-
ences (p < 0.001) in β-diversity of eukaryotic microorganism under treatments with different organic
materials. Redundancy analysis showed that the soil properties, including total potassium, available
nitrogen, available potassium and organic matter were the main factors attributed to eukaryotic
microorganisms’ community structure in this region.

Keywords: soil fertility; nutrients availability; Cabon sequestration

1. Introduction

Soil microorganisms are important indicators in the characterization of soil fertility,
and they play a vital role in soil material transformation and energy flow [1–3]. As an
important part of soil microorganisms, eukaryotic microorganisms including fungi, protists,
metazoan, etc., are diverse in size, form and function and play an important role in organic
decomposition [4,5], nutrient cycling and soil structural formation of the ecosystem as
primary producers, consumers and decomposers [6–9]. Previous studies have shown that
soil eukaryotic microorganisms are highly sensitive to changes of soil properties, including
pH, organic matter, moisture content, the presence of mineral substances, etc. [10,11].
Furthermore, studies have shown that the physical and chemical properties of soil could be
largely influenced by fertilization management practices [12,13].

It is well known that fertilization is an important measure in agricultural production,
which can improve soil nutrients and increase crop yield [14,15]. However, soil problems
including nutrients imbalance, organic matter reduction, etc. caused by the excessive
chemical fertilizer put into farmland are becoming more and more serious [12,16]. Return-
ing organic amendments to the field can improve the soil components by increasing soil
organic matter and improving soil fertility to a certain extent. It may be because organic
materials themselves contain a lot of organic matter and functional microorganisms which
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can effectively transform the nutrients in the soil, but many microorganisms may not be
culturable. Crop straw and animal manure are the largest agricultural renewable resources
and organic amendments in north China. With the promotion of ecological agriculture
in China, returning crop straws, livestock and poultry manure to the field has become
an important way of recycling agricultural resources [17]. These organic materials can
directly or indirectly affect the soil microbial community by changing soil physical and
chemical properties. Previous research on soil microbial changes under different organic
modifications focused on bacteria [18–20] but neglected eukaryotic microorganisms. Thus,
it is necessary to investigate the soil’s eukaryotic microorganisms’ community structure
with different organic materials returning. Traditional identification and description of
microeukaryotes is based on their morphological characteristics, but this method is only
applicable to the study of specific groups and cannot reveal a relatively comprehensive
diversity of eukaryotes [21,22]. The rise of molecular biology techniques has greatly im-
proved our understanding of microbial ecology. For example, the biggest advantage of
high-throughput sequencing technology is that it is culture independent, which can make
up for the deficiency of traditional methods. It can generate tremendous amounts of se-
quence data at a fraction of the cost of earlier methods and obtain more comprehensive
and reliable results [22–25], which is gradually being applied in many fields, including soil,
sediments, water, etc. [26–28].

This study explored the effects of returning different organic materials to the field
on the diversity of eukaryotic microorganisms in the semi-arid area of north China with
high-throughput sequencing technology. The objectives of this study were as follows:
(1) identify the composition and richness of the current soil eukaryotic microorganisms
in north China; (2) elucidate the diversity and community structure differences of soil
eukaryotic microbes with different organic materials returning; (3) and assess the drivers of
environmental factors on soil eukaryotic microorganism variation in this semi-arid region.

2. Materials and Methods
2.1. Field Description and Experimental Design

This study was conducted in Jingshang Village, Shouyang County, Shanxi Province
(37◦45′ N, 113◦12′ E, altitude 1080 m). This region belongs to the temperate continental
monsoon climate zone, with an annual average temperature 8.1 ◦C, ≥10 ◦C accumulated
temperature 3200 ◦C, frost-free period 130 days, and precipitation 474.2 mm. The exper-
imental site has a sandy loam cinnamon soil, classified as a Calcarie–Fluvie Cambisols
in the World Reference Base for Soil Rescoures (WRB) [29,30]. The soil layer is deep and
thick, and the terrain is flat without groundwater supplement. The fertilization experiment
started in April 2018 and has lasted for 3 years. The selected chemical properties of the
basic soil tested in spring of 2018 were shown in Table 1.

Table 1. The selected chemical properties of the basic soil.

Soil Layer
(cm) pH Organic Matter

(g·kg−1)
Total N
(g·kg−1)

Total P
(g·kg−1)

Total K
(g·kg−1)

Alkali-Hydrolyzable N
(mg·kg−1)

Available P
(mg·kg−1)

Available K
(mg·kg−1)

0–20 8.49 11.92 1.07 0.67 23.55 88.65 8.09 104.98
20–40 8.54 7.48 0.81 0.50 24.22 54.16 6.36 75.2

Maize (Zea mays L.) is planted in spring around May 1st every year with a density
of 72,000 plants/hm2. Five fertilization treatments were designed: chemical fertilizer (F),
chemical fertilizer + cattle manure (FM), chemical fertilizer + maize straw (FS), chemical
fertilizer + pig manure (FC) and control without fertilizers (CK). The plot area was 60 m2

(10 m × 6 m) and randomly arranged. Each treatment was repeated three times. The
nitrogen was applied in the form of urea (N 46%), phosphorus was applied as calcium
superphosphate (P2O5 12%) and potassium was in the form of potassium chloride (K2O
60%). The nutrient contents of different organic materials were as follows: cattle manure,
N 8.2 g/kg, P2O5 5.3 g/kg, K2O 17.1 g/kg; maize straw, N 7.5 g/kg, P2O5 4.2 g/kg, K2O
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13.3 g/kg and pig manure, N 8.8 g/kg, P2O5 15.3 g/kg, K2O 12.4 g/kg. All fertilizers were
evenly distributed over the plots before sowing, and the specific amount of nutrients input
was shown in Table 2.

Table 2. Experimental treatments and fertilization with different organic materials.

Treatment
Chemical Fertilizer (kg/hm2) Organic Fertilizer (kg/hm2) Total Nutrient (kg/hm2)

N P2O5 K2O N P2O5 K2O N P2O5 K2O

F 225 75 75 0 0 0 225 75 75
FM 225 75 75 70 45 145 295 120 220
FS 225 75 75 45 25 80 270 100 155
FC 225 75 75 60 105 85 285 180 160
CK 0 0 0 0 0 00 0 0 0

Note: F: chemical fertilizer; FM: chemical fertilizer + cattle manure; FS: chemical fertilizer + maize straw; FC:
chemical fertilizer + pig manure; CK: control without fertilizers.

2.2. Soil Sampling

Five bulk soil samples of 0~20 cm between maize plants were collected from each
subplot by “S” method with a soil auger and mixed into one on 11 July 2021, so a total of
fifteen soil samples were obtained. After screening through 2 mm sieves to remove stones
and debris, samples were put in sterilized bags and transported to the laboratory with
an icebox. One part was temporarily stored in a −80 ◦C refrigerator for DNA extraction
and further sequencing. The other part was screened through 1 mm and 0.15 mm sieves
respectively after natural air drying for soil properties analysis.

2.3. Soil Physicochemical Analytical Procedures

Generally, soil samples screened over 1 mm were used for detecting pH and available
nutrients, while soil samples screened over 0.15 mm were used for detecting organic matter
and total nutrients. The detection methods are described as follows:

pH was measured with a pH meter and the soil-water ratio was 1:2.5. Organic matter
(OM) was extracted with K2Cr2O7 and determined by titration. Total nitrogen (TN) was
analyzed by semi-trace Kjeldahl method. Available nitrogen (AN) was determined by
alkali-hydrolytic diffusion method. Total phosphorus (TP) and available phosphorus (AP)
were extracted by NaOH and NaHCO3, respectively, and determined by molybdenum-
antimony resistance colorimetry. Total potassium (TK) and available potassium (AK)
were extracted by HNO3-HClO and NH4COOCH3, respectively, and determined by flame
spectrophotometer. All of the specific procedures can be found in the reference [31].

2.4. Soil DNA Extraction and High-Throughput Sequencing

A soil sample of 0.5 g was accurately weighed, and soil genomic DNA was extracted us-
ing a Fast DNA SPIN Isolation Kit (MP Biomedicals, Santa Ana, CA, USA) according to the
kit manufacturer’s instructions. Upstream primer 547F (5′-CCAGCASCYGCGGTAATTCC-
3′) and downstream primer 952R (5′-ACTTTCGTTCTTGATYRA-3′) [32,33] were used to
amplify the V4 region of eukaryotic 18S rRNA with a TransFast TaqDNA Polymerase Kit
(TransGen, Beijing, China). After accessing the quantity and quality with a Nanodrop ND-
1000 (Thermo Fisher Scientific, Waltham, MA, USA) and 0.75% agarose gel electrophoresis,
the DNA was used to conduct the PCR. The PCR reaction system contained: 5 × reaction
buffer 5 µL, 5 × GC buffer 5 µL, 2.5 mmol/L dNTPs 2 µL, 10 µmol/L primers 1 µL, respec-
tively, DNA template 2 µL, 5 U/µL Taq enzyme 0.25 µL, ddH2O 8.75 µL and total volume
25 µL. PCR reaction conditions was: 98 ◦C for 2 min; 98 ◦C 15 s, 55 ◦C 30 s, 72 ◦C 30 s, for
30 cycles; and 72 ◦C for 5 min. After purification with Agencourt AMPure Beads (Beckman
Coulter, Indianapolis, IN, USA) and quantified using the PicoGreen dsDNA Assay Kit
(Invitrogen, Carlsbad, CA, USA), the target DNA fragment was stored in a refrigerator at
−20 ◦C and used for high-throughput sequencing based on Illumina Miseq platform at Per-
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sonalbio Technology Co., LTD (Shanghai, China). Raw sequence data files were deposited
in the NCBI Sequence Read Archive database (Accession numbers: PRJNA827283).

2.5. Statistical Analysis
2.5.1. Bioinformatics Analysis

The operational taxonomic unit (OTU) table for subsequent analysis was obtained
after quality control, merger and redundancy removal of the original data. Sequence data
analyses were mainly performed using QIIME2 dada2 analysis process and R (version 3.1.2,
vegan package) [34]. Alpha-diversity metrics including Chao1, Observed_species, and
Shannon and Simpson indices were calculated based on the OTU table using QIIME2. The
formulas were as follows:

chaol = Sobs +
F1(F1−1)
2(F2+1) , where F1 and F2 were the count of singletons and double-

tons, respectively;

H = −
s
∑

i=1
(pilog2 pi), where s was the number of OTUs, and pi was the proportion of

the community represented by OTU i;
Simpson’s index = 1−∑ pi2 where pi was the proportion of the community represented

by OTU i.
“VennDiagram” and “grid” packages of R were used to draw Venn diagrams for

different treatments of eukaryotic microorganisms OTU. The “ggplot2”, “vegan” and
“plyr” program packages were used to conduct principal coordinate analysis (PCoA)
of OTU among different treatments [35], and permutation multiple variance analysis
(PERMANOVA) was used to evaluate the significance of differences in OTU composition
between groups [36]. The “barplot” function of R was used to draw species composition of
eukaryotic microorganisms at phylum and genus level. Redundancy analysis (RDA) was
performed to identify relationships between phylum-level eukaryotic microorganisms and
soil physicochemical parameters using the CANOCO 4.5 software.

2.5.2. Significance Analysis

The data of soil chemical factors, α-diversity and species abundance among different
treatments collected had been tested for normality and homogeneity of variance using
the “T-test”. The differences were evaluated by a one-way analysis of variance (ANOVA)
using Software SPSS 19.0 (SPSS Inc., Chicago, IL, USA). The least significant difference
(LSD) method was used to analyze the significance of differences among data at 95%
confidence level.

3. Results
3.1. Soil Physicochemical Characteristics

At the beginning of the experiment, the soil organic matter content was 11.82 g/kg,
which was at a low level (Table 1). Fertilization for three consecutive years generally
improved the soil fertility and reduced the soil pH (Table 3). Among them, OM, TP and
AP were increased in the treatments FM, FS and FC with organic materials returning to
the field, and the effect was better than that of F treatment with single application of
chemical fertilizer.
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Table 3. Soil chemical properties with different organic materials.

Treatment pH Organic Matter
(g·kg−1)

Total N
(g·kg−1)

Total P
(g·kg−1)

Total K
(g·kg−1)

Alkali-
Hydrolyzable N

(mg·kg−1)

Available P
(mg·kg−1)

Available K
(mg·kg−1)

F 8.28 ± 0.01 a 10.56 ± 0.99 d 1.02 ± 0.01 a 0.71 ± 0.01 b 21.48 ± 1.28 c 91.33 ± 7.95 c 9.62 ± 1.11 d 75.88 ± 2.23 e
FM 8.10 ± 0.02 b 13.03 ± 1.02 a 1.08 ± 0.01 a 0.83 ± 0.01 ab 23.07 ± 1.40 a 103.57 ± 9.91 a 21.18 ± 2.14 b 156.63 ± 9.92 a
FS 8.25 ± 0.01 a 11.17 ± 1.23 c 0.98 ± 0.01 a 0.86 ± 0.02 a 22.49 ± 1.22 b 78.75 ± 1.19 e 11.25 ± 1.82 c 83.94 ± 8.00 c
FC 8.27 ± 0.03 a 12.17 ± 0.90 b 1.08 ± 0.02 a 0.72 ± 0.02 b 20.76 ± 1.99 d 97.20 ± 5.81 b 31.92 ± 2.18 a 113.02 ± 5.98 b
CK 8.31 ± 0.01 a 11.13 ± 0.75 c 0.95 ± 0.01 a 0.58 ± 0.01 c 18.00 ± 1.20 e 87.83 ± 3.27 d 7.87 ± 1.90 e 82.53 ± 2.59 d

Note: F: chemical fertilizer; FM: chemical fertilizer + cattle manure; FS: chemical fertilizer + maize straw; FC:
chemical fertilizer + pig manure; CK: control without fertilizers. The different lowercase letters after numbers
mean significant differences between treatments (p < 0.05).

Compared with CK, fertilization generally increased the contents of soil nutrients.
However, OM and AK in treatment F were significantly lower than in that of CK. Apart
from that, AN in treatment FS was significantly lower than in that of CK. Compared with F,
organic material returning to the field significantly increased the contents of OM, AP and
AK by 5.8%~23.4%, 16.9%~231.8% and 10.6%~106.4%, respectively. In the three treatments
with organic materials, OM, TK, AN and AK were significantly higher in treatment FM than
the other three treatments. On the contrary, pH was significantly lower in FM treatment.
AP was the highest in treatment FC.

3.2. Alpha-Diversity of Eukaryotic Microorganisms

A total number of 939,615 high quality sequences were generated with an average
length of 380 bp and 17,198 OTU were identified. In order to comprehensively assess
the alpha-diversity of eukaryotic microorganisms, Chao1 and Observed Species indices
were used in this process to characterize the richness, and diversity was characterized by
Shannon and Simpson indices. As shown in Table 4, indices of Chao1 and Observed_species
were the highest in treatment F and indices of Shannon and Simpson were the highest
in treatment FC while the lowest in treatment FS. However, no significant differences
were observed among the five treatments, which showed that returning different organic
materials to the field had little effect on α-diversity of eukaryotic microorganisms.

Table 4. Eukaryotic microorganisms α-diversity under different treatments.

Treatment Chao1 Observed_Species Shannon Simpson

F 1302.99 ± 93.29 a 1215.77 ± 97.41 a 7.0417 ± 0.8380 a 0.9610 ± 0.0315 a
FM 1227.52 ± 176.91 a 1167.53 ± 147.06 a 6.8935 ± 0.6906 a 0.9418 ± 0.0451 a
FS 1031.93 ± 195.72 a 968.43 ± 162.85 a 6.3081 ± 0.4664 a 0.9420 ± 0.0171 a
FC 1275.53 ± 177.55 a 1211.47 ± 167.38 a 7.2898 ± 0.5858 a 0.9715 ± 0.0148 a
CK 1218.75 ± 21.89 a 1161.00 ± 6.88 a 7.2049 ± 0.1519 a 0.9708 ± 0.0110 a

Note: F: chemical fertilizer; FM: chemical fertilizer + cattle manure; FS: chemical fertilizer + maize straw; FC:
chemical fertilizer + pig manure; CK: control without fertilizers.The different lowercase letters after numbers
mean signficant differences betwee treatments (p < 0.05).

3.3. Composition of Eukaryotic Microbial Community under Different Treatments

The number of shared and specific OTUs were showed in Figure 1. There were
384 shared OTUs among the five different treatments, accounting for 5.89% of the total.
The specific OTU numbers of treatments F, FM, FS, FC and CK were 1045, 983, 629, 1105
and 842, respectively, which were significantly different. Compared with CK, fertilization
generally increased the number of specific OTUs except the treatment FS. The number of
specific OTUs in FC treatment was increased by 5.7% compared with treatment F. On the
contrary, the numbers of specific OTUs in FM and FS treatments were decreased compared
with treatment F by 5.9% and 4.0%, respectively. These results indicated that there were
quite significant differences in the sequence alignment of eukaryotic microorganisms in
soil with different organic materials returning.
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3.4. Taxonomic Composition Analysis at the Phylum and Genus Level

The top ten eukaryotic microorganisms at phylum level belonged to four kingdoms:
Fungi (Ascomycota, Mucoromycota, Basidiomycota, Chytridiomycota), Viridiplantae (Streptophyta,
Chlorophyta), Metazoa (Nematoda and Arthropoda) and Protist (Apicomplexa and Dinophyceae),
accounting for 75.5%~90.8% of the total phyla (Figure 2). Thus, fungi comprised the main
group of eukaryotic microorganisms in soil of this region. Ascomycota was significantly
higher in treatment FS than in treatments FM, FC and CK by 90.3%, 204.6% and 159.4%,
respectively. Basidiomycota was significantly higher in treatment F than in treatments FM, FS,
FC and CK by 1537.1%, 6.6%, 31.1% and 99.3%, respectively. Streptophyta was significantly
higher in treatment CK than in treatments F and FM by 425.6% and 881.4%, respectively.
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The top ten eukaryotic microorganisms at genus level were Mortierella, Fusarium,
Gamsiella, Pratylenchus, Atopochthonius, Glomus, Septoglomus, Rhogostoma, Rhizophagus and
Oxyrrhis, averagely accounting for 24.3% of the total (Figure 3). Among which, Glomus, Sep-
toglomus and Rhizophagus belonged to AM fungus. Compared with chemical fertilizer alone
(F treatment), organic materials returning (FM, FS, FC treatments) and no fertilizer (CK
treatment), both reduced the relative abundances of these three genera, but the differences
were not significant between groups.
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3.5. Beta-Diversity of Eukaryotic Microorganisms

PCoA was carried out to analyze the difference of β-diversity of eukaryotic microor-
ganisms among different treatments. The two main coordinates together explained 45.2%
of the variance, with the first axis explaining 25.8% and the second explaining 19.4%
(Figure 4). The three samples of the same treatment clustered together, indicating good
parallelism. The obvious boundary between samples of different treatments indicated that
different organic materials had an effect on the eukaryotic microorganisms’ community.
PERMANOVA further showed that the difference was significant (p < 0.001) (Figure 5).
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3.6. Correlations

RDA was conducted to analyze the relationship between the top ten phylum-level
eukaryotic microorganisms and soil properties. As shown in Figure 6, the first two axes
together explained 60.3% of the total variation in eukaryotic microorganisms’ composition,
36.5% for the first axis and 23.8% for the second axis. TK (F = 4.33, p = 0.016), AN (F = 4.188,
p = 0.012), AK (F = 3.848, p = 0.012) and OM (F = 3.518, p = 0.018) were statistically signifi-
cant physicochemical parameters that were associated with eukaryotic microorganisms’
community composition (based on 499 Monte Carlo permutations). The contribution rate
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of eight environmental factors to eukaryotic microorganism variation was in the following
order: TK > AN > AK > OM > TP > pH > AP > TN.
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4. Discussion
4.1. Effects of Treatments on the Soil Physicochemical Properties

In the present study, fertilization improved most of the soil nutrition contents including
TN, TP, TK and AP compared with treatment CK but lowered soil pH, which might be
caused by hydrolyzed nitrate-releasing H+ of the amide nitrogen fertilizer urea applied
to the soil [37,38]. Compared with treatment F (the chemical fertilizer), returning organic
amendments to the field also decreased soil pH, which might be due to the increase of
organic acids during the decomposition process of organic matter [39]. No significant
differences of pH were observed in these treatments apart from treatment FM, which might
be due to the fact that calcareous soils contain higher carbonates to buffer soil pH [40].

Fertilization generally increased soil nutrients, but compared with CK, F treatment
with fertilizer significantly reduced soil OM and AK, which might because chemical fer-
tilizer input increased crop yields, consuming more organic matter and removing more
potassium. Moreover, AN in treatment FS was significantly lower than in that of CK. This
might be caused by the degradation of straw requiring the consumption of nitrogen in the
soil. AP was the highest in treatment FC because pig manure contains the most phosphorus.

4.2. Effects of Different Treatments on the Eukaryotic Microorganisms Diversity and
Community Composition

A straw composting experiment showed that the dominant eukaryotic microorgan-
isms were Ascomycota, Basidiomycota, Zygomycota and Algae [41]. The main eukaryotic
microorganisms in a compost made from cow manure and straw were Ascomycota (40.2%),
Zygomycota (20.3%), Algae (2.3%), Basidiomycota (1.5%) and Protist (0.4%) [42]. In this study,
Fungi, Viridiplantae, Metazoa and Protist were the dominant soil eukaryotic microbial groups,
which showed that the diversity of eukaryotic microorganisms was affected by different
habitats. Fungi including Ascomycota, Mucoromycota, Basidiomycota, Chytridiomycota, etc.
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had the highest relative abundance, and were widely found in terrestrial and aquatic
ecosystems [43,44]. Glomus, Septoglomus and Rhizophagus belong to Glomeromycota and are
classified as arbuscular mycorrhizal fungi (AMF), which could provide abundant nutrients
for crops and promote their growth. Nematoda and Arthropoda dominated the Metazoa,
which was similar to previous studies [45–47]. Previous research showed that the SAR
supergroup and Metazoa were the dominant soil eukaryotic groups in the forest soil habi-
tat [43], indicating that the soil eukaryotic microbes were closely related to different soil
habitat types. Although sequencing results have elucidated that the dominant composi-
tions of eukaryotic microorganisms among soil samples under different treatments were
roughly similar, PCoA and PERMANOVA illustrated significant differences (p < 0.001) in
β-diversity of eukaryotic microorganisms’ community structure under treatments with
different organic materials to the field. This is consistent with the results of Wang et al.,
who documented a clear separation of soil fungi under different fertilization modes [48].

Fertilization directly affected the soil’s eukaryotic microorganisms’ community struc-
ture by changing nutrients in the soil [49,50]. Additionally, the change of soil pH caused by
fertilization had an indirect effect on the eukaryotic microorganisms’ community structure
as many eukaryotic groups exhibited distinct preferences for specific edaphic pH, or soil
pH affected the host of some eukaryotic microbes [51–53].

4.3. Relationship between Soil Eukaryotic Microorganisms and Environmental Factors

The composition of the eukaryotic microorganisms’ community was influenced by
its microenvironment, including soil properties. In this study, we found that TK, AN,
AK and OM were the main factors attributed to eukaryotic microorganisms’ community
structure in this region through the RDA analysis. This might be due to eukaryotic microor-
ganisms mainly participating in the decomposition of organic materials, which contained
a lot of potassium. Previous studies have also found that available potassium and to-
tal potassium content played an important role in regulating the soil fungal community
structure [48,54]. In addition, carbon, nitrogen and their proportions were requisite factors
and major nutrients supporting eukaryotic microorganisms’ growth and reproduction [52].

5. Conclusions

Returning organic materials to the field generally improved soil fertility, and then sig-
nificantly affected the β-diversity of eukaryotic microorganisms (p < 0.001). The dominant
eukaryotic microorganisms at phylum level were Ascomycota, Mucoromycota, Streptophyta,
Basidiomycota, Nematoda, Arthropoda, Chlorophyta, Chytridiomycota, Apicomplexa and Dino-
phyceae. RDA indicated that soil potassium, carbon and nitrogen were main environmental
factors attributed to eukaryotic microorganisms’ community structure. As an important
agricultural resource, eukaryotic microorganisms play an important role in soil carbon
cycling and plant nutrition. The input of organic fertilizers contributes to the maintenance
of eukaryotic microbial diversity and the improvement of soil fertility. Treatment FC with
pig manure returning had the highest Shannon and Simpson diversity indices and most
unique OTU number, which showed that pig manure was the best organic material to
improve soil eukaryotic microbial diversity.
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